Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

TIMELINE

Landmarks in prostate cancer

Abstract

The field of prostate cancer has been the subject of extensive research that has resulted in important discoveries and shaped our appreciation of this disease and its management. Advances in our understanding of the epidemiology, natural history, anatomy, detection, diagnosis, grading, staging, imaging, and management of prostate cancer have changed clinical practice and influenced guideline recommendations. The development of the Gleason score and subsequent modifications enabled accurate prediction of prognosis. Increased anatomical understanding and improved surgical techniques resulted in the development of nerve-sparing surgery for radical prostatectomy. The advent of active surveillance has changed the management of low-risk disease, and chemotherapy and hormonal therapy have improved the outcomes of patients with distant disease. Ongoing research and clinical trials are expected to yield more practice-changing results in the near future.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Timeline of landmark discoveries in prostate cancer.
Fig. 2: Age-adjusted prostate cancer incidence rates in the Surveillance, Epidemiology, and End Results database by age at diagnosis from 1975 to 2013 in the USA.

Reproduced from ref.5, Springer Nature Limited.

Fig. 3: Zonal anatomy of the prostate.
Fig. 4: Comparison of biopsy sampling patterns in transrectal ultrasonography-guided biopsy.
Fig. 5: The grading and scoring system developed by Gleason68.
Fig. 6: Comparison of original Gleason score with the Modified Gleason Scoring Classification.

Similar content being viewed by others

References

  1. Siegel, R. L., Miller, K. D. & Jemal, A. Cancer statistics, 2015. CA Cancer J. Clin. 65, 5–29 (2015).

    PubMed  Google Scholar 

  2. Ferlay, J. et al. Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int. J. Cancer. 136, E359–E386 (2015).

    CAS  PubMed  Google Scholar 

  3. Tasian, G. E. et al. PSA screening: determinants of primary-care physician practice patterns. Prostate Cancer Prostat. Dis. 15, 189–194 (2012).

    CAS  Google Scholar 

  4. Shoag, J. et al. Decline in prostate cancer screening by primary care physicians: an analysis of trends in the use of digital rectal examination and prostate specific antigen testing. J. Urol. 196, 1047–1052 (2016).

    PubMed  Google Scholar 

  5. Fleshner, K., Carlsson, S. V. & Roobol, M. J. The effect of the USPSTF PSA screening recommendation on prostate cancer incidence patterns in the USA. Nat. Rev. Urol. 14, 26 (2016).

    PubMed  PubMed Central  Google Scholar 

  6. Howard, D. H. Declines in prostate cancer incidence after changes in screening recommendations. Arch. Intern. Med. 172, 1267–1268 (2012).

    PubMed  Google Scholar 

  7. Potosky, A. L., Miller, B. A., Albertsen, P. C. & Kramer, B. S. The role of increasing detection in the rising incidence of prostate cancer. JAMA 273, 548–552 (1995).

    CAS  PubMed  Google Scholar 

  8. Gaylis, F. D. et al. Change in prostate cancer presentation coinciding with USPSTF screening recommendations at a community-based urology practice. Urol. Oncol. 35, 663.e1–663 (2017).

    Google Scholar 

  9. Cooperberg, M. R. The new US Preventive Services Task Force “C” draft recommendation for prostate cancer screening. Eur. Urol. 72, 326–328 (2017).

    PubMed  Google Scholar 

  10. US Preventive Services Task Force. Draft prostate cancer screening recommendation statement (US Preventive Services, 2017).

  11. Patel, A. R. & Klein, E. A. Risk factors for prostate cancer. Nat. Clin. Practice Urol. 6, 87 (2009).

    Google Scholar 

  12. Odedina, F. T. et al. Prostate cancer disparities in Black men of African descent: a comparative literature review of prostate cancer burden among Black men in the United States, Caribbean, United Kingdom, and West Africa. Infect. Agent Cancer. 4 (Suppl. 1), S2 (2009).

    PubMed  PubMed Central  Google Scholar 

  13. Steinberg, G. D., Carter, B. S., Beaty, T. H., Childs, B. & Walsh, P. C. Family history and the risk of prostate cancer. Prostate 17, 337–347 (1990).

    CAS  PubMed  Google Scholar 

  14. Bancroft, E. K. et al. Targeted prostate cancer screening in BRCA1 and BRCA2 mutation carriers: results from the initial screening round of the IMPACT study. Eur. Urol. 66, 489–499 (2014).

    PubMed  PubMed Central  Google Scholar 

  15. Albertsen, P. C., Hanley, J. A., Gleason, D. F. & Barry, M. J. Competing risk analysis of men aged 55 to 74 years at diagnosis managed conservatively for clinically localized prostate cancer. JAMA 280, 975–980 (1998).

    CAS  PubMed  Google Scholar 

  16. Albertsen, P. C., Hanley, J. A. & Fine, J. 20-year outcomes following conservative management of clinically localized prostate cancer. JAMA 293, 2095–2101 (2005).

    CAS  PubMed  Google Scholar 

  17. Johansson, J. E. et al. Natural history of early, localized prostate cancer. JAMA 291, 2713–2719 (2004).

    CAS  PubMed  Google Scholar 

  18. Pound, C. R. et al. Natural history of progression after PSA elevation following radical prostatectomy. JAMA 281, 1591–1597 (1999).

    CAS  PubMed  Google Scholar 

  19. Wang, M. C., Valenzuela, L. A., Murphy, G. P. & Chu, T. M. Purification of a human prostate specific antigen. Invest. Urol. 17, 159–163 (1979).

    CAS  PubMed  Google Scholar 

  20. Stamey, T. A. et al. Prostate-specific antigen as a serum marker for adenocarcinoma of the prostate. N. Engl. J. Med. 317, 909–916 (1987).

    CAS  PubMed  Google Scholar 

  21. Carter, H. et al. Longitudinal evaluation of prostate-specific antigen levels in men with and without prostate disease. JAMA 267, 2215–2220 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Carter, H. B. et al. Early detection of prostate cancer: AUA Guideline. J. Urol. 190, 419–426 (2013).

    PubMed  PubMed Central  Google Scholar 

  23. Wolf, A. M. et al. American Cancer Society guideline for the early detection of prostate cancer: update 2010. CA Cancer J. Clin. 60, 70–98 (2010).

    PubMed  Google Scholar 

  24. Cooner, W. H. et al. Prostate cancer detection in a clinical urological practice by ultrasonography, digital rectal examination and prostate specific antigen. J. Urol. 143, 1146–1152; discussion 52–54 (1990).

    CAS  PubMed  Google Scholar 

  25. Catalona, W. J. et al. Measurement of prostate-specific antigen in serum as a screening test for prostate cancer. N. Engl. J. Med. 324, 1156–1161 (1991).

    CAS  PubMed  Google Scholar 

  26. Catalona, W. J. et al. Comparison of digital rectal examination and serum prostate specific antigen in the early detection of prostate cancer: results of a multicenter clinical trial of 6,630 men. J. Urol. 151, 1283–1290 (1994).

    PubMed  Google Scholar 

  27. Thompson, I. M. et al. Prevalence of prostate cancer among men with a prostate-specific antigen level ≤4.0 ng per milliliter. N. Engl. J. Med. 350, 2239–2246 (2004).

    CAS  PubMed  Google Scholar 

  28. Mottet, N. et al. EAU-ESTRO-SIOG Guidelines on prostate cancer. Part 1: screening, diagnosis, and local treatment with curative intent. Eur. Urol. 71, 618–629 (2017).

    PubMed  Google Scholar 

  29. Carroll, P. R. et al. NCCN Guidelines insights: prostate cancer early detection, version 2.2016. J. Natl Compr. Cancer Netw. 14, 509–519 (2016).

    Google Scholar 

  30. Draisma, G. et al. Lead times and overdetection due to prostate-specific antigen screening: estimates from the European Randomized Study of Screening for Prostate Cancer. J. Natl Cancer Inst. 95, 868–878 (2003).

    PubMed  Google Scholar 

  31. Andriole, G. L. et al. Mortality results from a randomized prostate-cancer screening trial. N. Engl. J. Med. 360, 1310–1319 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Schroder, F. H. et al. Screening and prostate-cancer mortality in a randomized European study. N. Engl. J. Med. 360, 1320–1328 (2009).

    PubMed  Google Scholar 

  33. Moyer, V. A. et al. Screening for prostate cancer: US Preventive Services Task Force recommendation statement. Ann. Intern. Med. 157, 120–134 (2012).

    PubMed  Google Scholar 

  34. Jemal, A. et al. Prostate cancer incidence and psa testing patterns in relation to uspstf screening recommendations. JAMA 314, 2054–2061 (2015).

    CAS  PubMed  Google Scholar 

  35. Bhindi, B. et al. Impact of the US Preventive Services Task Force recommendations against prostate specific antigen screening on prostate biopsy and cancer detection rates. J. Urol. 193, 1519–1524 (2015).

    PubMed  Google Scholar 

  36. Weiner, A. B., Matulewicz, R. S., Eggener, S. E. & Schaeffer, E. M. Increasing incidence of metastatic prostate cancer in the United States (2004–2013). Prostate Cancer Prostatic Dis. 19, 395–397 (2016).

    CAS  PubMed  Google Scholar 

  37. Hu, J. C. et al. Increase in prostate cancer distant metastases at diagnosis in the united states. JAMA Oncol. 3, 705–707 (2017).

    PubMed  Google Scholar 

  38. Rezaee, M. E., Ward, C. E., Odom, B. D. & Pollock, M. Prostate cancer screening practices and diagnoses in patients age 50 and older, Southeastern Michigan, pre/post 2012. Prev. Med. 82, 73–76 (2016).

    PubMed  Google Scholar 

  39. Bibbins-Domingo, K., Grossman, D. C. & Curry, S. J. The US preventive services task force 2017 draft recommendation statement on screening for prostate cancer: an invitation to review and comment. JAMA 317, 1949–1950 (2017).

    PubMed  Google Scholar 

  40. US Preventive Services Task Force et al. Screening for prostate cancer: US Preventive Services Task Force recommendation statement. JAMA 319, 1901–1913 (2018).

    Google Scholar 

  41. Schroder, F. H. et al. Screening for prostate cancer decreases the risk of developing metastatic disease: findings from the European Randomized Study of Screening for Prostate Cancer (ERSPC). Eur. Urol. 62, 745–752 (2012).

    PubMed  Google Scholar 

  42. Schroder, F. H. et al. Screening and prostate cancer mortality: results of the European Randomised Study of Screening for Prostate Cancer (ERSPC) at 13 years of follow-up. Lancet 384, 2027–2035 (2014).

    PubMed  PubMed Central  Google Scholar 

  43. Martin, R. M. et al. Effect of a low-intensity PSA-based screening intervention on prostate cancer mortality: the cap randomized clinical trial. JAMA 319, 883–895 (2018).

    PubMed  PubMed Central  Google Scholar 

  44. Thompson, I. M. et al. The influence of finasteride on the development of prostate cancer. N. Engl. J. Med. 349, 215–224 (2003).

    CAS  PubMed  Google Scholar 

  45. Thompson, I. M. et al. Long-term survival of participants in the prostate cancer prevention trial. N. Engl. J. Med. 369, 603–610 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Unger, J. M. et al. Using medicare claims to examine long-term prostate cancer risk of finasteride in the prostate cancer prevention trial. Natl Cancer Inst. https://doi.org/10.1093/jnci/djy035 (2018).

    Article  Google Scholar 

  47. Kramer, B. S. et al. Use of 5-α-reductase inhibitors for prostate cancer chemoprevention: American Society of Clinical Oncology/American Urological Association 2008 Clinical Practice Guideline. J. Clin. Oncol. 27, 1502–1516 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Lippman, S. M. et al. Effect of selenium and vitamin E on risk of prostate cancer and other cancers: the Selenium and Vitamin E Cancer Prevention Trial (SELECT). JAMA 301, 39–51 (2009).

    CAS  PubMed  Google Scholar 

  49. Klein, E. A. et al. Vitamin E and the risk of prostate cancer: the Selenium and Vitamin E Cancer Prevention Trial (SELECT). JAMA 306, 1549–1556 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. McNeal, J. E. The zonal anatomy of the prostate. Prostate 2, 35–49 (1981).

    CAS  PubMed  Google Scholar 

  51. Kourambas, J., Angus, D. G., Hosking, P. & Chou, S. T. A histological study of Denonvilliers’ fascia and its relationship to the neurovascular bundle. Br. J. Urol. 82, 408–410 (1998).

    CAS  PubMed  Google Scholar 

  52. Costello, A. J., Brooks, M. & Cole, O. J. Anatomical studies of the neurovascular bundle and cavernosal nerves. BJU Int. 94, 1071–1076 (2004).

    PubMed  Google Scholar 

  53. Walsh, P. C. & Donker, P. J. Impotence following radical prostatectomy: insight into etiology and prevention. J. Urol. 128, 492–497 (1982).

    CAS  PubMed  Google Scholar 

  54. Walsh, P. C. & Lepor, H. The role of radical prostatectomy in the management of prostatic cancer. Cancer 60, 526–537 (1987).

    CAS  PubMed  Google Scholar 

  55. Walsh, P. C., Lepor, H. & Eggleston, J. C. Radical prostatectomy with preservation of sexual function: anatomical and pathological considerations. Prostate 4, 473–485 (1983).

    CAS  PubMed  Google Scholar 

  56. Barringer, B. S. Carcinoma of the prostate. Surg. Gynecol. Obstet. 34, 168–176 (1922).

    Google Scholar 

  57. Young, H. H. & Davis, D. M. Young’s Practice of Urology (Philadelphia & London, WB Saunders, 1926).

    Google Scholar 

  58. Hodge, K. K., McNeal, J. E. & Stamey, T. A. Ultrasound guided transrectal core biopsies of the palpably abnormal prostate. J. Urol. 142, 66–70 (1989).

    CAS  PubMed  Google Scholar 

  59. Levine, M. A., Ittman, M., Melamed, J. & Lepor, H. Two consecutive sets of transrectal ultrasound guided sextant biopsies of the prostate for the detection of prostate cancer. J. Urol. 159, 471–475; discussion 5–6 (1998).

    CAS  PubMed  Google Scholar 

  60. Presti, J. C. et al. Extended peripheral zone biopsy schemes increase cancer detection rates and minimize variance in prostate specific antigen and age related cancer rates: results of a community multi-practice study. J. Urol. 169, 125–129 (2003).

    PubMed  Google Scholar 

  61. Siddiqui, M. M. et al. Comparison of MR/ultrasound fusion-guided biopsy with ultrasound-guided biopsy for the diagnosis of prostate cancer. JAMA 313, 390–397 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Chang, D. T. S., Challacombe, B. & Lawrentschuk, N. Transperineal biopsy of the prostate — is this the future? Nat. Rev. Urol. 10, 690 (2013).

    PubMed  Google Scholar 

  63. Wright, J. L. & Ellis, W. J. Improved prostate cancer detection with anterior apical prostate biopsies. Urol. Oncol. 24, 492–495 (2006).

    PubMed  Google Scholar 

  64. Bott, S. R. et al. Extensive transperineal template biopsies of prostate: modified technique and results. Urology 68, 1037–1041 (2006).

    PubMed  Google Scholar 

  65. Hu, Y. et al. A biopsy simulation study to assess the accuracy of several transrectal ultrasonography (TRUS)-biopsy strategies compared with template prostate mapping biopsies in patients who have undergone radical prostatectomy. BJU Int. 110, 812–820 (2012).

    PubMed  Google Scholar 

  66. Grummet, J. P. et al. Sepsis and ‘superbugs’: should we favour the transperineal over the transrectal approach for prostate biopsy? BJU Int. 114, 384–388 (2014).

    PubMed  Google Scholar 

  67. Kasivisvanathan, V. et al. MRI-targeted or standard biopsy for prostate-cancer diagnosis. N. Engl. J. Med. 378, 1767–1777 (2018).

    PubMed  PubMed Central  Google Scholar 

  68. Gleason, D. F. Classification of prostatic carcinomas. Cancer Chemother. Rep. 50, 125–128 (1966).

    CAS  PubMed  Google Scholar 

  69. Gleason, D. in Pathology of the Prostate (ed. Bostwick D.G.) 83–93 (Churchill Livingstone, 1990).

  70. Humphrey, P. A. Gleason grading and prognostic factors in carcinoma of the prostate. Mod. Pathol. 17, 292–306 (2004).

    PubMed  Google Scholar 

  71. Delahunt, B., Miller, J., Srigley, J. R., Evans, A. J. & Samaratunga, H. Gleason grading: past, present and future. Histopathology 60, 75–86 (2012).

    PubMed  Google Scholar 

  72. Billis, A., et al. The impact of the 2005 international society of urological pathology consensus conference on standard Gleason grading of prostatic carcinoma in needle biopsies. J. Urol. 180, 548–552; discussion 52–53 (2008).

    PubMed  Google Scholar 

  73. Epstein, J. I. et al. The 2014 International Society of Urological Pathology (ISUP) Consensus Conference on Gleason grading of prostatic carcinoma: definition of grading patterns and proposal for a new grading system. Am. J. Surg. Pathol. 40, 244–252 (2016).

    PubMed  Google Scholar 

  74. Wymenga, L. F., Boomsma, J. H., Groenier, K., Piers, D. A. & Mensink, H. J. Routine bone scans in patients with prostate cancer related to serum prostate-specific antigen and alkaline phosphatase. BJU Int. 88, 226–230 (2001).

    CAS  PubMed  Google Scholar 

  75. Sanda, M. G. et al. Clinically localized prostate cancer: AUA/ASTRO/SUO guideline. Part I: risk stratification, shared decision making, and care options. J. Urol. https://doi.org/10.1016/j.juro.2017.11.095 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  76. Taneja, S. S. Imaging in the diagnosis and management of prostate cancer. Rev. Urol. 6, 101–113 (2004).

    PubMed  PubMed Central  Google Scholar 

  77. Umbehr, M. H., Muntener, M., Hany, T., Sulser, T. & Bachmann, L. M. The role of 11C-choline and 18F-fluorocholine positron emission tomography (PET) and PET/CT in prostate cancer: a systematic review and meta-analysis. Eur. Urol. 64, 106–117 (2013).

    PubMed  Google Scholar 

  78. Afshar-Oromieh, A. et al. The diagnostic value of PET/CT imaging with the 68Ga-labelled PSMA ligand HBED-CC in the diagnosis of recurrent prostate cancer. Eur. J. Nuclear Med. Mol. Imag. 42, 197–209 (2015).

    CAS  Google Scholar 

  79. Eiber, M. et al. Evaluation of hybrid 68Ga-PSMA-ligand PET/CT in 248 patients with biochemical recurrence after radical prostatectomy. J. Nucl. Med. 55, 668–674 (2015).

    Google Scholar 

  80. Boorjian, S. A., Karnes, R. J., Rangel, L. J., Bergstralh, E. J. & Blute, M. L. Mayo Clinic validation of the D’amico risk group classification for predicting survival following radical prostatectomy. J. Urol. 179, 1354–1360; discussion 60–61 (2008).

    PubMed  Google Scholar 

  81. Lee, S. E. et al. Application of the Epstein criteria for prediction of clinically insignificant prostate cancer in Korean men. BJU Int. 105, 1526–1530 (2010).

    PubMed  Google Scholar 

  82. D’Amico, A. V. et al. Biochemical outcome after radical prostatectomy, external beam radiation therapy, or interstitial radiation therapy for clinically localized prostate cancer. JAMA 280, 969–974 (1998).

    PubMed  Google Scholar 

  83. Partin, A. W. et al. Combination of prostate-specific antigen, clinical stage, and Gleason score to predict pathological stage of localized prostate cancer. A multi-institutional update. JAMA 277, 1445–1451 (1997).

    CAS  PubMed  Google Scholar 

  84. Kattan, M. W., Eastham, J. A., Stapleton, A. M., Wheeler, T. M. & Scardino, P. T. A preoperative nomogram for disease recurrence following radical prostatectomy for prostate cancer. J. Natl Cancer Inst. 90, 766–771 (1998).

    CAS  PubMed  Google Scholar 

  85. Kattan, M. W., Wheeler, T. M. & Scardino, P. T. Postoperative nomogram for disease recurrence after radical prostatectomy for prostate cancer. J. Clin. Oncol. 17, 1499–1507 (1999).

    CAS  PubMed  Google Scholar 

  86. Stephenson, A. J. et al. Preoperative nomogram predicting the 10-year probability of prostate cancer recurrence after radical prostatectomy. J. Natl Cancer Inst. 98, 715–717 (2006).

    PubMed  Google Scholar 

  87. Cooperberg, M. R. et al. The University of California, San Francisco Cancer of the Prostate Risk Assessment score: a straightforward and reliable preoperative predictor of disease recurrence after radical prostatectomy. J. Urol. 173, 1938–1942 (2005).

    PubMed  PubMed Central  Google Scholar 

  88. Cooperberg, M. R., Hilton, J. F. & Carroll, P. R. The CAPRA-S score: a straightforward tool for improved prediction of outcomes after radical prostatectomy. Cancer 117, 5039–5046 (2011).

    PubMed  Google Scholar 

  89. Brajtbord, J. S., Leapman, M. S. & Cooperberg, M. R. The CAPRA score at 10 years: contemporary perspectives and analysis of supporting studies. Eur. Urol. 71, 705–709.

    PubMed  Google Scholar 

  90. Hricak, H. et al. Prostatic carcinoma: staging by clinical assessment, CT, and MR imaging. Radiology 162, 331–336 (1987).

    CAS  PubMed  Google Scholar 

  91. Kurhanewicz, J., Swanson, M. G., Nelson, S. J. & Vigneron, D. B. Combined magnetic resonance imaging and spectroscopic imaging approach to molecular imaging of prostate cancer. J. Magnet. Resonance Imag. 16, 451–463 (2002).

    Google Scholar 

  92. Langer, D. L. et al. Prostate cancer detection with multi-parametric MRI: Logistic regression analysis of quantitative T2, diffusion-weighted imaging, and dynamic contrast-enhanced MRI. J. Magnet. Resonance Imag. 30, 327–334 (2009).

    Google Scholar 

  93. Tanimoto, A., Nakashima, J., Kohno, H., Shinmoto, H. & Kuribayashi, S. Prostate cancer screening: the clinical value of diffusion-weighted imaging and dynamic MR imaging in combination with T2-weighted imaging. J. Magnet. Resonance Imag. 25, 146–152 (2007).

    Google Scholar 

  94. Barentsz, J. O. et al. ESUR prostate MR guidelines 2012. Eur. Radiol. 22, 746–757 (2012).

    PubMed  PubMed Central  Google Scholar 

  95. Vargas, H. A. et al. Updated prostate imaging reporting and data system (PIRADS v2) recommendations for the detection of clinically significant prostate cancer using multiparametric MRI: critical evaluation using whole-mount pathology as standard of reference. Eur. Radiol. 26, 1606–1612 (2016).

    CAS  PubMed  Google Scholar 

  96. Ahmed, H. U. et al. Diagnostic accuracy of multi-parametric MRI and TRUS biopsy in prostate cancer (PROMIS): a paired validating confirmatory study. Lancet 389, 815–822 (2017).

    PubMed  Google Scholar 

  97. Fulgham, P. F. et al. AUA policy statement on the use of multiparametric magnetic resonance imaging in the diagnosis, staging and management of prostate cancer. J. Urol. 198, 832–838 (2017).

    PubMed  PubMed Central  Google Scholar 

  98. Newschaffer, C. J., Otani, K., McDonald, M. K. & Penberthy, L. T. Causes of death in elderly prostate cancer patients and in a comparison nonprostate cancer cohort. J. Natl Cancer Inst. 92, 613–621 (2000).

    CAS  PubMed  Google Scholar 

  99. Montie, J. E. & Smith, J. A. Whitmoreisms: memorable quotes from Willet F. Whitmore Jr, M. D. Urology 63, 207–209 (2004).

    PubMed  Google Scholar 

  100. Bill-Axelson, A. et al. Radical prostatectomy versus watchful waiting in localized prostate cancer: the Scandinavian prostate cancer group-4 randomized trial. J. Natl Cancer Inst. 100, 1144–1154 (2008).

    PubMed  PubMed Central  Google Scholar 

  101. Johansson, E. et al. Long-term quality-of-life outcomes after radical prostatectomy or watchful waiting: the Scandinavian Prostate Cancer Group-4 randomised trial. Lancet Oncol. 12, 891–899 (2011).

    PubMed  Google Scholar 

  102. Hamdy, F. C. et al. 10-year outcomes after monitoring, surgery, or radiotherapy for localized prostate cancer. N. Engl. J. Med. 375, 1415–1424 (2016).

    PubMed  Google Scholar 

  103. Wilt, T. J. et al. Radical prostatectomy versus observation for localized prostate cancer. N. Engl. J. Med. 367, 203–213 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Wilt, T. J. et al. Follow-up of prostatectomy versus observation for early prostate cancer. N. Engl. J. Med. 377, 132–142 (2017).

    PubMed  Google Scholar 

  105. Choo, R. et al. Feasibility study: watchful waiting for localized low to intermediate grade prostate carcinoma with selective delayed intervention based on prostate specific antigen, histological and/or clinical progression. J. Urol. 167, 1664–1669 (2002).

    PubMed  Google Scholar 

  106. Lawrentschuk, N. & Klotz, L. Active surveillance for low-risk prostate cancer: an update. Nat. Rev. Urol. 8, 312–320 (2011).

    PubMed  Google Scholar 

  107. Parker, C. Active surveillance: towards a new paradigm in the management of early prostate cancer. Lancet Oncol. 5, 101–106 (2004).

    PubMed  Google Scholar 

  108. Klotz, L. et al. Long-term follow-up of a large active surveillance cohort of patients with prostate cancer. J. Clin. Oncol. 33, 272–277 (2015).

    PubMed  Google Scholar 

  109. Tosoian, J. J. et al. Active surveillance of prostate cancer: use, outcomes, imaging, and diagnostic tools. Am. Soc. Clin. Oncol. 35, e235–e245 (2016).

    Google Scholar 

  110. Adolfsson, J. Watchful waiting and active surveillance: the current position. BJU Int. 102, 10–14 (2008).

    PubMed  Google Scholar 

  111. Young, H. H. The early diagnosis and radical cure of carcinoma of the prostate. Being a study of 40 cases and presentation of a radical operation which was carried out in four cases. 1905. J. Urol. 168, 914–921 (2002).

    PubMed  Google Scholar 

  112. Millin T. Retropubic urinary surgery. London: Livingstone 35, 442 (1947).

  113. Millin, T. Retropubic prostatectomy a new extravesical technique: report on 20 cases. Lancet. 246, 693–696 (1945).

    Google Scholar 

  114. Walsh, P. C. The discovery of the cavernous nerves and development of nerve sparing radical retropubic prostatectomy. J. Urol. 177, 1632–1635 (2007).

    PubMed  Google Scholar 

  115. Saranchuk, J. W. et al. Achieving optimal outcomes after radical prostatectomy. J. Clin. Oncol. 23, 4146–4151 (2005).

    PubMed  Google Scholar 

  116. Schuessler, W. W., Kavoussi, L. R., Clayman, R. V. & Vancaille, T. Laparoscopic radical prostatectomy: initial case report. J. Urol. 147, 246A (1992).

    Google Scholar 

  117. Guillonneau, B. & Vallancien, G. Laparoscopic radical prostatectomy: the Montsouris technique. J. Urol. 163, 1643–1649 (2000).

    CAS  PubMed  Google Scholar 

  118. Carlucci, J. R., Nabizada-Pace, F. & Samadi, D. B. Robot-assisted laparoscopic radical prostatectomy: technique and outcomes of 700 cases. Int. J. Biomed. Sci. 5, 201–208 (2009).

    PubMed  PubMed Central  Google Scholar 

  119. Abbou, C. C. et al. Laparoscopic radical prostatectomy with a remote controlled robot. J. Urol. 165, 1964–1966 (2001).

    CAS  PubMed  Google Scholar 

  120. Menon, M., Hemal, A. K. & VIP Team. Vattikuti Institute prostatectomy: a technique of robotic radical prostatectomy: experience in more than 1000 cases. J. Endourol. 18, 611–619 (2004).

    PubMed  Google Scholar 

  121. Yaxley, J. W. et al. Robot-assisted laparoscopic prostatectomy versus open radical retropubic prostatectomy: early outcomes from a randomised controlled phase 3 study. Lancet 388, 1057–1066 (2016).

    PubMed  Google Scholar 

  122. Glickman, L., Godoy, G. & Lepor, H. Changes in continence and erectile function between 2 and 4 years after radical prostatectomy. J. Urol. 181, 731–735 (2009).

    PubMed  Google Scholar 

  123. Bagshaw, M. A., Kaplan, H. S. & Sagerman, R. H. Linear accelerator supervoltage radiotherapy. VII. Carcinoma of the prostate. Radiology 85, 121–129 (1965).

    CAS  PubMed  Google Scholar 

  124. Bolla, M. et al. Duration of androgen suppression in the treatment of prostate cancer. N. Engl. J. Med. 360, 2516–2527 (2009).

    CAS  PubMed  Google Scholar 

  125. D’Amico, A. V., Chen, M. H., Renshaw, A. A., Loffredo, M. & Kantoff, P. W. Androgen suppression and radiation versus radiation alone for prostate cancer: a randomized trial. JAMA 299, 289–295 (2008).

    PubMed  Google Scholar 

  126. Denham, J. W. et al. Short-term androgen deprivation and radiotherapy for locally advanced prostate cancer: results from the Trans-Tasman Radiation Oncology Group 96.01 randomised controlled trial. Lancet Oncol. 6, 841–850 (2005).

    CAS  PubMed  Google Scholar 

  127. Horwitz, E. M. et al. Ten-year follow-up of radiation therapy oncology group protocol 92-02: a phase III trial of the duration of elective androgen deprivation in locally advanced prostate cancer. J. Clin. Oncol. 26, 2497–2504 (2008).

    CAS  PubMed  Google Scholar 

  128. Jones, C. U. et al. Radiotherapy and short-term androgen deprivation for localized prostate cancer. N. Engl. J. Med. 365, 107–118 (2011).

    CAS  PubMed  Google Scholar 

  129. Pilepich, M. V. et al. Androgen suppression adjuvant to definitive radiotherapy in prostate carcinoma — long-term results of phase III RTOG 85–31. Int. J. Radiat. Oncol. Biol. Phys. 61, 1285–1290 (2005).

    CAS  PubMed  Google Scholar 

  130. Roach, M. et al. Short-term neoadjuvant androgen deprivation therapy and external-beam radiotherapy for locally advanced prostate cancer: long-term results of RTOG 8610. J. Clin. Oncol. 26, 585–591 (2008).

    PubMed  Google Scholar 

  131. Bolla, M. et al. Improved survival in patients with locally advanced prostate cancer treated with radiotherapy and goserelin. N. Engl. J. Med. 337, 295–300 (1997).

    CAS  PubMed  Google Scholar 

  132. Pilepich, M. V. et al. Phase III radiation therapy oncology group (RTOG) trial 86–10 of androgen deprivation adjuvant to definitive radiotherapy in locally advanced carcinoma of the prostate. Int. J. Radiat. Oncol. Biol. Phys. 50, 1243–1252 (2001).

    CAS  PubMed  Google Scholar 

  133. Widmark, A. et al. Endocrine treatment, with or without radiotherapy, in locally advanced prostate cancer (SPCG-7/SFUO-3): an open randomised phase III trial. Lancet 373, 301–308 (2009).

    CAS  PubMed  Google Scholar 

  134. Warde, P. et al. Combined androgen deprivation therapy and radiation therapy for locally advanced prostate cancer: a randomised, phase 3 trial. Lancet 378, 2104–2111 (2011).

    PubMed  PubMed Central  Google Scholar 

  135. Zelefsky, M. J., Fuks, Z. & Leibel, S. A. Intensity-modulated radiation therapy for prostate cancer. Semin. Radiat. Oncol. 12, 229–237 (2002).

    PubMed  Google Scholar 

  136. Das, S. et al. Comparison of image-guided radiotherapy technologies for prostate cancer. Am. J. Clin. Oncol. 37, 616–623 (2014).

    PubMed  Google Scholar 

  137. Wiegel, T. et al. Phase III postoperative adjuvant radiotherapy after radical prostatectomy compared with radical prostatectomy alone in pT3 prostate cancer with postoperative undetectable prostate-specific antigen: ARO 96-02/AUO AP 09/95. J. Clin. Oncol. 27, 2924–2930 (2009).

    PubMed  Google Scholar 

  138. Wiegel, T. et al. Adjuvant radiotherapy versus wait-and-see after radical prostatectomy: 10-year follow-up of the ARO 96-02/AUO AP 09/95 trial. Eur. Urol. 66, 243–250 (2014).

    PubMed  Google Scholar 

  139. Thompson, I. M. et al. Adjuvant radiotherapy for pathologic T3N0M0 prostate cancer significantly reduces risk of metastases and improves survival: long-term followup of a randomized clinical trial. J. Urol. 181, 956–962 (2009).

    PubMed  PubMed Central  Google Scholar 

  140. Thompson, I. M. et al. Adjuvant radiotherapy for pathologically advanced prostate cancer: a randomized clinical trial. JAMA 296, 2329–2335 (2006).

    CAS  PubMed  Google Scholar 

  141. Bolla, M. et al. Postoperative radiotherapy after radical prostatectomy: a randomised controlled trial (EORTC trial 22911). Lancet 366, 572–578 (2005).

    PubMed  Google Scholar 

  142. Bolla, M. et al. Postoperative radiotherapy after radical prostatectomy for high-risk prostate cancer: long-term results of a randomised controlled trial (EORTC trial 22911). Lancet 380, 2018–2027 (2012).

    PubMed  Google Scholar 

  143. Morris, W. J. et al. Low-dose-rate brachytherapy is superior to dose-escalated EBRT for unfavourable risk prostate cancer: the results of the ASCENDE-RT* randomized control trial. Brachytherapy 14, S12 (2015).

    Google Scholar 

  144. Stock, R. G., Cahlon, O., Cesaretti, J. A., Kollmeier, M. A. & Stone, N. N. Combined modality treatment in the management of high-risk prostate cancer. Int. J. Radiat. Oncol. Biol. Phys. 59, 1352–1359 (2004).

    PubMed  Google Scholar 

  145. Dearnaley, D. et al. Conventional versus hypofractionated high-dose intensity-modulated radiotherapy for prostate cancer: 5-year outcomes of the randomised, non-inferiority, phase 3 CHHiP trial. Lancet Oncol. 17, 1047–1060 (2016).

    PubMed  PubMed Central  Google Scholar 

  146. Huggins, C., Stevens, R. E. Jr & Hodges, C. V. Studies on prostatic cancer. The effects of castration on advanced carcinoma of the prostate gland. Arch. Surg. 43, 209–223 (1941).

    CAS  Google Scholar 

  147. Huggins, C., Stevens, R. E. Jr & Hodges, C. V. Studies on prostatic cancer. The effect of castration, of oestrogen and of androgen injection on serum phosphatases in metastatic carcinoma of the prostate. Arch. Surg. 43, 209–223 (1941).

    CAS  Google Scholar 

  148. Ahmann, F. R. et al. Zoladex: a sustained-release, monthly luteinizing hormone-releasing hormone analogue for the treatment of advanced prostate cancer. J. Clin. Oncol. 5, 912–917 (1987).

    CAS  PubMed  Google Scholar 

  149. Goldenberg, S. L. & Bruchovsky, N. Use of cyproterone acetate in prostate cancer. Urol. Clin. North Am. 18, 111–122 (1991).

    CAS  PubMed  Google Scholar 

  150. Labrie, F. et al. New hormonal therapy in prostatic carcinoma: combined treatment with an LHRH agonist and an antiandrogen. Clin. Invest. Med. 5, 267–275 (1982).

    CAS  PubMed  Google Scholar 

  151. Crawford, E. D. et al. A controlled trial of leuprolide with and without flutamide in prostatic carcinoma. N. Engl. J. Med. 321, 419–424 (1989).

    CAS  PubMed  Google Scholar 

  152. Duchesne, G. M. et al. Timing of androgen-deprivation therapy in patients with prostate cancer with a rising PSA (TROG 03.06 and VCOG PR 01–03 [TOAD]): a randomised, multicentre, non-blinded, phase 3 trial. Lancet Oncol. 17, 727–737 (2016).

    CAS  PubMed  Google Scholar 

  153. Messing, E. M. et al. Immediate hormonal therapy compared with observation after radical prostatectomy and pelvic lymphadenectomy in men with node-positive prostate cancer. N. Engl. J. Med. 341, 1781–1788 (1999).

    CAS  PubMed  Google Scholar 

  154. Messing, E. M. et al. Immediate versus deferred androgen deprivation treatment in patients with node-positive prostate cancer after radical prostatectomy and pelvic lymphadenectomy. Lancet Oncol. 7, 472–479 (2006).

    CAS  PubMed  Google Scholar 

  155. Crook, J. M. et al. Intermittent androgen suppression for rising PSA level after radiotherapy. N. Engl. J. Med. 367, 895–903 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  156. Hussain, M. et al. Intermittent versus continuous androgen deprivation in prostate cancer. N. Engl. J. Med. 368, 1314–1325 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  157. Walker, L. M., Tran, S. & Robinson, J. W. Luteinizing hormone — releasing hormone agonists: a quick reference for prevalence rates of potential adverse effects. Clin. Genitourin. Cancer 11, 375–384 (2013).

    PubMed  Google Scholar 

  158. Green, H. J. et al. Quality of life compared during pharmacological treatments and clinical monitoring for non-localized prostate cancer: a randomized controlled trial. BJU Int. 93, 975–979 (2004).

    CAS  PubMed  Google Scholar 

  159. Rhee, H. et al. Adverse effects of androgen-deprivation therapy in prostate cancer and their management. BJU Int. 115 (Suppl. 5), 3–13 (2015).

    PubMed  Google Scholar 

  160. Keating, N. L., O’Malley, A. J., Freedland, S. J. & Smith, M. R. Does comorbidity influence the risk of myocardial infarction or diabetes during androgen-deprivation therapy for prostate cancer? Eur. Urol. 64, 159–166 (2013).

    PubMed  Google Scholar 

  161. Hamilton, E. J. et al. Structural decay of bone microarchitecture in men with prostate cancer treated with androgen deprivation therapy. J. Clin. Endocrinol. Metab. 95, E456–463 (2010).

    CAS  PubMed  Google Scholar 

  162. Cornford, P. et al. EAU-ESTRO-SIOG Guidelines on Prostate Cancer. Part II: treatment of relapsing, metastatic, and castration-resistant prostate cancer. Eur. Urol. 71, 630–642 (2017).

    PubMed  Google Scholar 

  163. Berthold, D. R., Sternberg, C. N. & Tannock, I. F. Management of advanced prostate cancer after first-line chemotherapy. J. Clin. Oncol. 23, 8247–8252 (2005).

    CAS  PubMed  Google Scholar 

  164. Wozniak, A. J. et al. Cyclophosphamide, methotrexate, and 5-fluorouracil in the treatment of metastatic prostate cancer. A Southwest Oncology Group study. Cancer 71, 3975–3978 (1993).

    CAS  PubMed  Google Scholar 

  165. Sridhar, S. S. et al. Castration-resistant prostate cancer: from new pathophysiology to new treatment. Eur. Urol. 65, 289–299 (2014).

    PubMed  Google Scholar 

  166. Petrylak, D. P. et al. Docetaxel and estramustine compared with mitoxantrone and prednisone for advanced refractory prostate cancer. N. Engl. J. Med. 351, 1513–1520 (2004).

    CAS  PubMed  Google Scholar 

  167. Tannock, I. F. et al. Docetaxel plus prednisone or mitoxantrone plus prednisone for advanced prostate cancer. N. Engl. J. Med. 351, 1502–1512 (2004).

    CAS  PubMed  Google Scholar 

  168. Berthold, D. R. et al. Treatment of hormone-refractory prostate cancer with docetaxel or mitoxantrone: relationships between prostate-specific antigen, pain, and quality of life response and survival in the TAX-327 study. Clin. Cancer Res. 14, 2763–2767 (2008).

    CAS  PubMed  Google Scholar 

  169. de Bono, J. S. et al. Prednisone plus cabazitaxel or mitoxantrone for metastatic castration-resistant prostate cancer progressing after docetaxel treatment: a randomised open-label trial. Lancet 376, 1147–1154 (2010).

    PubMed  Google Scholar 

  170. Gravis, G. et al. Androgen-deprivation therapy alone or with docetaxel in non-castrate metastatic prostate cancer (GETUG-AFU 15): a randomised, open-label, phase 3 trial. Lancet Oncol. 14, 149–158 (2013).

    CAS  PubMed  Google Scholar 

  171. Sweeney, C. J. et al. Chemohormonal therapy in metastatic hormone-sensitive prostate cancer. N. Engl. J. Med. 373, 737–746 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  172. James, N. D. et al. Addition of docetaxel, zoledronic acid, or both to first-line long-term hormone therapy in prostate cancer (STAMPEDE): survival results from an adaptive, multiarm, multistage, platform randomised controlled trial. Lancet. 387, 1163–1177 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  173. James, N. D. et al. Abiraterone for prostate cancer not previously treated with hormone therapy. N. Engl. J. Med. 377, 338–351 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  174. Fizazi, K. et al. LATITUDE: a phase III, double-blind, randomized trial of androgen deprivation therapy with abiraterone acetate plus prednisone or placebos in newly diagnosed high-risk metastatic hormone-naive prostate cancer. J. Clin. Oncol. 35, LBA3 (2017).

    Google Scholar 

  175. Mohler, J. L. et al. The androgen axis in recurrent prostate cancer. Clin. Cancer Res. 10, 440–448 (2004).

    CAS  PubMed  Google Scholar 

  176. Kumar, A. et al. Substantial interindividual and limited intraindividual genomic diversity among tumors from men with metastatic prostate cancer. Nat. Med. 22, 369–378 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  177. Veldscholte, J. et al. A mutation in the ligand binding domain of the androgen receptor of human LNCaP cells affects steroid binding characteristics and response to anti-androgens. Biochem. Biophys. Res. Commun. 173, 534–540 (1990).

    CAS  PubMed  Google Scholar 

  178. Pienta, K. J. & Bradley, D. Mechanisms underlying the development of androgen-independent prostate cancer. Clin. Cancer Res. 12, 1665–1671 (2006).

    CAS  PubMed  Google Scholar 

  179. Antonarakis, E. S. et al. AR-V7 and resistance to enzalutamide and abiraterone in prostate cancer. N. Engl. J. Med. 371, 1028–1038 (2014).

    PubMed  PubMed Central  Google Scholar 

  180. Guo, Z. et al. A novel androgen receptor splice variant is up-regulated during prostate cancer progression and promotes androgen depletion-resistant growth. Cancer Res. 69, 2305–2313 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  181. Beer, T. M. et al. Enzalutamide in metastatic prostate cancer before chemotherapy. N. Engl. J. Med. 371, 424–433 (2014).

    PubMed  PubMed Central  Google Scholar 

  182. Shore, N. D. et al. Efficacy and safety of enzalutamide versus bicalutamide for patients with metastatic prostate cancer (TERRAIN): a randomised, double-blind, phase 2 study. Lancet Oncol. 17, 153–163 (2016).

    CAS  PubMed  Google Scholar 

  183. Scher, H. I. et al. Increased survival with enzalutamide in prostate cancer after chemotherapy. N. Engl. J. Med. 367, 1187–1197 (2012).

    CAS  PubMed  Google Scholar 

  184. Ryan, C. J. et al. Abiraterone in metastatic prostate cancer without previous chemotherapy. N. Engl. J. Med. 368, 138–148 (2013).

    CAS  PubMed  Google Scholar 

  185. Ryan, C. J. et al. Abiraterone acetate plus prednisone versus placebo plus prednisone in chemotherapy-naive men with metastatic castration-resistant prostate cancer (COU-AA-302): final overall survival analysis of a randomised, double-blind, placebo-controlled phase 3 study. Lancet Oncol. 16, 152–160 (2015).

    CAS  PubMed  Google Scholar 

  186. Fizazi, K. et al. Abiraterone acetate for treatment of metastatic castration-resistant prostate cancer: final overall survival analysis of the COU-AA-301 randomised, double-blind, placebo-controlled phase 3 study. Lancet Oncol. 13, 983–992 (2012).

    CAS  PubMed  Google Scholar 

  187. Parker, C. et al. Alpha emitter radium-223 and survival in metastatic prostate cancer. N. Engl. J. Med. 369, 213–223 (2013).

    CAS  PubMed  Google Scholar 

  188. Saad, F. et al. A randomized, placebo-controlled trial of zoledronic acid in patients with hormone-refractory metastatic prostate carcinoma. J. Natl Cancer Inst. 94, 1458–1468 (2002).

    CAS  PubMed  Google Scholar 

  189. Saad, F. et al. Long-term efficacy of zoledronic acid for the prevention of skeletal complications in patients with metastatic hormone-refractory prostate cancer. J. Natl Cancer Inst. 96, 879–882 (2004).

    CAS  PubMed  Google Scholar 

  190. Fizazi, K. et al. Denosumab versus zoledronic acid for treatment of bone metastases in men with castration-resistant prostate cancer: a randomised, double-blind study. Lancet 377, 813–822 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  191. Litwin, M. S. et al. The UCLA Prostate Cancer Index: development, reliability, and validity of a health-related quality of life measure. Med. Care. 36, 1002–1012 (1998).

    CAS  PubMed  Google Scholar 

  192. Wei, J. T., Dunn, R. L., Litwin, M. S., Sandler, H. M. & Sanda, M. G. Development and validation of the expanded prostate cancer index composite (EPIC) for comprehensive assessment of health-related quality of life in men with prostate cancer. Urology 56, 899–905 (2000).

    CAS  PubMed  Google Scholar 

  193. Szymanski, K. M., Wei, J. T., Dunn, R. L. & Sanda, M. G. Development and validation of an abbreviated version of the expanded prostate cancer index composite instrument (epic-26) for measuring health-related quality of life among prostate cancer survivors. Urology 76, 1245–1250 (2010).

    PubMed  Google Scholar 

  194. Resnick, M. J. et al. Long-term functional outcomes after treatment for localized prostate cancer. N. Engl. J. Med. 368, 436–445 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  195. Feldman, H. A., Goldstein, I., Hatzichristou, D. G., Krane, R. J. & McKinlay, J. B. Impotence and its medical and psychosocial correlates: results of the Massachusetts Male Aging Study. J. Urol. 151, 54–61 (1994).

    CAS  PubMed  Google Scholar 

  196. Kim, E. H. & Andriole, G. L. A simplified prostate cancer grading system. Nat. Rev. Urol. 12, 601–602 (2015).

    PubMed  Google Scholar 

  197. Epstein, J. I., Walsh, P. C., Carmichael, M. & Brendler, C. B. Pathologic and clinical findings to predict tumor extent of nonpalpable (stage T1c) prostate cancer. JAMA 271, 368–374 (1994).

    CAS  PubMed  Google Scholar 

  198. de Bono, J. S. et al. Abiraterone and increased survival in metastatic prostate cancer. N. Engl. J. Med. 364, 1995–2005 (2011).

    PubMed  PubMed Central  Google Scholar 

  199. Penson, D. F. et al. Enzalutamide versus bicalutamide in castration-resistant prostate cancer: the STRIVE Trial. J. Clin. Oncol. 34, 2098–2106 (2016).

    CAS  PubMed  Google Scholar 

  200. Kantoff, P. W. et al. Sipuleucel-T immunotherapy for castration-resistant prostate cancer. N. Engl. J. Med. 363, 411–422 (2010).

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Niranjan J. Sathianathen.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sathianathen, N.J., Konety, B.R., Crook, J. et al. Landmarks in prostate cancer. Nat Rev Urol 15, 627–642 (2018). https://doi.org/10.1038/s41585-018-0060-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41585-018-0060-7

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer