Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Mechanisms of BCG immunotherapy and its outlook for bladder cancer

Abstract

BCG immunotherapy is the gold-standard treatment for non-muscle-invasive bladder cancer at high risk of recurrence or progression. Preclinical and clinical studies have revealed that a robust inflammatory response to BCG involves several steps: attachment of BCG; internalization of BCG into resident immune cells, normal cells, and tumour urothelial cells; BCG-mediated induction of innate immunity, which is orchestrated by a cellular and cytokine milieu; and BCG-mediated initiation of tumour-specific immunity. As an added layer of complexity, variation between clinical BCG strains might influence development of tumour immunity. However, more than 40 years after the first use of BCG for bladder cancer, many questions regarding its mechanism of action remain unanswered. Clearly, a better understanding of the mechanisms underlying BCG-mediated tumour immunity could lead to improved efficacy, increased tolerance of treatment, and identification of novel immune-based therapies. Indeed, enthusiasm for bladder cancer immunotherapy, and the possibility of combining BCG with other therapies, is increasing owing to the availability of targeted immunotherapies, including checkpoint inhibitors. Understanding of the mechanism of action of BCG immunotherapy has advanced greatly, but many questions remain, and further basic and clinical research efforts are needed to develop new treatment strategies for patients with bladder cancer.

Key points

  • BCG immunotherapy is the gold-standard treatment for high-risk non-muscle-invasive bladder cancer (NMIBC) to prevent disease recurrence and progression.

  • BCG induces a robust innate immune response over several weeks that leads to lasting antitumour adaptive immunity.

  • Different BCG substrains are in clinical use around the world, but whether these strains have varying efficacies in the induction of tumour immunity is unclear.

  • Efforts to improve BCG immunotherapy have largely failed, and to date, no existing therapy outperforms BCG for treatment of high-risk NMIBC.

  • New approaches, which incorporate novel immunotherapies such as checkpoint inhibitor antibodies, might successfully synergize with BCG to improve patient outcomes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: A brief history of BCG and cancer.
Fig. 2: BCG-induced tumour immunity.
Fig. 3: Immune checkpoint molecule inhibitors being tested in NMIBC.

Figure adapted from ref.168, Macmillan Publishers Limited.

Similar content being viewed by others

References

  1. Ferlay, J. et al. Cancer incidence and mortality patterns in Europe: estimates for 40 countries in 2012. Eur. J. Cancer 49, 1374–1403 (2013).

    Article  CAS  PubMed  Google Scholar 

  2. Antoni, S. et al. Bladder cancer incidence and mortality: a global overview and recent trends. Eur. Urol. 71, 96–108 (2017).

    Article  PubMed  Google Scholar 

  3. Robertson, A. G. et al. Comprehensive molecular characterization of muscle-invasive bladder cancer. Cell 171, 540–556 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Cancer Genome Atlas Research Network. Comprehensive molecular characterization of urothelial bladder carcinoma. Nature 507, 315–322 (2014).

    Article  CAS  Google Scholar 

  5. Damrauer, J. S. et al. Intrinsic subtypes of high-grade bladder cancer reflect the hallmarks of breast cancer biology. Proc. Natl Acad. Sci. USA 111, 3110–3115 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Sjodahl, G. et al. Toward a molecular pathologic classification of urothelial carcinoma. Am. J. Pathol. 183, 681–691 (2013).

    Article  CAS  PubMed  Google Scholar 

  7. Rosenberg, J. E. et al. Atezolizumab in patients with locally advanced and metastatic urothelial carcinoma who have progressed following treatment with platinum-based chemotherapy: a single-arm, multicentre, phase 2 trial. Lancet 387, 1909–1920 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Flaig, T. W. et al. Proceedings of the 3rd Annual Albert Institute for Bladder Cancer Research Symposium. Bladder Cancer 3, 211–223 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Sanli, O. et al. Bladder cancer. Nat. Rev. Dis. Primers 3, 17022 (2017).

    Article  PubMed  Google Scholar 

  10. Plimack, E. R. et al. Safety and activity of pembrolizumab in patients with locally advanced or metastatic urothelial cancer (KEYNOTE-012): a non-randomised, open-label, phase 1b study. Lancet Oncol. 18, 212–220 (2017).

    Article  CAS  PubMed  Google Scholar 

  11. Irani, J. Epidemiology of bladder cancer [French]. Progres Urol. 13, 1207–1208 (2003).

    Google Scholar 

  12. Pfister, C. et al. CCAFU Recommendations 2013: Bladder carcinoma [French]. Progres Urol. 23 (Suppl. 2), 105–125 (2013).

    Article  Google Scholar 

  13. Sylvester, R. J. et al. Predicting recurrence and progression in individual patients with stage Ta T1 bladder cancer using EORTC risk tables: a combined analysis of 2596 patients from seven EORTC trials. Eur. Urol. 49, 466–465 (2006).

    Article  PubMed  Google Scholar 

  14. Morales, A., Eidinger, D. & Bruce, A. W. Intracavitary Bacillus Calmette-Guerin in the treatment of superficial bladder tumors. J. Urol. 116, 180–183 (1976). Reference 14 is the first report of the use of BCG for bladder cancer in humans demonstrating protective responses.

    Article  CAS  PubMed  Google Scholar 

  15. Babjuk, M. et al. EAU guidelines on non-muscle-invasive urothelial carcinoma of the bladder: update 2016. Eur. Urol. 71, 447–461 (2017).

    Article  PubMed  Google Scholar 

  16. Roupret, M. et al. CCAFU french national guidelines 2016–2018 on bladder cancer [French]. Progres Urol. 27 (Suppl. 1), 67–91 (2016).

    Article  Google Scholar 

  17. Lamm, D. L. et al. Maintenance Bacillus Calmette-Guerin immunotherapy for recurrent TA, T1 and carcinoma in situ transitional cell carcinoma of the bladder: a randomized Southwest Oncology Group Study. J. Urol. 163, 1124–1129 (2000). Reference 17 is a comprehensive study that demonstrates that maintenance therapy improves outcomes in patients with NMIBC.

    Article  CAS  PubMed  Google Scholar 

  18. Lamm, D. L. et al. A randomized trial of intravesical doxorubicin and immunotherapy with bacille Calmette-Guerin for transitional-cell carcinoma of the bladder. N. Engl. J. Med. 325, 1205–1209 (1991).

    Article  CAS  PubMed  Google Scholar 

  19. Sylvester, R. J., van der Meijden, A. P., Witjes, J. A. & Kurth, K. Bacillus calmette-guerin versus chemotherapy for the intravesical treatment of patients with carcinoma in situ of the bladder: a meta-analysis of the published results of randomized clinical trials. J. Urol. 174, 86–91 (2005). Reference 19 is a meta-analysis that establishes that BCG is the best adjuvant therapy to prevent recurrence in patients with NMIBC.

    Article  CAS  PubMed  Google Scholar 

  20. Sylvester, R. J. Natural history, recurrence, and progression in superficial bladder cancer. ScientificWorldJournal 6, 2617–2625 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Sylvester, R. J. Bacillus Calmette-Guerin treatment of non-muscle invasive bladder cancer. Int. J. Urol. 18, 113–120 (2011).

    Article  CAS  PubMed  Google Scholar 

  22. Askeland, E. J., Newton, M. R., O’Donnell, M. A. & Luo, Y. Bladder cancer immunotherapy: BCG and beyond. Adv. Urol. 2012, 181987 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Lamm, D. L. Long-term results of intravesical therapy for superficial bladder cancer. Urol. Clin. North Amer. 19, 573–580 (1992).

    Article  CAS  Google Scholar 

  24. O’Donnell, M. A. Optimizing BCG therapy. Urol. Oncol. 27, 325–328 (2009).

    Article  PubMed  CAS  Google Scholar 

  25. van der Meijden, A. P. et al. Maintenance Bacillus Calmette-Guerin for Ta T1 bladder tumors is not associated with increased toxicity: results from a European Organisation for Research and Treatment of Cancer Genito-Urinary Group Phase III Trial. Eur. Urol. 44, 429–434 (2003).

    Article  PubMed  Google Scholar 

  26. Yokomizo, A. et al. Randomized controlled study of the efficacy, safety and quality of life with low dose Bacillus Calmette-Guerin instillation therapy for nonmuscle invasive bladder cancer. J. Urol. 195, 41–46 (2016).

    Article  PubMed  Google Scholar 

  27. Oddens, J. et al. Final results of an EORTC-GU cancers group randomized study of maintenance Bacillus Calmette-Guerin in intermediate- and high-risk Ta, T1 papillary carcinoma of the urinary bladder: one-third dose versus full dose and 1 year versus 3 years of maintenance. Eur. Urol. 63, 462–472 (2013).

    Article  PubMed  Google Scholar 

  28. Sylvester, R. J. et al. Long-term efficacy results of EORTC genito-urinary group randomized phase 3 study 30911 comparing intravesical instillations of epirubicin, Bacillus Calmette-Guerin, and bacillus Calmette-Guerin plus isoniazid in patients with intermediate- and high-risk stage Ta T1 urothelial carcinoma of the bladder. Eur. Urol. 57, 766–773 (2010).

    Article  PubMed  Google Scholar 

  29. EU clinical trials register. Treatment of high grade non-muscle invasive urothelial carcinoma of the bladder by standard number and dose of intravesical BCG instillations versus reduced number of intravesical instillations with standard dose of BCG. European Medicines Agency https://www.clinicaltrialsregister.eu/ctr-search/trial/2010-019181-91/DE (2013).

  30. Kamat, A. M. et al. Expert consensus document: consensus statement on best practice management regarding the use of intravesical immunotherapy with BCG for bladder cancer. Nat. Rev. Urol. 12, 225–235 (2015).

    Article  PubMed  Google Scholar 

  31. Kamat, A. M. et al. Definitions, end points, and clinical trial designs for non-muscle-invasive bladder cancer: recommendations from the International Bladder Cancer Group. J. Clin. Oncol. 34, 1935–1944 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Kamat, A. M. et al. BCG-unresponsive non-muscle-invasive bladder cancer: recommendations from the IBCG. Nat. Rev. Urol. 14, 244–255 (2017).

    Article  PubMed  Google Scholar 

  33. Grossman, H. B. et al. Innovation in bladder cancer immunotherapy. J. Immunother. 39, 291–297 (2016).

    Article  CAS  PubMed  Google Scholar 

  34. Messing, E. M. The BCG Shortage. Bladder Cancer 3, 227–228 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Davies, B. J., Hwang, T. J. & Kesselheim, A. S. Ensuring access to injectable generic drugs - the case of intravesical BCG for bladder cancer. N. Engl. J. Med. 376, 1401–1403 (2017).

    Article  PubMed  Google Scholar 

  36. Bevers, R. F., Kurth, K. H. & Schamhart, D. H. Role of urothelial cells in BCG immunotherapy for superficial bladder cancer. Br. J. Cancer 91, 607–612 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Wiker, H. G. & Harboe, M. The antigen 85 complex: a major secretion product of Mycobacterium tuberculosis. Microbiol. Rev. 56, 648–661 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Ratliff, T. L., Kavoussi, L. R. & Catalona, W. J. Role of fibronectin in intravesical BCG therapy for superficial bladder cancer. J. Urol. 139, 410–414 (1988).

    Article  CAS  PubMed  Google Scholar 

  39. Aslanzadeh, J., Brown, E. J., Quillin, S. P., Ritchey, J. K. & Ratliff, T. L. Characterization of soluble fibronectin binding to Bacille Calmette-Guerin. J. Gen. Microbiol. 135, 2735–2741 (1989).

    CAS  PubMed  Google Scholar 

  40. Zhao, W. et al. Role of a Bacillus Calmette-Guerin fibronectin attachment protein in BCG-induced antitumor activity. Int. J. Cancer 86, 83–88 (2000).

    Article  CAS  PubMed  Google Scholar 

  41. Abou-Zeid, C. et al. Characterization of fibronectin-binding antigens released by Mycobacterium tuberculosis and Mycobacterium bovis BCG. Infection Immun. 56, 3046–3051 (1988).

    Article  CAS  Google Scholar 

  42. Ratliff, T. L., Palmer, J. O., McGarr, J. A. & Brown, E. J. Intravesical Bacillus Calmette-Guerin therapy for murine bladder tumors: initiation of the response by fibronectin-mediated attachment of Bacillus Calmette-Guerin. Cancer Res. 47, 1762–1766 (1987).

    CAS  PubMed  Google Scholar 

  43. Teppema, J. S., de Boer, E. C., Steerenberg, P. A. & van der Meijden, A. P. Morphological aspects of the interaction of Bacillus Calmette-Guerin with urothelial bladder cells in vivo and in vitro: relevance for antitumor activity? Urol. Res. 20, 219–228 (1992).

    Article  CAS  PubMed  Google Scholar 

  44. Kavoussi, L. R., Brown, E. J., Ritchey, J. K. & Ratliff, T. L. Fibronectin-mediated Calmette-Guerin Bacillus attachment to murine bladder mucosa. Requirement for the expression of an antitumor response. J. Clin. Invest. 85, 62–67 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Boorjian, S. A., Berglund, R. K., Maschino, A. C., Savage, C. J. & Herr, H. W. Fibrin clot inhibitor medication and efficacy of Bacillus Calmette-Guerin for bladder urothelial cancer. J. Urol. 182, 1306–1312 (2009).

    Article  PubMed  Google Scholar 

  46. Witjes, J. A., vd Meijden, A. P., Doesburg, W. & Debruyne, F. M. Influence of fibrin clot inhibitors on the efficacy of intravesical Bacillus Calmette-Guerin in the treatment of superficial bladder cancer. The Dutch Southeast Cooperative Urological Group. Eur. Urol. 23, 366–370 (1993).

    CAS  PubMed  Google Scholar 

  47. Lipsky, M. J., Badalato, G. M., Motamedinia, P., Hruby, G. W. & McKiernan, J. M. The effect of fibrin clot inhibitors on the immunomodulatory efficacy of Bacillus Calmette-Guerin therapy for non-muscle-invasive bladder cancer. Urology 81, 1273–1278 (2013).

    Article  PubMed  Google Scholar 

  48. Biot, C. et al. Preexisting BCG-specific T cells improve intravesical immunotherapy for bladder cancer. Sci. Transl Med. 4, 137ra172 (2012). Reference 48 demonstrates that mice with pre-existing cellular immunity to BCG have a more rapid immune response to BCG therapy and are better protected against tumour challenge following intravesical BCG instillation; patients with BCG immune memory also demonstrate superior protection following BCG therapy.

    Article  CAS  Google Scholar 

  49. Durek, C. et al. The fate of Bacillus Calmette-Guerin after intravesical instillation. J. Urol. 165, 1765–1768 (2001).

    Article  CAS  PubMed  Google Scholar 

  50. Mora-Bau, G. et al. Macrophages subvert adaptive immunity to urinary tract infection. PLOS Pathog. 11, e1005044 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Mulvey, M. A. et al. Induction and evasion of host defenses by type 1-piliated uropathogenic Escherichia coli. Science 282, 1494–1497 (1998).

    Article  CAS  PubMed  Google Scholar 

  52. Martinez, J. J., Mulvey, M. A., Schilling, J. D., Pinkner, J. S. & Hultgren, S. J. Type 1 pilus-mediated bacterial invasion of bladder epithelial cells. EMBO J. 19, 2803–2812 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Ingersoll, M. A. & Albert, M. L. From infection to immunotherapy: host immune responses to bacteria at the bladder mucosa. Mucosal Immunol. 6, 1041–1053 (2013).

    Article  CAS  PubMed  Google Scholar 

  54. Redelman-Sidi, G., Iyer, G., Solit, D. B. & Glickman, M. S. Oncogenic activation of Pak1-dependent pathway of macropinocytosis determines BCG entry into bladder cancer cells. Cancer Res. 73, 1156–1167 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Eto, D. S., Jones, T. A., Sundsbak, J. L. & Mulvey, M. A. Integrin-mediated host cell invasion by type 1-piliated uropathogenic. Escherichia coli. PLOS Pathog. 3, e100 (2007).

    Article  PubMed  CAS  Google Scholar 

  56. Kuroda, K., Brown, E. J., Telle, W. B., Russell, D. G. & Ratliff, T. L. Characterization of the internalization of Bacillus Calmette-Guerin by human bladder tumor cells. J. Clin. Invest. 91, 69–76 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Durek, C. et al. Bacillus-Calmette-Guerin (BCG) and 3D tumors: an in vitro model for the study of adhesion and invasion. J. Urol. 162, 600–605 (1999).

    Article  CAS  PubMed  Google Scholar 

  58. Becich, M. J., Carroll, S. & Ratliff, T. L. Internalization of bacille Calmette-Guerin by bladder tumor cells. J. Urol. 145, 1316–1324 (1991).

    Article  CAS  PubMed  Google Scholar 

  59. Bevers, R. F., de Boer, E. C., Kurth, K. H. & Schamhart, D. H. BCG-induced interleukin-6 upregulation and BCG internalization in well and poorly differentiated human bladder cancer cell lines. Eur. Cytokine Network 9, 181–186 (1998).

    CAS  Google Scholar 

  60. Ikeda, N., Toida, I., Iwasaki, A., Kawai, K. & Akaza, H. Surface antigen expression on bladder tumor cells induced by Bacillus Calmette-Guerin (BCG): a role of BCG internalization into tumor cells. Int. J. Urol. 9, 29–35 (2002).

    Article  CAS  PubMed  Google Scholar 

  61. Mitropoulos, D. N. Novel insights into the mechanism of action of intravesical immunomodulators. In Vivo 19, 611–621 (2005).

    CAS  PubMed  Google Scholar 

  62. Cosma, C. L., Sherman, D. R. & Ramakrishnan, L. The secret lives of the pathogenic mycobacteria. Annu. Rev. Microbiol. 57, 641–676 (2003).

    Article  CAS  PubMed  Google Scholar 

  63. Flynn, J. L., Chan, J. & Lin, P. L. Macrophages and control of granulomatous inflammation in tuberculosis. Mucosal Immunol. 4, 271–278 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Lage, J. M., Bauer, W. C., Kelley, D. R., Ratliff, T. L. & Catalona, W. J. Histological parameters and pitfalls in the interpretation of bladder biopsies in Bacillus Calmette-Guerin treatment of superficial bladder cancer. J. Urol. 135, 916–919 (1986).

    Article  CAS  PubMed  Google Scholar 

  65. de Boer, E. C. et al. Role of interleukin-8 in onset of the immune response in intravesical BCG therapy for superficial bladder cancer. Urol. Res. 25, 31–34 (1997).

    Article  PubMed  Google Scholar 

  66. Bisiaux, A. et al. Molecular analyte profiling of the early events and tissue conditioning following intravesical Bacillus Calmette-Guerin therapy in patients with superficial bladder cancer. J. Urol. 181, 1571–1580 (2009).

    Article  CAS  PubMed  Google Scholar 

  67. Luo, Y., Chen, X. & O’Donnell, M. A. Role of Th1 and Th2 cytokines in BCG-induced IFN-gamma production: cytokine promotion and simulation of BCG effect. Cytokine 21, 17–26 (2003).

    Article  CAS  PubMed  Google Scholar 

  68. De Boer, E. C. et al. Induction of urinary interleukin-1 (IL-1), IL-2, IL-6, and tumour necrosis factor during intravesical immunotherapy with Bacillus Calmette-Guerin in superficial bladder cancer. Cancer Immunol. Immunother. 34, 306–312 (1992).

    Article  PubMed  Google Scholar 

  69. Bohle, A. & Brandau, S. Immune mechanisms in Bacillus Calmette-Guerin immunotherapy for superficial bladder cancer. J. Urol. 170, 964–969 (2003).

    Article  PubMed  Google Scholar 

  70. Stefanini, G. F. et al. Class I and class II HLA antigen expression by transitional cell carcinoma of the bladder: correlation with T cell infiltration and BCG treatment. J. Urol. 141, 1449–1453 (1989).

    Article  CAS  PubMed  Google Scholar 

  71. Prescott, S. et al. HLA-DR expression by high grade superficial bladder cancer treated with BCG. Br. J. Urol. 63, 264–269 (1989).

    Article  CAS  PubMed  Google Scholar 

  72. Lattime, E. C., Gomella, L. G. & McCue, P. A. Murine bladder carcinoma cells present antigen to BCG-specific CD4+ T cells. Cancer Res. 52, 4286–4290 (1992).

    CAS  PubMed  Google Scholar 

  73. Suttmann, H. et al. Neutrophil granulocytes are required for effective Bacillus Calmette-Guerin immunotherapy of bladder cancer and orchestrate local immune responses. Cancer Res. 66, 8250–8257 (2006).

    Article  CAS  PubMed  Google Scholar 

  74. Rosevear, H. M., Lightfoot, A. J., O’Donnell, M. A. & Griffith, T. S. The role of neutrophils and TNF-related apoptosis-inducing ligand (TRAIL) in Bacillus Calmette-Guerin (BCG) immunotherapy for urothelial carcinoma of the bladder. Cancer Metastasis Rev. 28, 345–353 (2009).

    Article  PubMed  Google Scholar 

  75. Luo, Y. & Knudson, M. J. Mycobacterium bovis Bacillus Calmette-Guerin-induced macrophage cytotoxicity against bladder cancer cells. Clin. Dev. Immunol. 2010, 357591 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  76. Ratliff, T. L., Ritchey, J. K., Yuan, J. J., Andriole, G. L. & Catalona, W. J. T cell subsets required for intravesical BCG immunotherapy for bladder cancer. J. Urol. 150, 1018–1023 (1993). Reference 76 is one of the earliest studies to establish that an adaptive immune response is necessary for BCG-mediated tumour immunity.

    Article  CAS  PubMed  Google Scholar 

  77. de Boer, E. C. et al. Leukocytes in the urine after intravesical BCG treatment for superficial bladder cancer. A flow cytofluorometric analysis. Urol. Res. 19, 45–50 (1991).

    Article  PubMed  Google Scholar 

  78. Brandau, S. et al. NK cells are essential for effective BCG immunotherapy. International journal of cancer. J. Int. Cancer 92, 697–702 (2001).

    Article  CAS  Google Scholar 

  79. Wang, M. H., Flad, H. D., Bohle, A., Chen, Y. Q. & Ulmer, A. J. Cellular cytotoxicity of human natural killer cells and lymphokine-activated killer cells against bladder carcinoma cell lines. Immunol. Lett. 27, 191–197 (1991).

    Article  CAS  PubMed  Google Scholar 

  80. Ludwig, A. T. et al. Tumor necrosis factor-related apoptosis-inducing ligand: a novel mechanism for Bacillus Calmette-Guerin-induced antitumor activity. Cancer Res. 64, 3386–3390 (2004).

    Article  CAS  PubMed  Google Scholar 

  81. Simons, M. P., O’Donnell, M. A. & Griffith, T. S. Role of neutrophils in BCG immunotherapy for bladder cancer. Urol. Oncol. 26, 341–345 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Kresowik, T. P. & Griffith, T. S. Bacillus Calmette-Guerin immunotherapy for urothelial carcinoma of the bladder. Immunotherapy 1, 281–288 (2009).

    Article  CAS  PubMed  Google Scholar 

  83. Leitch, A. E., Lucas, C. D. & Rossi, A. G. Editorial: Neutrophil apoptosis: hot on the TRAIL of inflammatory resolution. J. Leukocyte Biol. 90, 841–843 (2011).

    Article  CAS  PubMed  Google Scholar 

  84. Pryor, K. et al. Bacillus Calmette-Guerin (BCG) enhances monocyte- and lymphocyte-mediated bladder tumour cell killing. Br. J. Cancer 71, 801–807 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Saint, F. et al. Mechanisms of action of BCG: towards a new individualized therapeutic approach? [French]. Progres Urol. 10, 1118–1126 (2000).

    CAS  Google Scholar 

  86. Suttmann, H. et al. Mechanisms of Bacillus Calmette-Guerin mediated natural killer cell activation. J. Urol. 172, 1490–1495 (2004).

    Article  PubMed  Google Scholar 

  87. Ratliff, T. L., Shapiro, A. & Catalona, W. J. Inhibition of murine bladder tumor growth by bacille Calmette-Guerin: lack of a role of natural killer cells. Clin. Immunol. Immunopathol. 41, 108–115 (1986).

    Article  CAS  PubMed  Google Scholar 

  88. Sonoda, T., Sugimura, K., Ikemoto, S., Kawashima, H. & Nakatani, T. Significance of target cell infection and natural killer cells in the anti-tumor effects of Bacillus Calmette-Guerin in murine bladder cancer. Oncol. Rep. 17, 1469–1474 (2007).

    PubMed  Google Scholar 

  89. Garcia-Cuesta, E. M. et al. NKG2D is a key receptor for recognition of bladder cancer cells by IL-2-activated NK cells and BCG promotes NK cell activation. Front. Immunol. 6, 284 (2015).

    PubMed  PubMed Central  Google Scholar 

  90. Zuiverloon, T. C. et al. Markers predicting response to Bacillus Calmette-Guerin immunotherapy in high-risk bladder cancer patients: a systematic review. Eur. Urol. 61, 128–145 (2012).

    Article  PubMed  Google Scholar 

  91. McAveney, K. M., Gomella, L. G. & Lattime, E. C. Induction of TH1- and TH2-associated cytokine mRNA in mouse bladder following intravesical growth of the murine bladder tumor MB49 and BCG immunotherapy. Cancer Immunol. Immunother. 39, 401–406 (1994).

    Article  CAS  Google Scholar 

  92. Luo, Y. Blocking IL-10 enhances Bacillus Calmette-Guerin induced T helper Type 1 immune responses and anti-bladder cancer immunity. Oncoimmunology 1, 1183–1185 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  93. Saint, F. et al. Prognostic value of a T helper 1 urinary cytokine response after intravesical Bacillus Calmette-Guerin treatment for superficial bladder cancer. J. Urol. 167, 364–367 (2002). Reference 93 details one of the first clinical studies emphasizing the role of T H 1 cell immunity in reducing recurrence rate following BCG immunotherapy.

    Article  PubMed  Google Scholar 

  94. Riemensberger, J., Bohle, A. & Brandau, S. IFN-γ and IL-12 but not IL-10 are required for local tumour surveillance in a syngeneic model of orthotopic bladder cancer. Clin. Exp. Immunol. 127, 20–26 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Ratliff, T. L., Gillen, D. & Catalona, W. J. Requirement of a thymus dependent immune response for BCG-mediated antitumor activity. J. Urol. 137, 155–158 (1987).

    Article  CAS  PubMed  Google Scholar 

  96. Pichler, R. et al. Tumor-infiltrating immune cell subpopulations influence the oncologic outcome after intravesical Bacillus Calmette-Guerin therapy in bladder cancer. Oncotarget 7, 39916–39930 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  97. US National Library of Medicine. ClinicalTrials.gov https://ClinicalTrials.gov/show/NCT02326168 (2017).

  98. Messing, E. M. Words of wisdom. Re: Preexisting BCG-specific T cells improve intravesical immunotherapy for bladder cancer. Eur. Urol. 62, 935–936 (2012).

    Article  PubMed  Google Scholar 

  99. van der Meijden, A. P. et al. Immune reactions in patients with superficial bladder cancer after intradermal and intravesical treatment with Bacillus Calmette-Guerin. Cancer Immunol. Immunother. 28, 287–295 (1989).

    Article  PubMed  Google Scholar 

  100. Winters, W. D. & Lamm, D. L. Antibody responses to Bacillus Calmette-Guerin during immunotherapy in bladder cancer patients. Cancer Res. 41, 2672–2676 (1981).

    CAS  PubMed  Google Scholar 

  101. Kelley, D. R. et al. Prognostic value of purified protein derivative skin test and granuloma formation in patients treated with intravesical Bacillus Calmette-Guerin. J. Urol. 135, 268–271 (1986).

    Article  CAS  PubMed  Google Scholar 

  102. Taniguchi, K. et al. Systemic immune response after intravesical instillation of Bacille Calmette-Guerin (BCG) for superficial bladder cancer. Clin. Exp. Immunol. 115, 131–135 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Saint, F. et al. Urinary leukocytes as a new prognostic marker of therapeutic response and of adverse effects associated with the maintenance treatment with endovesical BCG, for the prophylaxis of superficial bladder tumors [French]. Progres Urol. 11, 1242–1250 (2001).

    CAS  Google Scholar 

  104. Jallad, S., Goubet, S., Symes, A., Larner, T. & Thomas, P. Prognostic value of inflammation or granuloma after intravesival BCG in non-muscle-invasive bladder cancer. BJU Int. 113, E22–E27 (2014).

    Article  PubMed  Google Scholar 

  105. Patard, J. J., Chopin, D. K. & Boccon-Gibod, L. Mechanisms of action of Bacillus Calmette-Guerin in the treatment of superficial bladder cancer. World J. Urol. 11, 165–168 (1993).

    Article  CAS  PubMed  Google Scholar 

  106. Gonzalez, O. Y. et al. Spectrum of Bacille Calmette-Guerin (BCG) infection after intravesical BCG immunotherapy. Clin. Infecti. Dis. 36, 140–148 (2003).

    Article  Google Scholar 

  107. Marquez-Batalla, S., Fraile-Villarejo, E., Belhassen-Garcia, M., Gutierrez-Zubiaurre, N. & Cordero-Sanchez, M. Disseminated infection due to Mycobacterium bovis after intravesical BCG instillation. World J. Clin. Cases 2, 301–303 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  108. Lamm, D. L. et al. Incidence and treatment of complications of Bacillus Calmette-Guerin intravesical therapy in superficial bladder cancer. J. Urol. 147, 596–600 (1992).

    Article  CAS  PubMed  Google Scholar 

  109. Elkabani, M., Greene, J. N., Vincent, A. L., VanHook, S. & Sandin, R. L. Disseminated Mycobacterium bovis after intravesicular Bacillus calmette-Gu rin treatments for bladder cancer. Cancer Control 7, 476–481 (2000).

    Article  CAS  PubMed  Google Scholar 

  110. Perez-Jacoiste Asin, M. A. et al. Bacillus Calmette-Guerin (BCG) infection following intravesical BCG administration as adjunctive therapy for bladder cancer: incidence, risk factors, and outcome in a single-institution series and review of the literature. Medicine 93, 236–254 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Rischmann, P., Desgrandchamps, F., Malavaud, B. & Chopin, D. K. BCG intravesical instillations: recommendations for side-effects management. Eur. Urol. 37 (Suppl. 1), 33–36 (2000).

    Article  PubMed  Google Scholar 

  112. Brausi, M. et al. Side effects of Bacillus Calmette-Guerin (BCG) in the treatment of intermediate- and high-risk Ta, T1 papillary carcinoma of the bladder: results of the EORTC genito-urinary cancers group randomised phase 3 study comparing one-third dose with full dose and 1 year with 3 years of maintenance BCG. Eur. Urol. 65, 69–76 (2014).

    Article  CAS  PubMed  Google Scholar 

  113. Sylvester, R. J., van der Meijden, A. P., Oosterlinck, W., Hoeltl, W. & Bono, A. V. The side effects of Bacillus Calmette-Guerin in the treatment of Ta T1 bladder cancer do not predict its efficacy: results from a European Organisation for Research and Treatment of Cancer Genito-Urinary Group Phase III Trial. Eur. Urol. 44, 423–428 (2003).

    Article  PubMed  Google Scholar 

  114. Vandeveer, A. J. et al. Systemic immunotherapy of non-muscle invasive mouse bladder cancer with avelumab, an anti-PD-L1 immune checkpoint inhibitor. Cancer Immunol. Res. 4, 452–462 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Herr, H. W. & Morales, A. History of Bacillus Calmette-Guerin and bladder cancer: an immunotherapy success story. J. Urol. 179, 53–56 (2008).

    Article  PubMed  Google Scholar 

  116. Behr, M. A. & Small, P. M. A historical and molecular phylogeny of BCG strains. Vaccine 17, 915–922 (1999).

    Article  CAS  PubMed  Google Scholar 

  117. Behr, M. A. BCG—different strains, different vaccines? Lancet Infect. Dis. 2, 86–92 (2002).

    Article  PubMed  Google Scholar 

  118. Hayashi, D. et al. Biochemical characteristics among Mycobacterium bovis BCG substrains. FEMS Microbiol. Lett. 306, 103–109 (2010).

    Article  CAS  PubMed  Google Scholar 

  119. Brosch, R. et al. Genome plasticity of BCG and impact on vaccine efficacy. Proc. Natl Acad. Sci. USA 104, 5596–5601 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Rodriguez-Alvarez, M., Mendoza-Hernandez, G., Encarnacion, S., Calva, J. J. & Lopez-Vidal, Y. Phenotypic differences between BCG vaccines at the proteome level. Tuberculosis 89, 126–135 (2009).

    Article  CAS  PubMed  Google Scholar 

  121. Boehm, B. E. et al. Efficacy of Bacillus Calmette-Guerin strains for treatment of nonmuscle invasive bladder cancer: a systematic review and network meta-analysis. J. Urol. 198, 503–510 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  122. Secanella-Fandos, S., Luquin, M. & Julian, E. Connaught and Russian strains showed the highest direct antitumor effects of different Bacillus Calmette-Guerin substrains. J. Urol. 189, 711–718 (2013).

    Article  PubMed  Google Scholar 

  123. Rentsch, C. A. et al. Bacillus Calmette-Guerin strain differences have an impact on clinical outcome in bladder cancer immunotherapy. Eur. Urol. 66, 677–688 (2014).

    Article  PubMed  Google Scholar 

  124. Dussurget, O. et al. Role of Mycobacterium tuberculosis copper-zinc superoxide dismutase. Infection Immun. 69, 529–533 (2001).

    Article  CAS  Google Scholar 

  125. Piddington, D. L. et al. Cu, Zn superoxide dismutase of Mycobacterium tuberculosis contributes to survival in activated macrophages that are generating an oxidative burst. Infection Immun. 69, 4980–4987 (2001).

    Article  CAS  Google Scholar 

  126. Noon, A. P. & Kulkarni, G. S. All Bacillus Calmette-Guerin (BCG) strains are equal, but some BCG strains are more equal than others. Eur. Urol. 66, 689–691 (2014).

    Article  PubMed  Google Scholar 

  127. Sengiku, A. et al. A prospective comparative study of intravesical Bacillus Calmette-Guerin therapy with the Tokyo or Connaught strain for nonmuscle invasive bladder cancer. J. Urol. 190, 50–54 (2013).

    Article  PubMed  Google Scholar 

  128. Inamoto, T. et al. Comparable effect with minimal morbidity of low-dose Tokyo 172 strain compared with regular dose Connaught strain as an intravesical Bacillus Calmette-Guerin prophylaxis in nonmuscle invasive bladder cancer: results of a randomized prospective comparison. Urol. Ann. 5, 7–12 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  129. Mukherjee, A., Persad, R. & Smith, P. J. Intravesical BCG treatment for superficial bladder cancer: long-term results using two different strains of BCG. Br. J. Urol. 69, 147–150 (1992).

    Article  CAS  PubMed  Google Scholar 

  130. Fellows, G. J. et al. Marker tumour response to Evans and Pasteur bacille Calmette-Guerin in multiple recurrent pTa/pT1 bladder tumours: report from the Medical Research Council Subgroup on Superficial Bladder Cancer (Urological Cancer Working Party). Br. J. Urol. 73, 639–644 (1994).

    Article  CAS  PubMed  Google Scholar 

  131. Witjes, J. A. et al. The efficacy of BCG TICE and BCG Connaught in a cohort of 2,099 patients with T1G3 non-muscle-invasive bladder cancer. Urol. Oncol. 34, 484.e19–484.e25 (2016).

    Article  Google Scholar 

  132. Vegt, P. D. et al. A randomized study of intravesical mitomycin C, Bacillus Calmette-Guerin Tice and Bacillus Calmette-Guerin RIVM treatment in pTa-pT1 papillary carcinoma and carcinoma in situ of the bladder. J. Urol. 153, 929–933 (1995).

    Article  CAS  PubMed  Google Scholar 

  133. Kamat, A. M. et al. Predicting response to intravesical Bacillus Calmette-Guerin immunotherapy: are we there yet? a systematic review. Eur. Urol. 75, 738–748 (2017).

    Google Scholar 

  134. Lamm, D., Brausi, M., O’Donnell, M. A. & Witjes, J. A. Interferon alfa in the treatment paradigm for non-muscle-invasive bladder cancer. Urol. Oncol. 32, 35.e21–30 (2014).

    Article  CAS  Google Scholar 

  135. Nepple, K. G. et al. Bacillus Calmette-Guerin with or without interferon α-2b and megadose versus recommended daily allowance vitamins during induction and maintenance intravesical treatment of nonmuscle invasive bladder cancer. J. Urol. 184, 1915–1919 (2010).

    Article  PubMed  Google Scholar 

  136. Shepherd, A. R., Shepherd, E. & Brook, N. R. Intravesical Bacillus Calmette-Guerin with interferon-α versus intravesical Bacillus Calmette-Guerin for treating non-muscle-invasive bladder cancer. Cochrane Database Syst. Rev. 3, CD012122 (2017).

    Google Scholar 

  137. Shore, N. D. et al. Intravesical rAd-IFNα/Syn3 for patients with high-grade, Bacillus Calmette-Guerin-refractory or relapsed non-muscle-invasive bladder cancer: a phase ii randomized study. J. Clin. Oncol. 35, 3410–3416 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Steinberg, R. L., Brooks, N. A., Thomas, L. J., Mott, S. L. & O’Donnell, M. A. Bacillus Calmette-Guerin strain may not effect recurrence-free survival when used intravesically with interferon-α2b for non-muscle-invasive bladder cancer. Urol. Oncol. 35, 201–207 (2017).

    Article  CAS  PubMed  Google Scholar 

  139. Donin, N. M. et al. Immunotherapy for the treatment of urothelial carcinoma. J. Urol. 197, 14–22 (2017).

    Article  CAS  PubMed  Google Scholar 

  140. Carosella, E. D., Ploussard, G., LeMaoult, J. & Desgrandchamps, F. A. Systematic review of immunotherapy in urologic cancer: evolving roles for targeting of CTLA-4, PD-1/PD-L1, and HLA-G. Eur. Urol. 68, 267–279 (2015).

    Article  CAS  PubMed  Google Scholar 

  141. Buchbinder, E. I. & Desai, A. CTLA-4 and PD-1 pathways: similarities, differences, and implications of their inhibition. Am. J. Clin. Oncol. 39, 98–106 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Balar, A. V. et al. Atezolizumab as first-line treatment in cisplatin-ineligible patients with locally advanced and metastatic urothelial carcinoma: a single-arm, multicentre, phase 2 trial. Lancet 389, 67–76 (2017).

    Article  CAS  PubMed  Google Scholar 

  143. Sharma, P. et al. Nivolumab monotherapy in recurrent metastatic urothelial carcinoma (CheckMate 032): a multicentre, open-label, two-stage, multi-arm, phase 1/2 trial. Lancet. Oncol. 17, 1590–1598 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Bellmunt, J. et al. Pembrolizumab as second-line therapy for advanced urothelial carcinoma. N. Engl. J. Med. 376, 1015–1026 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Powles, T. et al. MPDL3280A (anti-PD-L1) treatment leads to clinical activity in metastatic bladder cancer. Nature 515, 558–562 (2014).

    Article  CAS  PubMed  Google Scholar 

  146. Apolo, A. B. et al. Avelumab, an anti-programmed death-ligand 1 antibody, in patients with refractory metastatic urothelial carcinoma: results from a multicenter, phase ib study. J. Clin. Oncol. 35, 2117–2124 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Massard, C. et al. Safety and efficacy of durvalumab (MEDI4736), an anti-programmed cell death ligand-1 immune checkpoint inhibitor, in patients with advanced urothelial bladder cancer. J. Clin. Oncol. 34, 3119–3125 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Powles, T. et al. Efficacy and safety of durvalumab in locally advanced or metastatic urothelial carcinoma: updated results from a phase 1/2 open-label study. JAMA Oncol. 3, e172411 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  149. Inman, B. A. et al. PD-L1 (B7-H1) expression by urothelial carcinoma of the bladder and BCG-induced granulomata: associations with localized stage progression. Cancer 109, 1499–1505 (2007). Several years before the advent of checkpoint blockade inhibition in bladder cancer, reference 149 reports a link between PD-L1 expression, response to BCG, and bladder cancer stage progression.

    Article  CAS  PubMed  Google Scholar 

  150. US National Library of Medicine. ClinicalTrials.gov https://ClinicalTrials.gov/show/NCT03007719 (2018).

  151. US National Library of Medicine. ClinicalTrials.gov https://ClinicalTrials.gov/show/NCT02625961 (2018).

  152. US National Library of Medicine. ClinicalTrials.gov https://ClinicalTrials.gov/show/NCT02792192 (2018).

  153. US National Library of Medicine. ClinicalTrials.gov https://ClinicalTrials.gov/show/NCT02324582 (2018).

  154. US National Library of Medicine. ClinicalTrials.gov https://ClinicalTrials.gov/show/NCT02808143 (2018).

  155. Rouanne, M., Loriot, Y., Lebret, T. & Soria, J. C. Novel therapeutic targets in advanced urothelial carcinoma. Crit. Rev. Oncol. Hematol. 98, 106–115 (2016).

    Article  PubMed  Google Scholar 

  156. Sjodahl, G. et al. A molecular taxonomy for urothelial carcinoma. Clin. Cancer Res. 18, 3377–3386 (2012).

    Article  PubMed  CAS  Google Scholar 

  157. Lerner, S. P. & Robertson, A. G. Molecular subtypes of non-muscle invasive bladder cancer. Cancer Cell 30, 1–3 (2016).

    Article  CAS  PubMed  Google Scholar 

  158. Hedegaard, J. et al. Comprehensive transcriptional analysis of early-stage urothelial carcinoma. Cancer Cell 30, 27–42 (2016).

    Article  CAS  PubMed  Google Scholar 

  159. Seiler, R. et al. Impact of molecular subtypes in muscle-invasive bladder cancer on predicting response and survival after neoadjuvant chemotherapy. Eur. Urol. 72, 544–554 (2017).

    Article  CAS  PubMed  Google Scholar 

  160. Hoption Cann, S. A., van Netten, J. P. & van Netten, C. Dr William Coley and tumour regression: a place in history or in the future. Postgraduate Med. J. 79, 672–680 (2003).

    CAS  Google Scholar 

  161. Pearl, R. On the pathological relations between cancer and tuberculosis. Exp. Biol. Med. (Maywood) 26, 73–75 (1928).

    Article  Google Scholar 

  162. Old, L. J., Clarke, D. A. & Benacerraf, B. Effect of Bacillus Calmette-Guerin infection on transplanted tumours in the mouse. Nature 184 (Suppl. 5), 291–292 (1959).

    Article  PubMed  Google Scholar 

  163. Davignon, L., Robillard, P., Lemonde, P. & Frappier, A. BCG vaccination and leukemia mortality. Lancet 2, 638 (1970).

    Article  CAS  PubMed  Google Scholar 

  164. Zbar, B. & Tanaka, T. Immunotherapy of cancer: regression of tumors after intralesional injection of living Mycobacterium bovis. Science 172, 271–273 (1971).

    Article  CAS  PubMed  Google Scholar 

  165. Rosenthal, S. R. et al. BCG vaccination and leukemia mortality. JAMA 222, 1543–1544 (1972).

    Article  CAS  PubMed  Google Scholar 

  166. Zbar, B. & Rapp, H. J. Immunotherapy of guinea pig cancer with BCG. Cancer 34, 1532–1540 (1974).

    Article  Google Scholar 

  167. Lamm, D. L. et al. Bacillus Calmette-Guerin immunotherapy of superficial bladder cancer. J. Urol. 124, 38–40 (1980).

    Article  CAS  PubMed  Google Scholar 

  168. Carlo, M. I. et al. Checkpoint inhibitors and other novel immunotherapies for advanced renal cell carcinoma. Nat. Rev. Urol. 13, 420–431 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank Y. Neuzillet (Department of Urology, Hopital Foch, Suresnes, France) for the critical reading of this manuscript. The authors also thank the French Association of Urology (AFU) and LabEx ImmunoOnco for funding support for research on BCG and non-muscle-invasive bladder cancer.

Review criteria

A systematic search was performed in the PubMed and Cochrane databases. Manuscripts not available as full text were excluded. The principal keywords used for publication selection were “BCG”, “immunotherapy”, “intravesical”, “instillation”, “NMIBC”, and “mechanism of action”. The following specific keywords and associations were added using [AND] or [OR]: “attachment”, “internalization”, “immune response”, “innate”, “adaptive”, “immune cell”, “cytotoxic”, “antitumour”, “side effects”, “BCG vaccination”, “BCG strain”, and “checkpoint inhibitors”. Manuscripts that were accessible in English or French were selected, including preclinical studies and clinical trials, systematic reviews, and meta-analyses, in addition to the latest versions of the European and French Associations of Urology Guidelines. To perform an exhaustive search, no publication year limit was used, and the last search was updated in November 2017.

Author information

Authors and Affiliations

Authors

Contributions

Both authors researched data for the article, made a substantial contribution to discussion of content, and wrote, reviewed, and edited the manuscript before submission.

Corresponding author

Correspondence to Molly A. Ingersoll.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pettenati, C., Ingersoll, M.A. Mechanisms of BCG immunotherapy and its outlook for bladder cancer. Nat Rev Urol 15, 615–625 (2018). https://doi.org/10.1038/s41585-018-0055-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41585-018-0055-4

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research