Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

OPINION

Mesenchymal stem cells and the embryonic reawakening theory of BPH

Abstract

The prostate is the only organ in a man that continues to grow with age. John McNeal proposed, 40 years ago, that this BPH is characterized by an age-related reinitiation of benign neoplastic growth selectively in developmentally abortive distal ducts within the prostate transition–periurethral zone (TPZ), owing to a reawakening of inductive stroma selectively within these zones. An innovative variant of this hypothesis is that, owing to its location, the TPZ is continuously exposed to urinary components and/or autoantigens, which produces an inflammatory TPZ microenvironment that promotes recruitment of bone marrow-derived mesenchymal stem cells (MSCs) and generates a paracrine-inductive stroma that reinitiates benign neoplastic nodular growth. In support of this hypothesis, MSCs infiltrate human BPH tissue and have the ability to stimulate epithelial stem cell growth. These results provide a framework for defining both the aetiology of BPH in ageing men and insights into new therapeutic approaches.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Anatomical changes to the prostate with age.
Fig. 2: Embryonic development of the human prostate.
Fig. 3: Reciprocal crosstalk between epithelium and stroma in the human prostate.
Fig. 4: Reciprocal hierarchical expansion of human epithelial and stromal adult stem cells in the prostate.
Fig. 5: Mesenchymal stem cells infiltrate BPH nodules along with other immune cells.
Fig. 6: Heuristic model of mesenchymal stem cell-dependent episodic inductive reawakening in BPH pathogenesis.

Similar content being viewed by others

References

  1. Isaacs, J. T. Prostate stem cells and benign prostatic hyperplasia. Prostate 68, 1025–1034 (2008).

    Article  CAS  PubMed  Google Scholar 

  2. McNeal, J. E. Regional morphology and pathology of the prostate. Am. J. Clin. Pathol. 49, 347–357 (1968).

    Article  CAS  PubMed  Google Scholar 

  3. McNeal, J. E. The prostate and prostatic urethra: a morphologic synthesis. J. Urol. 107, 1008–1016 (1972).

    Article  CAS  PubMed  Google Scholar 

  4. McNeal, J. E. Origin and evolution of benign prostatic enlargement. Invest. Urol. 15, 340–345 (1978).

    CAS  PubMed  Google Scholar 

  5. McNeal, J. E. The zonal anatomy of the prostate. Prostate 2, 35–49 (1981).

    Article  CAS  PubMed  Google Scholar 

  6. McNeal, J. E. Anatomy of the prostate and morphogenesis of BPH. Prog. Clin. Biol. Res. 145, 27–53 (1984).

    CAS  PubMed  Google Scholar 

  7. Isaacs, J. T. & Coffey, D. S. Etiology and disease process of benign prostatic hyperplasia. Prostate Suppl. 2, 33–50 (1989).

    Article  CAS  PubMed  Google Scholar 

  8. Hollingsworth, J. M. & Wilt, T. J. Lower urinary tract symptoms in men. BMJ. 349, g4474 (2014).

    Article  PubMed  Google Scholar 

  9. Sausville, J. & Naslund, M. Benign prostatic hyperplasia and prostate cancer: an overview for primary care physicians. Int. J. Clin. Pract. 64, 1740–1745 (2010).

    Article  CAS  PubMed  Google Scholar 

  10. Cindolo, L. et al. Drug adherence and clinical outcomes for patients under pharmacological therapy for lower urinary tract symptoms related to benign prostatic hyperplasia: population-based cohort study. Eur. Urol. 68, 418–425 (2015).

    Article  PubMed  Google Scholar 

  11. Bosch, J. L., Tilling, K., Bohnen, A. M., Bangma, C. H. & Donovan, J. L. Establishing normal reference ranges for prostate volume change with age in the population-based Krimpen-study: prediction of future prostate volume in individual men. Prostate 67, 1816–1824 (2007).

    Article  CAS  PubMed  Google Scholar 

  12. Park, J. et al. Establishment of reference ranges for prostate volume and annual prostate volume change rate in Korean adult men: analyses of a nationwide screening population. J. Kor. Med. Sci. 30, 1136–1142 (2015).

    Article  Google Scholar 

  13. Hayward, S. W., Cunha, G. R. & Dahiya, R. Normal development and carcinogenesis of the prostate. A unifying hypothesis. Ann. NY Acad. Sci. 784, 50–62 (1996).

    Article  CAS  PubMed  Google Scholar 

  14. Hayward, S. W. et al. Interactions between adult human prostatic epithelium and rat urogenital sinus mesenchyme in a tissue recombination model. Differentiation 63, 131–140 (1998).

    Article  CAS  PubMed  Google Scholar 

  15. Thomson, A. A., Timms, B. G., Barton, L., Cunha, G. R. & Grace, O. C. The role of smooth muscle in regulating prostatic induction. Development 129, 1905–1912 (2002).

    CAS  PubMed  Google Scholar 

  16. Marker, P. C., Donjacour, A. A., Dahiya, R. & Cunha, G. R. Hormonal, cellular, and molecular control of prostatic development. Dev. Biol. 253, 165–174 (2003).

    Article  CAS  PubMed  Google Scholar 

  17. Yan, G., Fukabori, Y., Nikolaropoulos, S., Wang, F. & McKeehan, W. L. Heparin-binding keratinocyte growth factor is a candidate stromal-to-epithelial-cell andromedin. Mol. Endocrinol. 6, 2123–2128 (1992).

    CAS  PubMed  Google Scholar 

  18. Richard, C. et al. Androgens modulate the balance between VEGF and angiopoietin expression in prostate epithelial and smooth muscle cells. Prostate 50, 83–91 (2002).

    Article  CAS  PubMed  Google Scholar 

  19. Litvinov, I. V., De Marzo, A. M. & Isaacs, J. T. Is the Achilles’ heel for prostate cancer therapy a gain of function in androgen receptor signaling? J. Clin. Endocrinol. Metab. 88, 2972–2982 (2003).

    Article  CAS  PubMed  Google Scholar 

  20. Ohlson, N., Bergh, A., Stattin, P. & Wikstrom, P. Castration-induced epithelial cell death in human prostate tissue is related to locally reduced IGF-1 levels. Prostate 67, 32–40 (2007).

    Article  CAS  PubMed  Google Scholar 

  21. Brennen, W. N. et al. Mesenchymal stem cell infiltration during neoplastic transformation of the human prostate. Oncotarget 8, 46710–46727 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Lamm, M. L. et al. Sonic hedgehog activates mesenchymal Gli1 expression during prostate ductal bud formation. Dev. Biol. 249, 349–366 (2002).

    Article  CAS  PubMed  Google Scholar 

  23. Karhadkar, S. S. et al. Hedgehog signalling in prostate regeneration, neoplasia and metastasis. Nature 431, 707–712 (2004).

    Article  CAS  PubMed  Google Scholar 

  24. Peng, Y. C., Levine, C. M., Zahid, S., Wilson, E. L. & Joyner, A. L. Sonic hedgehog signals to multiple prostate stromal stem cells that replenish distinct stromal subtypes during regeneration. Proc. Natl Acad. Sci. USA 110, 20611–20616 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Peehl, D. M. & Sellers, R. G. Basic FGF, EGF, and PDGF modify TGFbeta-induction of smooth muscle cell phenotype in human prostatic stromal cells. Prostate 35, 125–134 (1998).

    Article  CAS  PubMed  Google Scholar 

  26. Zhu, M. L. & Kyprianou, N. Androgen receptor and growth factor signaling cross-talk in prostate cancer cells. Endocr. Relat. Cancer 15, 841–849 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Yoon, G., Kim, J. Y., Choi, Y. K., Won, Y. S. & Lim, I. K. Direct activation of TGF-beta1 transcription by androgen and androgen receptor complex in Huh7 human hepatoma cells and its tumor in nude mice. J. Cell. Biochem. 97, 393–411 (2006).

    Article  CAS  PubMed  Google Scholar 

  28. Kanda, T., Jiang, X. & Yokosuka, O. Androgen receptor signaling in hepatocellular carcinoma and pancreatic cancers. World J. Gastroenterol. 20, 9229–9236 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Singh, R., Artaza, J. N., Taylor, W. E., Gonzalez-Cadavid, N. F. & Bhasin, S. Androgens stimulate myogenic differentiation and inhibit adipogenesis in C3H 10T1/2 pluripotent cells through an androgen receptor-mediated pathway. Endocrinology 144, 5081–5088 (2003).

    Article  CAS  PubMed  Google Scholar 

  30. Singh, R. et al. Regulation of myogenic differentiation by androgens: cross talk between androgen receptor/ beta-catenin and follistatin/transforming growth factor-beta signaling pathways. Endocrinology 150, 1259–1268 (2009).

    Article  CAS  PubMed  Google Scholar 

  31. Timms, B. G. Prostate development: a historical perspective. Differentiation 76, 565–577 (2008).

    Article  CAS  PubMed  Google Scholar 

  32. Lowsley, O. Embryology, anatomy and surgery of the prostate gland with report of operative results. Am. J. Surg. 8, 526–541 (1930).

    Article  Google Scholar 

  33. Moore, R. A. Benign hypertrophy and carcinoma of the prostate, occurence and experimental production in animals. Surgery 16, 152–167 (1944).

    Google Scholar 

  34. Claus, S., Wrenger, M., Senge, T. & Schulze, H. Immunohistochemical determination of age related proliferation rates in normal and benign hyperplastic human prostates. Urol. Res. 21, 305–308 (1993).

    Article  CAS  PubMed  Google Scholar 

  35. Claus, S., Berges, R., Senge, T. & Schulze, H. Cell kinetic in epithelium and stroma of benign prostatic hyperplasia. J. Urol. 158, 217–221 (1997).

    Article  CAS  PubMed  Google Scholar 

  36. Shapiro, E., Becich, M. J., Hartanto, V. & Lepor, H. The relative proportion of stromal and epithelial hyperplasia is related to the development of symptomatic benign prostate hyperplasia. J. Urol. 147, 1293–1297 (1992).

    Article  CAS  PubMed  Google Scholar 

  37. Cunha, G. R. & Lung, B. The possible influence of temporal factors in androgenic responsiveness of urogenital tissue recombinants from wild-type and androgen-insensitive (Tfm) mice. J. Exp. Zool. 205, 181–193 (1978).

    Article  CAS  PubMed  Google Scholar 

  38. Cunha, G. R., Hayward, S. W., Dahiya, R. & Foster, B. A. Smooth muscle-epithelial interactions in normal and neoplastic prostatic development. Acta Anat. (Basel) 155, (63–72 (1996).

    Google Scholar 

  39. Wang, Y., Hayward, S., Cao, M., Thayer, K. & Cunha, G. Cell differentiation lineage in the prostate. Differentiation 68, 270–279 (2001).

    Article  CAS  PubMed  Google Scholar 

  40. Schalken, J. A. & van Leenders, G. Cellular and molecular biology of the prostate: stem cell biology. Urology 62, 11–20 (2003).

    Article  PubMed  Google Scholar 

  41. Goto, K. et al. Proximal prostatic stem cells are programmed to regenerate a proximal-distal ductal axis. Stem Cells 24, 1859–1868 (2006).

    Article  CAS  PubMed  Google Scholar 

  42. Vander Griend, D. J. et al. The role of CD133 in normal human prostate stem cells and malignant cancer-initiating cells. Cancer Res. 68, 9703–9711 (2008).

    Article  CAS  Google Scholar 

  43. Moad, M. et al. Multipotent basal stem cells, maintained in localized proximal niches, support directed long-ranging epithelial flows in human prostates. Cell Rep. 20, 1609–1622 (2017).

    Article  CAS  PubMed  Google Scholar 

  44. Guo, C. et al. Epcam, CD44, and CD49f distinguish sphere-forming human prostate basal cells from a subpopulation with predominant tubule initiation capability. PLOS ONE 7, e34219 (2012).

    Article  CAS  PubMed  Google Scholar 

  45. Antony, L., van der Schoor, F., Dalrymple, S. L. & Isaacs, J. T. Androgen receptor (AR) suppresses normal human prostate epithelial cell proliferation via AR/beta-catenin/TCF-4 complex inhibition of c-MYC transcription. Prostate 74, 1118–1131 (2014).

    Article  CAS  PubMed  Google Scholar 

  46. Vander Griend, D. J., Litvinov, I. V. & Isaacs, J. T. Conversion of androgen receptor signaling from a growth suppressor in normal prostate epithelial cells to an oncogene in prostate cancer cells involves a gain of function in c-Myc regulation. Int. J. Biol. Sci. 10, 627–642 (2014).

    Article  Google Scholar 

  47. Peters, C. A. & Walsh, P. C. The effect of nafarelin acetate, a luteinizing-hormone-releasing hormone agonist, on benign prostatic hyperplasia. N. Engl. J. Med. 317, 599–604 (1987).

    Article  CAS  PubMed  Google Scholar 

  48. Joseph, I. B., Nelson, J. B., Denmeade, S. R. & Isaacs, J. T. Androgens regulate vascular endothelial growth factor content in normal and malignant prostatic tissue. Clin. Cancer Res. 3, 2507–2511 (1997).

    CAS  PubMed  Google Scholar 

  49. Macoska, J. A. Chemokines and BPH/LUTS. Differentiation 82, 253–260 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. McLaren, I. D., Jerde, T. J. & Bushman, W. Role of interleukins, IGF and stem cells in BPH. Differentiation 82, 237–243 (2011).

    Article  CAS  PubMed  Google Scholar 

  51. Quillard, T. & Charreau, B. Impact of notch signaling on inflammatory responses in cardiovascular disorders. Int. J. Mol. Sci. 14, 6863–6888 (2013).

    Article  CAS  PubMed  Google Scholar 

  52. Hahn, A. M., Myers, J. D., McFarland, E. K., Lee, S. & Jerde, T. J. Interleukin-driven insulin-like growth factor promotes prostatic inflammatory hyperplasia. J. Pharmacol. Exp. Ther. 351, 605–615 (2014).

    Article  PubMed  CAS  Google Scholar 

  53. Edeling, M., Ragi, G., Huang, S., Pavenstadt, H. & Susztak, K. Developmental signalling pathways in renal fibrosis: the roles of Notch, Wnt and Hedgehog. Nat. Rev. Nephrol. 12, 426–439 (2016).

    Article  CAS  PubMed  Google Scholar 

  54. Fazio, C. & Ricciardiello, L. Inflammation and Notch signaling: a crosstalk with opposite effects on tumorigenesis. Cell Death Dis. 7, e2515 (2016).

    Article  CAS  PubMed  Google Scholar 

  55. Shang, Y., Smith, S. & Hu, X. Role of Notch signaling in regulating innate immunity and inflammation in health and disease. Protein Cell 7, 159–174 (2016).

    Article  CAS  PubMed  Google Scholar 

  56. Balistreri, C. R., Madonna, R., Melino, G. & Caruso, C. The emerging role of Notch pathway in ageing: focus on the related mechanisms in age-related diseases. Ageing Res. Rev. 29, 50–65 (2016).

    Article  CAS  PubMed  Google Scholar 

  57. Ma, B. & Hottiger, M. O. Crosstalk between Wnt/beta-catenin and NF-kappaB signaling pathway during Inflammation. Front. Immunol. 7, 378 (2016).

    PubMed  Google Scholar 

  58. Kohnen, P. W. & Drach, G. W. Patterns of inflammation in prostatic hyperplasia: a histologic and bacteriologic study. J. Urol. 121, 755–760 (1979).

    Article  CAS  PubMed  Google Scholar 

  59. Kramer, G., Mitteregger, D. & Marberger, M. Is benign prostatic hyperplasia (BPH) an immune inflammatory disease? Eur. Urol. 51, 1202–1216 (2007).

    Article  CAS  PubMed  Google Scholar 

  60. Nickel, J. C. Inflammation and benign prostatic hyperplasia. Urol. Clin. North Amer. 35, 109–115 (2008).

    Article  Google Scholar 

  61. Robert, G. et al. Inflammation in benign prostatic hyperplasia: a 282 patients’ immunohistochemical analysis. Prostate 69, 1774–1780 (2009).

    Article  PubMed  Google Scholar 

  62. Steiner, G. E. et al. Cytokine expression pattern in benign prostatic hyperplasia infiltrating T cells and impact of lymphocytic infiltration on cytokine mRNA profile in prostatic tissue. Lab Invest. 83, 1131–1146 (2003).

    Article  CAS  PubMed  Google Scholar 

  63. De Nunzio, C., Presicce, F. & Tubaro, A. Inflammatory mediators in the development and progression of benign prostatic hyperplasia. Nat. Rev. Urol. 13, 613–626 (2016).

    Article  PubMed  CAS  Google Scholar 

  64. Nickel, J. C. et al. The relationship between prostate inflammation and lower urinary tract symptoms: examination of baseline data from the REDUCE trial. Eur. Urol. 54, 1379–1384 (2008).

    Article  PubMed  Google Scholar 

  65. Yu, H. et al. Urinary microbiota in patients with prostate cancer and benign prostatic hyperplasia. Arch. Med. Sci. 11, 385–394 (2015).

    Article  PubMed  Google Scholar 

  66. Vignozzi, L., Gacci, M. & Maggi, M. Lower urinary tract symptoms, benign prostatic hyperplasia and metabolic syndrome. Nat. Rev. Urol. 13, 108–119 (2016).

    Article  CAS  PubMed  Google Scholar 

  67. Tilg, H. & Moschen, A. R. Adipocytokines: mediators linking adipose tissue, inflammation and immunity. Nat. Rev. Immunol. 6, 772–783 (2006).

    Article  CAS  PubMed  Google Scholar 

  68. Persson, B. E. & Ronquist, G. Evidence for a mechanistic association between nonbacterial prostatitis and levels of urate and creatinine in expressed prostatic secretion. J. Urol. 155, 958–960 (1996).

    Article  CAS  PubMed  Google Scholar 

  69. Motrich, R. D. et al. Uric acid crystals in the semen of a patient with symptoms of chronic prostatitis. Fertil Steril. 85, 751 (2006).

    Article  PubMed  Google Scholar 

  70. Kirby, R. S., Lowe, D., Bultitude, M. I. & Shuttleworth, K. E. Intra-prostatic urinary reflux: an aetiological factor in abacterial prostatitis. Br. J. Urol. 54, 729–731 (1982).

    Article  CAS  PubMed  Google Scholar 

  71. Luo, J. et al. Gene expression signature of benign prostatic hyperplasia revealed by cDNA microarray analysis. Prostate 51, 189–200 (2002).

    Article  CAS  PubMed  Google Scholar 

  72. O’Malley, K. J. et al. Proteomic analysis of patient tissue reveals PSA protein in the stroma of benign prostatic hyperplasia. Prostate 74, 892–900 (2014).

    Article  PubMed  CAS  Google Scholar 

  73. Mikolajczyk, S. D. et al. “BPSA,” a specific molecular form of free prostate-specific antigen, is found predominantly in the transition zone of patients with nodular benign prostatic hyperplasia. Urology 55, 41–45 (2000).

    Article  CAS  PubMed  Google Scholar 

  74. Horwitz, E. M. et al. Clarification of the nomenclature for MSC: the international society for cellular therapy position statement. Cytotherapy 7, 393–395 (2005).

    Article  CAS  PubMed  Google Scholar 

  75. Zuk, P. A. et al. Human adipose tissue is a source of multipotent stem cells. Mol. Biol. Cell 13, 4279–4295 (2002).

    Article  CAS  PubMed  Google Scholar 

  76. da Silva Meirelles, L., Chagastelles, P. C. & Nardi, N. B. Mesenchymal stem cells reside in virtually all post-natal organs and tissues. J. Cell Sci. 119, 2204–2213 (2006).

    Article  PubMed  CAS  Google Scholar 

  77. Crisan, M. et al. A perivascular origin for mesenchymal stem cells in multiple human organs. Cell Stem Cell 3, 301–313 (2008).

    Article  CAS  PubMed  Google Scholar 

  78. Lin, V. K. et al. Prostatic stromal cells derived from benign prostatic hyperplasia specimens possess stem cell like property. Prostate 67, 1265–1276 (2007).

    Article  CAS  PubMed  Google Scholar 

  79. Brennen, W. N., Chen, S., Denmeade, S. R. & Isaacs, J. T. Quantification of mesenchymal stem cells (MSCs) at sites of human prostate cancer. Oncotarget 4, 106–117 (2013).

    Article  PubMed  Google Scholar 

  80. Kim, W. et al. RUNX1 is essential for mesenchymal stem cell proliferation and myofibroblast differentiation. Proc Natl Acad. Sci. USA 111, 16389–16394 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Brennen, W. N., Kisteman, L. N. & Isaacs, J. T. Rapid selection of mesenchymal stem and progenitor cells in primary prostate stromal cultures. Prostate 76, 552–564 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  82. Brennen, W. N. et al. Assessing angiogenic responses induced by primary human prostate stromal cells in a three-dimensional fibrin matrix assay. Oncotarget 7, 71298–71308 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  83. Colter, D. C., Sekiya, I. & Prockop, D. J. Identification of a subpopulation of rapidly self-renewing and multipotential adult stem cells in colonies of human marrow stromal cells. Proc Natl Acad. Sci. USA 98, 7841–7845 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Sakaguchi, Y., Sekiya, I., Yagishita, K. & Muneta, T. Comparison of human stem cells derived from various mesenchymal tissues: superiority of synovium as a cell source. Arthritis Rheum. 52, 2521–2529 (2005).

    Article  PubMed  Google Scholar 

  85. Musina, R. A., Bekchanova, E. S., Belyavskii, A. V. & Sukhikh, G. T. Differentiation potential of mesenchymal stem cells of different origin. Bull. Exp. Biol. Med. 141, 147–151 (2006).

    Article  CAS  PubMed  Google Scholar 

  86. Park, H. W., Shin, J. S. & Kim, C. W. Proteome of mesenchymal stem cells. Proteomics 7, 2881–2894 (2007).

    Article  CAS  PubMed  Google Scholar 

  87. Noel, D. et al. Cell specific differences between human adipose-derived and mesenchymal-stromal cells despite similar differentiation potentials. Exp. Cell Res. 314, 1575–1584 (2008).

    Article  CAS  PubMed  Google Scholar 

  88. Petrini, M. et al. Identification and purification of mesodermal progenitor cells from human adult bone marrow. Stem Cells Dev. 18, 857–866 (2009).

    Article  CAS  PubMed  Google Scholar 

  89. Jansen, B. J. et al. Functional differences between mesenchymal stem cell populations are reflected by their transcriptome. Stem Cells Dev. 19, 481–490 (2010).

    Article  CAS  PubMed  Google Scholar 

  90. Russell, K. C. et al. Clonal analysis of the proliferation potential of human bone marrow mesenchymal stem cells as a function of potency. Biotechnol. Bioeng. 108, 2716–2726 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Strioga, M., Viswanathan, S., Darinskas, A., Slaby, O. & Michalek, J. Same or not the same? Comparison of adipose tissue-derived versus bone marrow-derived mesenchymal stem and stromal cells. Stem Cells Dev. 21, 2724–2752 (2012).

    Article  CAS  PubMed  Google Scholar 

  92. Pacini, S. et al. Mesangiogenic progenitor cells derived from one novel CD64(bright)CD31(bright)CD14(neg) population in human adult bone marrow. Stem Cells Dev. 25, 661–673 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Spaeth, E., Klopp, A., Dembinski, J., Andreeff, M. & Marini, F. Inflammation and tumor microenvironments: defining the migratory itinerary of mesenchymal stem cells. Gene Ther. 15, 730–738 (2008).

    Article  CAS  PubMed  Google Scholar 

  94. Brennen, W. N., Denmeade, S. R. & Isaacs, J. T. Mesenchymal stem cells as a vector for the inflammatory prostate microenvironment. Endocr. Relat. Cancer 20, R269–R290 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Lourenco, S. et al. Macrophage migration inhibitory factor-CXCR4 is the dominant chemotactic axis in human mesenchymal stem cell recruitment to tumors. J. Immunol. 194, 3463–3474 (2015).

    Article  CAS  PubMed  Google Scholar 

  96. Wang, L. et al. Aberrant transforming growth factor-beta activation recruits mesenchymal stem cells during prostatic hyperplasia. Stem Cells Transl Med. 6, 394–404 (2017).

    Article  CAS  PubMed  Google Scholar 

  97. Tanaka, S. T. et al. Recruitment of bone marrow derived cells to the bladder after bladder outlet obstruction. J. Urol. 182, 1769–1774 (2009).

    Article  PubMed  Google Scholar 

  98. Placencio, V. R., Li, X., Sherrill, T. P., Fritz, G. & Bhowmick, N. A. Bone marrow derived mesenchymal stem cells incorporate into the prostate during regrowth. PLOS One 5, e12920 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  99. Garcia, N. P. et al. Kinetics of mesenchymal and hematopoietic stem cells mobilization by G-CSF and its impact on the cytokine microenvironment in primary cultures. Cell. Immunol. 293, 1–9 (2015).

    Article  CAS  PubMed  Google Scholar 

  100. Begley, L., Monteleon, C., Shah, R. B., Macdonald, J. W. & Macoska, J. A. CXCL12 overexpression and secretion by aging fibroblasts enhance human prostate epithelial proliferation in vitro. Aging Cell 4, 291–298 (2005).

    Article  CAS  PubMed  Google Scholar 

  101. Fujita, K. et al. Monocyte chemotactic protein-1 (MCP-1/CCL2) is associated with prostatic growth dysregulation and benign prostatic hyperplasia. Prostate 70, 473–481 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Nakata, W. et al. Bone marrow-derived cells contribute to regeneration of injured prostate epithelium and stroma. Prostate 75, 806–814 (2015).

    Article  CAS  PubMed  Google Scholar 

  103. Sokolova, I. B., Zin’kova, N. N., Shvedova, E. V., Kruglyakov, P. V. & Polyntsev, D. G. Distribution of mesenchymal stem cells in the area of tissue inflammation after transplantation of the cell material via different routes. Bull. Exp. Biol. Med. 143, 143–146 (2007).

    Article  CAS  PubMed  Google Scholar 

  104. Saffarini, C. M. et al. Maturation of the developing human fetal prostate in a rodent xenograft model. Prostate 73, 1761–1775 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Caplan, A. I. Why are MSCs therapeutic? New data: new insight. J. Pathol. 217, 318–324 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Newman, R. E., Yoo, D., LeRoux, M. A. & Danilkovitch-Miagkova, A. Treatment of inflammatory diseases with mesenchymal stem cells. Inflamm Allergy Drug Targets 8, 110–123 (2009).

    Article  CAS  PubMed  Google Scholar 

  107. English, K. & Mahon, B. P. Allogeneic mesenchymal stem cells: agents of immune modulation. J. Cell. Biochem. 112, 1963–1968 (2011).

    Article  CAS  PubMed  Google Scholar 

  108. Guess, H. A., Arrighi, H. M., Metter, E. J. & Fozard, J. L. Cumulative prevalence of prostatism matches the autopsy prevalence of benign prostatic hyperplasia. Prostate 17, 241–246 (1990).

    Article  CAS  PubMed  Google Scholar 

  109. Berry, S. J., Coffey, D. S., Walsh, P. C. & Ewing, L. L. The development of human benign prostatic hyperplasia with age. J. Urol. 132, 474–479 (1984).

    Article  CAS  PubMed  Google Scholar 

  110. Franks, L. M. Benign nodular hyperplasia of the prostate: a review. Ann. R. Coll. Surg. Engl. 14, 92–106 (1954).

    Google Scholar 

  111. Ross, J. J. et al. Cytokine-induced differentiation of multipotent adult progenitor cells into functional smooth muscle cells. J. Clin. Invest. 116, 3139–3149 (2006).

    Article  CAS  PubMed  Google Scholar 

  112. Narita, Y., Yamawaki, A., Kagami, H., Ueda, M. & Ueda, Y. Effects of transforming growth factor-beta 1 and ascorbic acid on differentiation of human bone-marrow-derived mesenchymal stem cells into smooth muscle cell lineage. Cell Tissue Res. 333, 449–459 (2008).

    Article  CAS  PubMed  Google Scholar 

  113. Mishra, P. J. et al. Carcinoma-associated fibroblast-like differentiation of human mesenchymal stem cells. Cancer Res. 68, 4331–4339 (2008).

    Article  CAS  PubMed  Google Scholar 

  114. Paunescu, V. et al. Tumour-associated fibroblasts and mesenchymal stem cells: more similarities than differences. J. Cell. Mol. Med. 15, 635–646 (2011).

    Article  CAS  PubMed  Google Scholar 

  115. Zhao, L. & Hantash, B. M. TGF-beta1 regulates differentiation of bone marrow mesenchymal stem cells. Vitam. Horm. 87, 127–141 (2011).

    Article  CAS  PubMed  Google Scholar 

  116. Liu, J., Wang, Y., Wu, Y., Ni, B. & Liang, Z. Sodium butyrate promotes the differentiation of rat bone marrow mesenchymal stem cells to smooth muscle cells through histone acetylation. PLOS ONE 9, e116183 (2014).

    Article  PubMed  CAS  Google Scholar 

  117. Shi, N., Guo, X. & Chen, S. Y. Olfactomedin 2, a novel regulator for transforming growth factor-beta-induced smooth muscle differentiation of human embryonic stem cell-derived mesenchymal cells. Mol. Biol. Cell 25, 4106–4114 (2014).

    Article  PubMed  Google Scholar 

  118. Visweswaran, M. et al. Multi-lineage differentiation of mesenchymal stem cells - to Wnt, or not Wnt. Int. J. Biochem. Cell Biol. 68, 139–147 (2015).

    Article  CAS  PubMed  Google Scholar 

  119. Almalki, S. G. & Agrawal, D. K. Key transcription factors in the differentiation of mesenchymal stem cells. Differentiation 92, 41–51 (2016).

    Article  CAS  PubMed  Google Scholar 

  120. Russell, K. C. et al. In vitro high-capacity assay to quantify the clonal heterogeneity in trilineage potential of mesenchymal stem cells reveals a complex hierarchy of lineage commitment. Stem Cells 28, 788–798 (2010).

    Article  CAS  PubMed  Google Scholar 

  121. Lin, V. K. et al. Myosin heavy chain gene expression in normal and hyperplastic human prostate tissue. Prostate 44, 193–203 (2000).

    Article  CAS  PubMed  Google Scholar 

  122. Schauer, I. G., Ressler, S. J., Tuxhorn, J. A., Dang, T. D. & Rowley, D. R. Elevated epithelial expression of interleukin-8 correlates with myofibroblast reactive stroma in benign prostatic hyperplasia. Urology 72, 205–213 (2008).

    Article  PubMed  Google Scholar 

  123. Schauer, I. G. & Rowley, D. R. The functional role of reactive stroma in benign prostatic hyperplasia. Differentiation. 82, 200–210 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Tuxhorn, J. A. et al. Reactive stroma in human prostate cancer: induction of myofibroblast phenotype and extracellular matrix remodeling. Clin. Cancer Res. 8, 2912–2923 (2002).

    CAS  PubMed  Google Scholar 

  125. Kidd, S. et al. Origins of the tumor microenvironment: quantitative assessment of adipose-derived and bone marrow-derived stroma. PLOS ONE 7, e30563 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Shangguan, L. et al. Inhibition of TGF-beta/Smad signaling by BAMBI blocks differentiation of human mesenchymal stem cells to carcinoma-associated fibroblasts and abolishes their protumor effects. Stem Cells 30, 2810–2819 (2012).

    Article  PubMed  CAS  Google Scholar 

  127. Sufrin, G., Heston, W. D., Hazra, T. & Coffey, D. S. The effect of radiation on prostatic growth. Invest. Urol. 13, 418–423 (1976).

    CAS  PubMed  Google Scholar 

  128. Mallepell, S., Krust, A., Chambon, P. & Brisken, C. Paracrine signaling through the epithelial estrogen receptor alpha is required for proliferation and morphogenesis in the mammary gland. Proc. Natl Acad. Sci. USA 103, 2196–2201 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Fass, D., Steinfeld, A., Brown, J. & Tessler, A. Radiotherapeutic prophylaxis of estrogen-induced gynecomastia: a study of late sequela. Int. J. Radiat. Oncol. Biol. Phys. 12, 407–408 (1986).

    Article  CAS  PubMed  Google Scholar 

  130. Alfthan, O. & Kettunen, K. The effect of roentgen ray treatment of gynecomastia in patients with prostatic carcinoma treated with estrogenic hormones: a preliminary communication. J. Urol. 94, 604–606 (1965).

    Article  CAS  PubMed  Google Scholar 

  131. Koukourakis, M. et al. Transurethral radiotherapy for benign prostatic hypertrophy-related urethral obstruction. Dosimetry, ethics, and preliminary results. Med. Dosim 19, 67–72 (1994).

    Article  CAS  PubMed  Google Scholar 

  132. Zhao, P., Lu, S., Yang, Y., Shao, Q. & Liang, J. Three-dimensional conformal radiation therapy of spontaneous benign prostatic hyperplasia in canines. Oncol. Res. 19, 225–235 (2011).

    Article  PubMed  Google Scholar 

  133. Williams, S. A. et al. A prostate-specific antigen-activated channel-forming toxin as therapy for prostatic disease. J. Natl Cancer Inst. 99, 376–385 (2007).

    Article  CAS  PubMed  Google Scholar 

  134. Magistro, G. et al. Emerging minimally invasive treatment options for male lower urinary tract symptoms. Eur. Urol. 72, 986–997 (2017).

    Article  PubMed  Google Scholar 

  135. Denmeade, S. R. et al. Phase 1 and 2 studies demonstrate the safety and efficacy of intraprostatic injection of PRX302 for the targeted treatment of lower urinary tract symptoms secondary to benign prostatic hyperplasia. Eur. Urol. 59, 747–754 (2011).

    Article  CAS  PubMed  Google Scholar 

  136. Elhilali, M. M. et al. Prospective, randomized, double-blind, vehicle controlled, multicenter phase IIb clinical trial of the pore forming protein PRX302 for targeted treatment of symptomatic benign prostatic hyperplasia. J. Urol. 189, 1421–1426 (2013).

    Article  CAS  PubMed  Google Scholar 

  137. Scanlan, M. J. et al. Molecular cloning of fibroblast activation protein alpha, a member of the serine protease family selectively expressed in stromal fibroblasts of epithelial cancers. Proc. Natl Acad. Sci. USA 91, 5657–5661 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Brennen, W. N., Isaacs, J. T. & Denmeade, S. R. Rationale behind targeting fibroblast activation protein-expressing carcinoma-associated fibroblasts as a novel chemotherapeutic strategy. Mol. Cancer Ther. 11, 257–266 (2012).

    Article  CAS  PubMed  Google Scholar 

  139. Bae, S. et al. Fibroblast activation protein alpha identifies mesenchymal stromal cells from human bone marrow. Br. J. Haematol. 142, 827–830 (2008).

    Article  CAS  PubMed  Google Scholar 

  140. Aggarwal, S. et al. Fibroblast activation protein peptide substrates identified from human collagen I derived gelatin cleavage sites. Biochemistry 47, 1076–1086 (2008).

    Article  CAS  PubMed  Google Scholar 

  141. Brennen, W. N., Rosen, D. M., Wang, H., Isaacs, J. T. & Denmeade, S. R. Targeting carcinoma-associated fibroblasts within the tumor stroma with a fibroblast activation protein-activated prodrug. J. Natl Cancer Inst. 104, 1320–1334 (2012).

    Article  CAS  PubMed  Google Scholar 

  142. LeBeau, A. M., Brennen, W. N., Aggarwal, S. & Denmeade, S. R. Targeting the cancer stroma with a fibroblast activation protein-activated promelittin protoxin. Mol. Cancer Ther. 8, 1378–1386 (2009).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank B. Zhang and I. P. Garraway (University of California–Los Angeles) for generously providing urogenital sinus tissue, A. Meeker for his assistance in developing the immunofluorescence assays, and the Sidney Kimmel Comprehensive Cancer Center (SKCCC) Immunohistochemistry Core supported by the SKCCC Cancer Center Support Grant (CCSG; P30 CA006973). The authors also acknowledge the following sources of financial support: the Prostate Cancer Foundation Young Investigator Award (W.N.B.), SKCCC CCSG developmental funds (P30 CA006973 (W.N.B.)), the U.S. Department of Defense (W81XWH-17-1-0528 (W.N.B.)), and the US NIH Prostate SPORE Grant (P50 CA058236 (J.T.I.)).

Reviewer information

Nature Reviews Urology thanks W. -J. Lin and the other anonymous reviewer(s) for their contribution to the peer review of this work.

Author information

Authors and Affiliations

Authors

Contributions

W.N.B. and J.T.I. researched data for the article, substantially contributed to discussion of content, and wrote, reviewed, and edited the article.

Corresponding authors

Correspondence to W. Nathaniel Brennen or John T. Isaacs.

Ethics declarations

Competing interests

J.T.I. declares financial interest with Sophiris Bio related to topsalysin (also known as PRX302). W.N.B. declares no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brennen, W.N., Isaacs, J.T. Mesenchymal stem cells and the embryonic reawakening theory of BPH. Nat Rev Urol 15, 703–715 (2018). https://doi.org/10.1038/s41585-018-0087-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41585-018-0087-9

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing