Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Intracytoplasmic sperm injection for male infertility and consequences for offspring

Abstract

Intracytoplasmic sperm injection (ICSI) has become the most commonly used method of fertilization in assisted reproductive technology. The primary reasons for its popularity stem from its effectiveness, the standardization of the procedure, which means that it can easily be incorporated into the routine practice of fertility centres worldwide, and the fact that it can be used to treat virtually all forms of infertility. ICSI is the clear method of choice for overcoming untreatable severe male factor infertility, but its (over)use in other male and non-male factor infertility scenarios is not evidence-based. Despite all efforts to increase ICSI efficacy and safety through the application of advanced sperm retrieval and cryopreservation techniques, as well as methods for selecting sperm with better chromatin integrity, the overall pregnancy rates from infertile men remain suboptimal. Treating the underlying male infertility factor before ICSI seems to be a promising way to improve ICSI outcomes, but data remain limited. Information regarding the health of ICSI offspring has accumulated over the past 25 years, and there are reasons for concern as risks of congenital malformations, epigenetic disorders, chromosomal abnormalities, subfertility, cancer, delayed psychological and neurological development, and impaired cardiometabolic profile have been observed to be greater in infants born as a result of ICSI than in naturally conceived children. However, as subfertility probably influences the risk estimates, it remains to be determined to what extent the observed adverse outcomes are related to parental factors or associated with ICSI.

Key points

  • Intracytoplasmic sperm injection (ICSI) was introduced to overcome the most severe forms of male factor infertility and has become the most frequently used method of fertilization in assisted reproductive technology (ART).

  • Existing evidence does not support ICSI in preference over in vitro fertilization (IVF) in the general non-male factor ART population; however, in couples with unexplained infertility, ICSI is associated with lower fertilization failure rates than IVF.

  • Percutaneous and open sperm retrieval methods are highly effective for harvesting sperm from men with obstructive azoospermia; open microsurgical testicular sperm retrieval has been associated with improved sperm retrieval in men with nonobstructive azoospermia.

  • Existing evidence indicates that children conceived through ICSI have an increased risk of chromosomal abnormalities, particularly those affecting sex chromosomes, compared with naturally conceived children.

  • Whether the risk of cancer is increased among children conceived using ICSI is unclear, but some evidence indicates that certain cancer types are more common in children conceived using ICSI than in naturally conceived children.

  • All efforts should be made to evaluate and treat subfertile men, both to improve the safety and efficiency of ICSI and to allow natural conception or the use of less-invasive assisted conception methods when appropriate.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Assisted fertilization methods.
Fig. 2: Seminal alterations associated with male infertility.
Fig. 3: Sperm selection methods.

Part a adapted from ref.273, Macmillan Publishers Limited, CC BY 4.0. Part d adapted from ref.274 with permission from Ass. Prof. Igor Crha, CS., Faculty of Medicine, Masaryk University, created in collaboration with Service Center for E-Learning, Faculty of Informatics, Masaryk University, Czech Republic.

Fig. 4: Sperm retrieval methods.

Parts a, c, and d reproduced with permission from ref.18, Clinics, CC BY-NC 3.0. Part b reproduced with permission from ref.80, Clinics, CC BY-NC 3.0.

Fig. 5: The epigenetic reprogramming cycle.

Figure reproduced with permission from ref.275, Ann Van Soom.

References

  1. 1.

    Palermo, G., Joris, H., Devroey, P. & Van Steirteghem, A. C. Pregnancies after intracytoplasmic injection of single spermatozoon into an oocyte. Lancet 340, 17–18 (1992).

    PubMed  Article  CAS  Google Scholar 

  2. 2.

    Palermo, G. D., Neri, Q. V. & Rosenwaks, Z. To ICSI or not to ICSI. Semin. Reprod. Med. 33, 92–102 (2015).

    PubMed  Article  Google Scholar 

  3. 3.

    Jain, T. & Gupta, R. Trends in the use of intracytoplasmic sperm injection in the United States. N. Engl. J. Med. 357, 251–257 (2007).

    PubMed  Article  CAS  Google Scholar 

  4. 4.

    van Rumste, M. M., Evers, J. L. & Farquhar, C. M. ICSI versus conventional techniques for oocyte insemination during IVF in patients with non-male factor subfertility: a Cochrane review. Hum. Reprod. 19, 223–227 (2004).

    PubMed  Article  Google Scholar 

  5. 5.

    Dyer, S. et al. International Committee for Monitoring Assisted Reproductive Technologies world report: assisted reproductive technology 2008, 2009 and 2010. Hum. Reprod. 31, 1588–1609 (2016).

    PubMed  Article  CAS  Google Scholar 

  6. 6.

    Boulet, S. L. et al. Trends in use of and reproductive outcomes associated with intracytoplasmic sperm injection. JAMA 313, 255–263 (2015).

    PubMed  Article  Google Scholar 

  7. 7.

    Pereira, N. Lessons learned in andrology: from intracytoplasmic sperm injection and beyond. Andrology 4, 757–760 (2016).

    PubMed  Article  CAS  Google Scholar 

  8. 8.

    Tournaye, H. et al. Microsurgical epididymal sperm aspiration and intracytoplasmic sperm injection: a new effective approach to infertility as a result of congenital bilateral absence of the vas deferens. Fertil. Steril. 61, 1045–1051 (1994).

    PubMed  Article  CAS  Google Scholar 

  9. 9.

    Devroey, P. et al. Normal fertilization of human oocytes after testicular sperm extraction and intracytoplasmic sperm injection. Fertil. Steril. 62, 639–641 (1994).

    PubMed  Article  CAS  Google Scholar 

  10. 10.

    Silber, S. J. et al. High fertilization and pregnancy rate after intracytoplasmic sperm injection with spermatozoa obtained from testicle biopsy. Hum. Reprod. 10, 148–152 (1995).

    PubMed  Article  CAS  Google Scholar 

  11. 11.

    Devroey, P. et al. Pregnancies after testicular sperm extraction and intracytoplasmic sperm injection in non-obstructive azoospermia. Hum. Reprod. 10, 1457–1460 (1995).

    PubMed  Article  CAS  Google Scholar 

  12. 12.

    Chambers, G. M. et al. Population trends and live birth rates associated with common ART treatment strategies. Hum. Reprod. 31, 2632–2641 (2016).

    PubMed  Article  Google Scholar 

  13. 13.

    Practice Committees of American Society for Reproductive Medicine and Society for Assisted Reproduction Technology. Intracytoplasmic sperm injection (ICSI) for non-male factor infertility: a committee opinion. Fertil. Steril. 98, 1395–1399 (2012).

    Article  Google Scholar 

  14. 14.

    Devroey, P. & Van Steirteghem, A. A review of ten years experience of ICSI. Hum. Reprod. Update 10, 19–28 (2004).

    PubMed  Article  CAS  Google Scholar 

  15. 15.

    Esteves, S. C., Miyaoka, R. & Agarwal, A. An update on the clinical assessment of the infertile male. [corrected]. Clinics 66, 691–700 (2011) erratum 67, 203 (2012).

    PubMed  PubMed Central  Article  Google Scholar 

  16. 16.

    Miyaoka, R. & Esteves, S. C. Predictive factors for sperm retrieval and sperm injection outcomes in obstructive azoospermia: do etiology, retrieval techniques and gamete source play a role? Clinics 68, 111–119 (2013).

    PubMed  PubMed Central  Article  Google Scholar 

  17. 17.

    Esteves, S. C. Clinical management of infertile men with nonobstructive azoospermia. Asian J. Androl. 17, 459–470 (2015).

    PubMed  PubMed Central  Google Scholar 

  18. 18.

    Esteves, S. C., Miyaoka, R., Orosz, J. E. & Agarwal, A. An update on sperm retrieval techniques for azoospermic males. Clinics 68, (Suppl.1) 99–110 (2013).

    PubMed  PubMed Central  Article  Google Scholar 

  19. 19.

    Tournaye, H. Male factor infertility and ART. Asian J. Androl 14, 103–108 (2012).

    PubMed  Article  Google Scholar 

  20. 20.

    Esteves, S. C. Novel concepts in male factor infertility: clinical and laboratory perspectives. J. Assist. Reprod. Genet. 33, 1319–1335 (2016).

    PubMed  PubMed Central  Article  Google Scholar 

  21. 21.

    Esteves, S. C. et al. Critical appraisal of World Health Organization’s new reference values for human semen characteristics and effect on diagnosis and treatment of subfertile men. Urology 79, 16–22 (2012).

    PubMed  Article  Google Scholar 

  22. 22.

    Babayev, S. N., Park, C. W. & Bukulmez, O. Intracytoplasmic sperm injection indications: how rigorous? Semin. Reprod. Med. 32, 283–290 (2014).

    PubMed  Article  Google Scholar 

  23. 23.

    World Health Organization. WHO laboratory manual for the examination and processing of human semen. 5th edn 226 (World Health Organization, 2010).

  24. 24.

    Cissen, M. et al. Assisted reproductive technologies for male subfertility. Cochrane Database Syst. Rev. 2, CD000360 (2016).

    PubMed  Google Scholar 

  25. 25.

    Tournaye, H. et al. Intracytoplasmic sperm injection versus in vitro fertilization: a randomized controlled trial and a meta-analysis of the literature. Fertil. Steril 78, 1030–1037 (2002).

    PubMed  Article  Google Scholar 

  26. 26.

    Shuai, H. L., Ye, Q., Huang, Y. H. & Xie, B. G. Comparison of conventional in vitro fertilisation and intracytoplasmic sperm injection outcomes in patients with moderate oligoasthenozoospermia. Andrologia 47, 499–504 (2015).

    PubMed  Article  Google Scholar 

  27. 27.

    Kruger, T. F. et al. Sperm morphologic features as a prognostic factor in in vitro fertilization. Fertil. Steril 46, 1118–1123 (1986).

    PubMed  Article  CAS  Google Scholar 

  28. 28.

    Kruger, T. F. et al. Predictive value of abnormal sperm morphology in in vitro fertilization. Fertil. Steril 49, 112–117 (1998).

    Article  Google Scholar 

  29. 29.

    Gunalp, S., Onculoglu, C., Gurgan, T., Kruger, T. F. & Lombard, C. J. A study of semen parameters with emphasis on sperm morphology in a fertile population: an attempt to develop clinical thresholds. Hum. Reprod. 16, 110–114 (2001).

    PubMed  Article  CAS  Google Scholar 

  30. 30.

    Menkveld, R. et al. Semen parameters, including WHO and strict criteria morphology, in a fertile and subfertile population: an attempt to develop clinical thresholds. Hum. Reprod. 16, 1165–1171 (2001).

    PubMed  Article  CAS  Google Scholar 

  31. 31.

    Plachot, M. et al. Outcome of conventional IVF and ICSI on sibling oocytes in mild male fator infertility. Hum. Reprod. 17, 362–369 (2002).

    PubMed  Article  Google Scholar 

  32. 32.

    Hotaling, J. M., Smith, J. F., Rosen, M., Muller, C. H. & Walsh, T. J. The relationship between isolated teratozoospermia and clinical pregnancy after in vitro fertilization with or without intracytoplasmic sperm injection: a systematic review and meta-analysis. Fertil. Steril. 95, 1141–1145 (2011).

    PubMed  Article  Google Scholar 

  33. 33.

    Lundin, K., Soderlund, B. & Hamberger, L. The  elationship between sperm morphology and rates of fertilization, pregnancy and spontaneous abortion in an in-vitro fertilization/intracytoplasmic sperm injection programme. Hum. Reprod. 12, 2676–2681 (1997).

    PubMed  Article  CAS  Google Scholar 

  34. 34.

    Osawa, Y. et al. Assessment of the dominant abnormal form is useful for predicting the outcome of intracytoplasmic sperm injection in the case of severe teratozoospermia. J. Assist. Reprod. Genet. 16, 436–442 (1999).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  35. 35.

    Dubey, A. et al. The influence of sperm morphology on preimplantation genetic diagnosis cycles outcome. Fertil. Steril. 89, 1665–1669 (2008).

    PubMed  Article  Google Scholar 

  36. 36.

    Keegan, B. R. et al. Isolated teratozoospermia does not affect in vitro fertilization outcome and is not an indication for intracytoplasmic sperm injection. Fertil. Steril. 88, 1583–1588 (2007).

    PubMed  Article  Google Scholar 

  37. 37.

    Esteves, S. C. & Varghese, A. C. Laboratory handling of epididymal and testicular spermatozoa: what can be done to improve sperm injection outcome. J. Hum. Reprod. Sci. 5, 233–243 (2012).

    PubMed  PubMed Central  Article  Google Scholar 

  38. 38.

    Povlsen, B. B., Aw, L. D., Laursen, R. J., Esteves, S. C. & Humaidan, P. Pregnancy and birth after intracytoplasmic sperm injection with normal testicular spermatozoa in a patient with azoospermia and tail stump epididymal sperm. Int. Braz. J. Urol. 41, 1220–12255 (2015).

    PubMed  PubMed Central  Article  Google Scholar 

  39. 39.

    Dam, A. H. et al. Globozoospermia revisited. Hum. Reprod. Update. 13, 63–75 (2007).

    PubMed  Article  CAS  Google Scholar 

  40. 40.

    Rubino, P., Viganò, P., Luddi, A. & Piomboni, P. The ICSI procedure from past to future: a systematic review of the more controversial aspects. Hum. Reprod. Update 22, 194–227 (2016).

    PubMed  Google Scholar 

  41. 41.

    Esteves, S. C., Schneider, D. T. & Verza, S. Jr. Influence of antisperm antibodies in the semen on intracytoplasmic sperm injection outcome. Int. Braz. J. Urol. 33, 795–802 (2007).

    PubMed  Article  Google Scholar 

  42. 42.

    Zini, A. et al. Antisperm antibodies are not associated with pregnancy rates after IVF and ICSI: systematic review and meta-analysis. Hum. Reprod. 26, 1288–1295 (2011).

    PubMed  Article  Google Scholar 

  43. 43.

    Chamley, L. W. & Clarke, G. N. Antisperm antibodies and conception. Semin. Immunopathol. 29, 169–184 (2007).

    PubMed  Article  CAS  Google Scholar 

  44. 44.

    Cissen, M. Measuring sperm DNA fragmentation and clinical outcomes of medically assisted reproduction: a systematic review and meta-analysis. PLOS One 11, e0165125 (2016).

    Article  CAS  Google Scholar 

  45. 45.

    Esteves, S. C., Sharma, R. K., Gosálvez, J. & Agarwal, A. A translational medicine appraisal of specialized andrology testing in unexplained male infertility. Int. Urol. Nephrol. 46, 1037–1052 (2014).

    PubMed  Article  Google Scholar 

  46. 46.

    Majzoub, A., Esteves, S. C., Gosálvez, J. & Agarwal, A. Specialized sperm function tests in varicocele and the future of andrology laboratory. Asian J. Androl. 18, 205–212 (2016).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  47. 47.

    Spano, M. et al. Sperm chromatin damage impairs human fertility. The Danish first pregnancy planner study team. Fertil. Steril. 73, 43–50 (2000).

    PubMed  Article  CAS  Google Scholar 

  48. 48.

    Giwercman, A. et al. Sperm chromatin structure assay as an independent predictor of fertility in vivo: a case-control study. Int. J. Androl. 33, e221–227 (2010).

    PubMed  Article  Google Scholar 

  49. 49.

    Agarwal, A., Cho, C. L. & Esteves, S. C. Should we evaluate and treat sperm DNA fragmentation? Curr. Opin. Obstet. Gynecol. 28, 164–171 (2016).

    PubMed  Article  Google Scholar 

  50. 50.

    Practice Committees of American Society for Reproductive Medicine. The clinical utility of sperm DNA integrity testing: a guideline. Fertil. Steril. 99, 673–677 (2013).

    Article  CAS  Google Scholar 

  51. 51.

    Simon, L., Zini, A., Dyachenko, A., Ciampi, A. & Carrell, D. T. A systematic review and meta-analysis to determine the effect of sperm DNA damage on in vitro fertilization and intracytoplasmic sperm injection outcome. Asian J. Androl. 19, 80–90 (2017).

    PubMed  Google Scholar 

  52. 52.

    Osman, A., Alsomait, H., Seshadri, S., El-Toukhy, T. & Khalaf, Y. The effect of sperm DNA fragmentation on live birth rate after IVFI or ICSI: a systematic review and meta-analysis. Reprod. Biomed. Online 30, 120–127 (2015).

    PubMed  Article  CAS  Google Scholar 

  53. 53.

    Zini, A., Boman, J. M., Belzile, E. & Ciampi, A. Sperm DNA damage is associated with an increased risk of pregnancy loss after IVF and ICSI: systematic review and meta-analysis. Hum. Reprod. 23, 2663–2668 (2008).

    PubMed  Article  CAS  Google Scholar 

  54. 54.

    Robinson, L. et al. The effect of sperm DNA fragmentation on miscarriage rates: a systematic review and meta-analysis. Hum. Reprod. 27, 2908–2917 (2012).

    PubMed  Article  CAS  Google Scholar 

  55. 55.

    Zhao, J., Zhang, Q., Wang, Y. & Li, Y. Whether sperm deoxyribonucleic acid fragmentation has an effect on pregnancy and miscarriage after in vitro fertilization/intracytoplasmic sperm injection: a systematic review and meta-analysis. Fertil. Steril. 102, 998–1005 (2014).

    PubMed  Article  CAS  Google Scholar 

  56. 56.

    Agarwal, A. et al. Clinical utility of sperm DNA fragmentation testing: practice recommendations based on clinical scenarios. Transl Androl. Urol. 5, 935–950 (2016).

    PubMed  PubMed Central  Article  Google Scholar 

  57. 57.

    Bhattacharya, S. et al. Conventional in-vitro fertilisation versus intracytoplasmic sperm injection for the treatment of non-male-factor infertility: a randomised controlled trial. Lancet 357, 2075–2079 (2001).

    PubMed  Article  CAS  Google Scholar 

  58. 58.

    Johnson, L. N. C., Sasson, I. E., Sammel, M. D. & Dokras, A. Does intracytoplasmic sperm injection improve the fertilization rate and decrease the total fertilization failure rate in couples with well-defined unexplained infertility? A systematic review and meta-analysis. Fertil. Steril. 100, 704–711 (2013).

    PubMed  Article  Google Scholar 

  59. 59.

    Bungum, L., Bungum, M., Humaidan, P. & Andersen, C. Y. A strategy for treatment of couples with unexplained infertility who failed to conceive after intrauterine insemination. Reprod. Biomed. Online 8, 584–589 (2004).

    PubMed  Article  CAS  Google Scholar 

  60. 60.

    Foong, S. C. et al. A prospective randomized trial of conventional in vitro fertilization versus intracytoplasmic sperm injection in unexplained infertility. J. Assist. Reprod. Genet. 23, 137–140 (2006).

    PubMed  PubMed Central  Article  Google Scholar 

  61. 61.

    Tannus, S. et al. The role of intracytoplasmic sperm injection in non-male factor infertility in advanced maternal age. Hum. Reprod. 32, 119–124 (2017).

    PubMed  Google Scholar 

  62. 62.

    Sfontouris, I. A. et al. Live birth rates using conventional in vitro fertilization compared to intracytoplasmic sperm injection in Bologna poor responders with a single oocyte retrieved. J. Assist. Reprod. Genet. 32, 691–697 (2015).

    PubMed  PubMed Central  Article  Google Scholar 

  63. 63.

    Poseidon Group (Patient-Oriented Strategies Encompassing IndividualizeD Oocyte Number) et al. A new more detailed stratification of low responders to ovarian stimulation: from a poor ovarian response to a low prognosis concept. Fertil. Steril. 105, 1452–1453 (2016).

    Article  Google Scholar 

  64. 64.

    Humaidan, P. et al. The novel POSEIDON stratification of ‘low prognosis patients in assisted reproductive technology’ and its proposed marker of successful outcome. F1000Res 5, 2911 (2016).

    PubMed  PubMed Central  Article  Google Scholar 

  65. 65.

    Ferraretti, A. P. et al. ESHRE consensus on the definition of ‘poor response’ to ovarian stimulation for in vitro fertilization: the Bologna criteria. Hum. Reprod. 26, 1616–1624 (2011).

    PubMed  Article  CAS  Google Scholar 

  66. 66.

    Artini, P. G. et al. Conventional IVF as a laboratory strategy to rescue fertility potential in severe poor responder patients: the impact of reproductive aging. Gynecol. Endocrinol. 29, 997–1001 (2013).

    PubMed  Article  CAS  Google Scholar 

  67. 67.

    Zegers-Hochschild, F. et al. The international glossary on infertility and fertility care, 2017. Fertil. Steril. 108, 393–406 (2017).

    PubMed  Article  Google Scholar 

  68. 68.

    Thornhill, A. R. et al. ESHRE PGD Consortium ‘best practice guidelines for clinical preimplantation genetic diagnosis (PGD) and preimplantation genetic screening (PGS)’. Hum. Reprod. 20, 35–48 (2005).

    PubMed  Article  CAS  Google Scholar 

  69. 69.

    Harton, G. L. et al. ESHRE PGD Consortium/Embryology Special Interest Group—best practice guidelines for polar body and embryo biopsy for preimplantation genetic diagnosis/screening (PGD/PGS). Hum. Reprod. 26, 41–46 (2011).

    PubMed  Article  CAS  Google Scholar 

  70. 70.

    Beukers, F. et al. Morphologic abnormalities in 2-year-old children born after in vitro fertilization/intracytoplasmic sperm injection with preimplantation genetic screening: follow-up of a randomized controlled trial. Fertil. Steril. 99, 408–413 (2013).

    PubMed  Article  Google Scholar 

  71. 71.

    Desmyttere, S. et al. Growth and health outcome of 102 2-year-old children conceived after pre-implantation genetic diagnosis or screening. Early Hum. Dev. 85, 755–759.

  72. 72.

    Liebaers, I. et al. Report on a consecutive series of 581 children born after blastomere biopsy for preimplantation genetic diagnosis. Hum. Reprod. 25, 275–282 (2010).

    PubMed  Article  CAS  Google Scholar 

  73. 73.

    Winter, C., Van Acker, F., Bonduelle, M. & Desmyttere, S. Psychosocial development of full term singletons, born after preimplantation genetic diagnosis (PGD) at preschool age and family functioning: a prospective case-controlled study and multi-informant approach. Hum. Reprod. 30, 1122–1136 (2015).

    PubMed  Article  CAS  Google Scholar 

  74. 74.

    Middelburg, K. J. et al. Neurological condition of infants born after in vitro fertilization with preimplantation genetic screening. Pediatr. Res. 67, 430–434 (2010).

    PubMed  Article  Google Scholar 

  75. 75.

    Winter, C. et al. Cognitive and psychomotor development of 5- to 6-year-old singletons born after PGD: a prospective case-controlled matched study. Hum. Reprod. 29, 1968–1977 (2014).

    PubMed  Article  CAS  Google Scholar 

  76. 76.

    Grimstad, F. W., Nangia, A. K., Luke, B., Stern, J. E. & Mak, W. Use of ICSI in IVF cycles in women with tubal ligation does not improve pregnancy or live birth rates. Hum. Reprod. 31, 2750–2755 (2016).

    PubMed  Article  CAS  Google Scholar 

  77. 77.

    Zafer, M. et al. Effectiveness of semen washing to prevent human immunodeficiency virus (HIV) transmission and assist pregnancy in HIV-discordant couples: a systematic review and meta-analysis. Fertil. Steril. 105, 645–655 (2016).

    PubMed  Article  Google Scholar 

  78. 78.

    Savasi, V., Oneta, M., Parrilla, B. & Cetin, I. Should HCV discordant couples with a seropositive male partner be treated with assisted reproduction techniques (ART)? Eur. J. Obstet. Gynecol. Reprod. Biol. 167, 181–184 (2013).

    PubMed  Article  Google Scholar 

  79. 79.

    Wu, M. Y. & Ho, H. N. Cost and safety of assisted reproductive technologies for human immunodeficiency virus-1 discordant couples. World J. Virol. 4, 142–146 (2015).

    PubMed  PubMed Central  Article  Google Scholar 

  80. 80.

    Esteves, S. C., Miyaoka, R. & Agarwal, A. Surgical treatment of male infertility in the era of intracytoplasmic sperm injection - new insights. Clinics 66, 1463–1478 (2011).

    PubMed  PubMed Central  Article  Google Scholar 

  81. 81.

    Strassburger, D. et al. Very low sperm count affects the result of intracytoplasmic sperm injection. J. Assist Reprod. Genet. 17, 431–436 (2000).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  82. 82.

    Mitchell, V. et al. Outcome of ICSI with ejaculated spermatozoa in a series of men with distinct ultrastructural flagellar abnormalities. Hum. Reprod. 21, 2065–2074 (2006).

    PubMed  Article  Google Scholar 

  83. 83.

    Esteves, S. C. & Agarwal, A. Reproductive outcomes, including neonatal data, following sperm injection in men with obstructive and nonobstructive azoospermia: case series and systematic review. Clinics 68, 141–150 (2013).

    PubMed  PubMed Central  Article  Google Scholar 

  84. 84.

    Esteves, S. C. et al. Comparison of sperm retrieval and reproductive outcome in azoospermic men with testicular failure and obstructive azoospermia treated for infertility. Asian J. Androl. 16, 602–606 (2014).

    PubMed  PubMed Central  Article  Google Scholar 

  85. 85.

    Gosálvez, J., Lopez-Fernandez, C., Fernandez, J. L., Esteves, S. C. & Johnston, S. D. Unpacking the mysteries of sperm DNA fragmentation: ten frequently asked questions. J. Reprod. Biotechnol. Fertil. 4, 1–16 (2015).

    Article  Google Scholar 

  86. 86.

    Hamada, A., Esteves, S. C., Nizza, M. & Agarwal, A. Unexplained male infertility: diagnosis and management. Int. Braz. J. Urol. 38, 576–594 (2012).

    PubMed  Article  Google Scholar 

  87. 87.

    Sakkas, D. & Alvarez, J. G. Sperm DNA fragmentation: mechanisms of origin, impact on reproductive outcome, and analysis. Fertil. Steril. 93, 1027–1036 (2010).

    PubMed  Article  CAS  Google Scholar 

  88. 88.

    Avendaño, C., Franchi, A., Duran, H. & Oehninger, S. DNA fragmentation of normal spermatozoa negatively impacts embryo quality and intracytoplasmic sperm injection outcome. Fertil. Steril. 94, 549–557 (2010).

    PubMed  Article  Google Scholar 

  89. 89.

    Aitken, R. J., Bronson, R., Smith, T. B. & De Iullis, G. N. The source and significance of DNA damage in human spermatozoa: a commentary on diagnostic strategies and straw man fallacies. Mol. Hum. Reprod. 19, 474–485 (2013).

    Google Scholar 

  90. 90.

    Esteves, S. C. et al. Diagnostic accuracy of sperm DNA degradation index (DDSi) as a potential noninvasive biomarker to identify men with varicocele-associated infertility. Int. Urol. Nephrol. 47, 1471–1477 (2015).

    PubMed  Article  CAS  Google Scholar 

  91. 91.

    Agarwal, A., Sharma, R., Harlev, A. & Esteves, S. C. Effect of varicocele on semen characteristics according to the new 2010 World Health Organization criteria: a systematic review and meta-analysis. Asian J. Androl. 18, 163–170 (2016).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  92. 92.

    Wang, Y. J., Zhang, R. Q., Lin, Y. J., Zhang, R. G. & Zhang, W. L. Relationship between varicocele and sperm DNA damage and the effect of varicocele repair: a meta-analysis. Reprod. Biomed. Online. 25, 307–314 (2012).

    PubMed  Article  CAS  Google Scholar 

  93. 93.

    Agarwal, A., Hamada, A. & Esteves, S. C. Insight into oxidative stress in varicocele-associated male infertility: part 1. Nat. Rev. Urol. 9, 678–690 (2012).

    PubMed  Article  CAS  Google Scholar 

  94. 94.

    Hamada, A., Esteves, S. C. & Agarwal, A. Insight into oxidative stress in varicocele-associated male infertility: part 2. Nat. Rev. Urol. 10, 26–37 (2013).

    PubMed  Article  CAS  Google Scholar 

  95. 95.

    Zini, A. & Dohle, G. Are varicoceles associated with increased deoxyribonucleic acid fragmentation? Fertil. Steril. 96, 1283–1287 (2011).

    PubMed  Article  CAS  Google Scholar 

  96. 96.

    Esteves, S. C., Oliveira, F. V. & Bertolla, R. P. Clinical outcome of intracytoplasmic sperm injection in infertile men with treated and untreated clinical varicocele. J. Urol. 184, 1442–1446 (2010).

    PubMed  Article  Google Scholar 

  97. 97.

    Esteves, S. C., Roque, M. & Agarwal, A. Outcome of assisted reproductive technology in men with treated and untreated varicocele: systematic review and meta-analysis. Asian J. Androl. 18, 254–258 (2016).

    PubMed  Article  Google Scholar 

  98. 98.

    Kirby, E. W., Wiener, L. E., Rajanahally, S., Crowell, K. & Coward, R. M. Undergoing varicocele repair before assisted reproduction improves pregnancy rate and live birth rate in azoospermic and oligospermic men with a varicocele: a systematic review and meta-analysis. Fertil. Steril. 106, 1338–1343 (2016).

    PubMed  Article  Google Scholar 

  99. 99.

    Esteves, S. C., Miyaoka, R., Roque, M. & Agarwal, A. Outcome if varicocele repair in men with nonobstructive azoospermia: a systematic review and meta-analysis. Asian J. Androl. 18, 246–253 (2016).

    PubMed  Article  Google Scholar 

  100. 100.

    Kovalski, N. N., de Lamirande, E. & Gagnon, C. Reactive oxygen species generated by human neutrophils inhibit sperm motility: protective effect of seminal plasma and scavengers. Fertil. Steril. 58, 809–816 (1992).

    PubMed  Article  CAS  Google Scholar 

  101. 101.

    Moskovtsev, S. I., Willis, J., White, J. & Mullen, J. B. Leukocytospermia: a relationship to sperm deoxyribonucleic acid integrity in patients evaluated for male factor infertility. Fertil. Steril. 88, 737–740 (2007).

    PubMed  Article  CAS  Google Scholar 

  102. 102.

    Moskovtsev, S. I. et al. Cause specific treatment in patients with high sperm DNA damage resulted in significant DNA improvement. Syst. Biol. Reprod. Med. 55, 109–115 (2009).

    PubMed  Article  CAS  Google Scholar 

  103. 103.

    Barraud-Lange, V. et al. Seminal leukocytes are good samaritans for spermatozoa. Fertil. Steril. 96, 1315–1319 (2011).

    PubMed  Article  Google Scholar 

  104. 104.

    Ricci, G. et al. Effect of seminal leukocytes on in vitro fertilization and intracytoplasmic sperm injection outcomes. Fertil. Steril 104, 87–93 (2015).

    PubMed  Article  Google Scholar 

  105. 105.

    Agarwal, A. & Sekhon, L. H. Oxidative stress and antioxidants for idiopathic oligoasthenoteratospermia: is it justified? Indian J. Urol. 27, 74–85 (2011).

    PubMed  PubMed Central  Article  Google Scholar 

  106. 106.

    Showell, M. G. et al. Antioxidants for male subfertility. Cochrane Database Syst. Rev. 12, CD007411 (2014).

    Google Scholar 

  107. 107.

    Morrison, C. D. & Brannigan, R. E. Metabolic syndrome and infertility in men. Best Pract. Res. Clin. Obstet. Gynaecol. 29, 507–515 (2015).

    PubMed  Article  Google Scholar 

  108. 108.

    Kasturi, S. S., Tannir, J. & Brannigna, R. E. The metabolic syndrome and male infertility. J. Androl. 29, 251–259 (2008).

    PubMed  Article  CAS  Google Scholar 

  109. 109.

    Bakos, H. W. et al. Paternal body mass index is associated with decreased blastocyst development and reduced live birth rate following assisted reproductive technology. Fertil. Steril. 95, 1700–1704 (2011).

    PubMed  Article  Google Scholar 

  110. 110.

    Keltz, J. et al. Overweight men: clinical pregnancy after ART is decreased in IVF but not in ICSI cycles. J. Assist. Reprod. Genet. 27, 539–544 (2010).

    PubMed  PubMed Central  Article  Google Scholar 

  111. 111.

    Wang, X. et al. Effects of female and male body mass indices on the treatment outcomes and neonatal birth weights associated with in vitro fertilization/intracytoplasmic sperm injection treatment in China. Fertil. Steril. 106, 460–466 (2016).

    PubMed  Article  Google Scholar 

  112. 112.

    Le, W., Su, S. H., Shi, L. H., Zhang, J. F. & Wu, D. L. Effect of male body mass index on clinical outcomes following assisted reproductive technology: a meta-analysis. Andrologia 48, 406–424 (2016).

    PubMed  Article  CAS  Google Scholar 

  113. 113.

    Dabaja, E. A. & Schlegel, P. N. Medical treatment of male infertility. Transl Andol. Urol. 3, 9–16 (2014).

    Google Scholar 

  114. 114.

    Fraietta, R., Zylberstejn, D. S. & Esteves, S. C. Hypogonadotropic hypogonadism revisited. Clinics 68, 81–88 (2013).

    PubMed  PubMed Central  Article  Google Scholar 

  115. 115.

    Schlegel, P. N. Aromatase inhibitors for male infertility. Fertil. Steril. 98, 1359–1362 (2012).

    PubMed  Article  CAS  Google Scholar 

  116. 116.

    Hussein, A., Ozgok, Y., Ross, L. & Niederberger, C. Clomiphene administration for cases of nonobstructive azoospermia: a multicenter study. J. Androl. 26, 787–791 (2005).

    PubMed  Article  CAS  Google Scholar 

  117. 117.

    Reifsnyder, J. E., Ramasamy, R., Husseini, J. & Schlegel, P. N. Role of optimizing testosterone before microdissection testicular sperm extraction in men with nonobstructive azoospermia. J. Urol. 188, 535–536 (2012).

    Article  CAS  Google Scholar 

  118. 118.

    Shiraishi, K., Ohmi, C., Shimabukuro, T. & Matsuyama, H. Human chorionic gonadotrophin treatment prior to microdissection testicular sperm extraction in non-obstructive azoospermia. Hum. Reprod. 27, 331–339 (2012).

    PubMed  Article  CAS  Google Scholar 

  119. 119.

    Ramasamy, R., Stahl, P. J. & Schlegel, P. N. Medical therapy for spermatogenic failure. Asian J. Androl. 14, 57–60 (2012).

    PubMed  Article  CAS  Google Scholar 

  120. 120.

    Gudeloglu, A., Brahmbhatt, J. V. & Parekattil, S. J. Medical management of male infertility in the absence of a specific etiology. Semin. Reprod. Med. 32, 313–318 (2014).

    PubMed  Article  Google Scholar 

  121. 121.

    Garg, H. & Kumar, R. Empirical drug therapy for idiopathic male infertility: what is the new evidence? Urology 86, 1065–1075 (2015).

    PubMed  Article  Google Scholar 

  122. 122.

    Attia, A. M., AbouSetta, A. M. & Al-Inany, H. G. Gonadotrophins for idiopathic male factor subfertility. Cochrane Database Syst. Rev. 23, CD005071 (2013).

    Google Scholar 

  123. 123.

    Baccetti, B. et al. Effect of follicle-stimulating hormone on sperm quality and pregnancy rate. Asian J. Androl. 6, 133–137 (2004).

    PubMed  CAS  Google Scholar 

  124. 124.

    Caroppo, E., Niederberger, C., Vizziello, G. M. & D’Amato, G. Recombinant human follicle stimulating hormone as a pretreatment for idiopathic oligoasthenoteratozoospermic patients undergoing intracytoplasmic sperm injection. Fertil. Steril. 80, 1398–1403 (2003).

    PubMed  Article  Google Scholar 

  125. 125.

    Colacurci, N. et al. Recombinant human FSH reduces sperm DNA fragmentation in men with idiopathic oligoasthenoteratozoospermia. J. Androl. 33, 588–593 (2012).

    PubMed  Article  CAS  Google Scholar 

  126. 126.

    Simoni, M. et al. Treatment with human, recombinant FSH improves sperm DNA fragmentation in idiopathic infertile men depending on the FSH receptor polymorphism p. N680S: a pharmacogenetic study. Hum. Reprod. 31, 1960–1969 (2016).

    PubMed  Article  Google Scholar 

  127. 127.

    Patel, N. & Kashanian, J. A. Thyroid dysfunction and male reproductive physiology. Semin. Reprod. Med. 34, 356–360 (2016).

    PubMed  Article  CAS  Google Scholar 

  128. 128.

    Krassas, G. E. et al. A prospective controlled study of the impact of hyperthyroidism on reproductive function in males. J. Clin. Endocrinol. Metab. 87, 3667–3671 (2002).

    PubMed  Article  CAS  Google Scholar 

  129. 129.

    Krajewska-Kulak, E. & Sengupta, P. Thyroid function in male infertility. Front. Endocrino. 13, 174 (2013).

    Google Scholar 

  130. 130.

    Singh, P., Singh, M., Cugati, G. & Singh, A. K. Hyperprolactinemia: an often missed cause of male infertility. J. Hum. Reprod. Sci. 4, 102–103 (2011).

    PubMed  PubMed Central  Article  Google Scholar 

  131. 131.

    Glazer, C. H. et al. Risk of diabetes according to male factor infertility: a register-based cohort study. Hum. Reprod. 9, 1–8 (2017).

    Google Scholar 

  132. 132.

    Esteves, S. C., Schertz, J. C., Verza, Jr, S., Schneider, D. T. & Zabaglia, S. F. A comparison of menotropin, highly-purified menotropin and follitropin alfa in cycles of intracytoplasmic sperm injection. Reprod. Biol. Endocrinol. 7, 111 (2009).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  133. 133.

    Henkel, R. R. & Schill, W. B. Sperm preparation for ART. Reprod. Biol. Endocrinol. 1, 108 (2003).

    PubMed  PubMed Central  Article  Google Scholar 

  134. 134.

    Schneider, D., Feijo, C., Verza, Jr, S. & Esteves, S. Effectiveness of sperm washing by discontinuous density gradient centrifugation to remove antibodies bound to the sperm membrane. Med. Express. 1, 123–126 (2014).

    Article  Google Scholar 

  135. 135.

    Esteves, S. C., Sharma, R. K., Thomas, Jr, A. J. & Agarwal, A. Effect of swim-up sperm washing and subsequent capacitation on acrosome status and functional membrane integrity of normal sperm. Int. J. Fertil. Womens Med. 45, 335–341 (2000).

    PubMed  CAS  Google Scholar 

  136. 136.

    Rappa, K. L. et al. Sperm processing for advanced reproductive technologies: Where are we today? Biotechnol. Adv. 34, 578–587 (2016).

    PubMed  Article  Google Scholar 

  137. 137.

    Said, T. M. & Land, J. A. Effects of advanced selection methods on sperm quality and ART outcome: a systematic review. Hum. Reprod. Update 17, 719–733 (2011).

    PubMed  Article  Google Scholar 

  138. 138.

    Simon, L., Ge, S. Q. & Carrell, D. T. Sperm selection based on electrostatic charge. Methods Mol. Biol. 927, 269–278 (2013).

    PubMed  Article  CAS  Google Scholar 

  139. 139.

    Aitken, R. J. et al. Electrophoretic sperm isolation: optimization of electrophoresis conditions and impact on oxidative stress. Hum. Reprod. 26, 1955–1964 (2011).

    PubMed  Article  Google Scholar 

  140. 140.

    Chan, P. J., Jacobson, J. D., Corselli, J. U. & Patton, W. C. A simple zeta method for sperm selection based on membrane charge. Fertil. Steril. 85, 481–486 (2006).

    PubMed  Article  CAS  Google Scholar 

  141. 141.

    Nasr Esfahani, M. H., Deemeh, M. R., Tavalaee, M., Sekhavati, M. H. & Gourabi, H. Zeta sperm selection improves pregnancy rate and alters sex ratio in male factor infertility patients: a double-blind, randomized clinical trial. Int. J. Fertil. Steril. 10, 253–260 (2016).

    PubMed  PubMed Central  Google Scholar 

  142. 142.

    Stoffel, M. H. et al. Density and distribution of anionic sites on boar ejaculated and epididymal spermatozoa. Histochem. Cell Biol. 117, 441–445 (2002).

    PubMed  Article  CAS  Google Scholar 

  143. 143.

    Gil, M., Sar-Shalom, M., Melendez Sivira, Y., Carreras, R. & Checa, M. A. Sperm selection using magnetic activated cell sorting (MACS) in assisted reproduction: a systematic review and meta-analysis. J. Assist Reprod. Genet. 30, 479–485 (2013).

    PubMed  PubMed Central  Article  Google Scholar 

  144. 144.

    Simopoulou, M. et al. Improving ICSI: a review from the spermatozoon perspective. Syst. Biol. Reprod. Med. 62, 359–371 (2016).

    PubMed  Article  Google Scholar 

  145. 145.

    McDowell, S. et al. Advanced sperm selection techniques for assisted reproduction. Cochrane Database Syst. Rev. 10, CD010461 (2014).

    Google Scholar 

  146. 146.

    Romany, L. et al. Removal of anexin V – positive sperm cells for intracytoplasmic sperm injection in ovum donation cycles does not improve reproductive outcome: a controlled and randomized trial in unselected males. Fertil. Steril. 102, 1567–1575 (2014).

    PubMed  Article  Google Scholar 

  147. 147.

    Sakkas, D. Novel technologies for selecting the best sperm for in vitro fertilization and intracytoplasmic sperm injection. Fertil. Steril. 99, 1023–1029 (2013).

    PubMed  Article  Google Scholar 

  148. 148.

    Bech-Fruchter, R., Shalev, E. & Weiss, A. Clinical benefit using sperm hyaluronic acid binding technique in ICSI cycles: a systematic review and meta-analysis. Reprod. Biomed. Online. 32, 286–298 (2016).

    Article  CAS  Google Scholar 

  149. 149.

    Vanderzwalmen, P. et al. Blastocyst development after sperm selection at high magnification is associated with size and number of nuclear vacuoles. Reprod. Biomed. Online 17, 617–627 (2008).

    PubMed  Article  Google Scholar 

  150. 150.

    Knez, K., Zorn, B., Tomazevic, T., Vrtacnik-Bokal, E. & Virant-Klun, I. The IMSI procedure improves poor embryo development in the same infertile couples with poor semen quality: a comparative prospective randomized study. Reprod. Biol. Endocrinol. 9, 123 (2011).

    PubMed  PubMed Central  Article  Google Scholar 

  151. 151.

    Berkovitz, A. et al. How to improve IVF-ICSI outcome by sperm selection. Reprod. Biomed. Online 12, 634–638 (2006).

    PubMed  Article  CAS  Google Scholar 

  152. 152.

    Setti, A. S. et al. Intracytoplasmic morphologically selected sperm injection is beneficial in cases of advanced maternal age: a prospective randomized study. Eur. J. Obstet. Gynecol. Reprod. Biol. 171, 286–290 (2013).

    PubMed  Article  CAS  Google Scholar 

  153. 153.

    Setti, A. S. et al. Twelve years of MSOME and IMSI: a review. Reprod. Biomed. Online 27, 338–352 (2013).

    PubMed  Article  Google Scholar 

  154. 154.

    Teixeira, D. M. et al. Regular (ICSI) versus ultra-high magnification (IMSI) sperm selection for assisted reproduction. Cochrane Database Syst. Rev. 7, CD010167 (2013).

    Google Scholar 

  155. 155.

    Bradley, C. K. et al. Intervention improves assisted conception intracytoplasmic sperm injection outcomes for patients with high levels of sperm DNA fragmentation: a retrospective analysis. Andrology 4, 903–910 (2016).

    PubMed  Article  CAS  Google Scholar 

  156. 156.

    Esteves, S. C., Miyaoka, R. & Agarwal, A. Sperm retrieval techniques for assisted reproduction. Int. Braz. Urol. 37, 570–583 (2011).

    Article  Google Scholar 

  157. 157.

    Esteves, S. C. et al. Reproductive potential of men with obstructive azoospermia undergoing percutaneous sperm retrieval and intracytoplasmic sperm injection according to the cause of obstruction. J. Urol. 189, 232–237 (2013).

    PubMed  Article  Google Scholar 

  158. 158.

    Deruyver, Y., Vanderschueren, D. & Van der Aa, F. Outcome of microdissection TESE compared with conventional TESE in non-obstructive azoospermia: a systematic review. Andrology 2, 20–24 (2014).

    PubMed  Article  CAS  Google Scholar 

  159. 159.

    Esteves, S. C. & Agarwal, A. Re: sperm retrieval rates and intracytoplasmic sperm injection outcomes for men with non-obstructive azoospermia and the health of resulting offspring. Asian J. Androl. 16, 642 (2014).

    PubMed Central  Article  Google Scholar 

  160. 160.

    Esteves, S. C. Microdissection testicular sperm extraction (micro-TESE) as a sperm acquisition method for men with nonobstructive azoospermia seeking fertility: operative and laboratory aspects. Int. Braz. J. Urol. 39, 440 (2013).

    PubMed  Article  Google Scholar 

  161. 161.

    Esteves, S. C., Verza, Jr. S. et al. in Practical Manual of In Vitro Fertilization (eds Nagy, Z. P., Varghese, A. C., Agarwal A.) 207–220 (Springer, New York, 2012).

    Chapter  Google Scholar 

  162. 162.

    Endo, Y. et al. Simple vitrification for small numbers of human spermatozoa. Reprod. Biomed. Online. 24, 301–307 (2012).

    PubMed  Article  CAS  Google Scholar 

  163. 163.

    Coetzee, K., Ozgur, K., Berkkanoglu, M., Bulut, H. & Isikli, A. Reliable single sperm cryopreservation in Cell Sleepers for azoospermia management. Andrologia 48, 203–210 (2016).

    PubMed  Article  CAS  Google Scholar 

  164. 164.

    Van Peperstraten, A., Proctor, M. L., Johnson, N. P. & Philipson, G. Techniques for surgical retrieval of sperm prior to intra-cytoplasmic sperm injection (ICSI) for azoospermia. Cochrane Database Syst Rev. 16, CD002807 (2008).

    Google Scholar 

  165. 165.

    Van Wely, M., Barbey, N., Meissner, A., Repping, S. & Silber, S. J. Live birth rates after MESA or TESE in men with obstructive azoospermia: is there a difference? Hum. Reprod. 30, 761–766 (2015).

    PubMed  Article  Google Scholar 

  166. 166.

    Ohlander, S., Hotaling, J., Kirshenbaum, E., Niederberger, C. & Eisenberg, M. L. Impact of fresh versus cryopreserved testicular sperm upon intracytoplasmic sperm injection pregnancy outcomes in men with azoospermia due to spermatogenic dysfunction: a meta-analysis. Fertil. Steril. 101, 344–349 (2014).

    PubMed  Article  Google Scholar 

  167. 167.

    Meijerink, A. M. et al. Prediction model for live birth in ICSI using testicular extracted sperm. Hum. Reprod. 31, 1942–1951 (2016).

    PubMed  Article  CAS  Google Scholar 

  168. 168.

    Vozdova, M., Heracek, J., Sobotka, V. & Rubes, J. Testicular sperm aneuploidy in non-obstructive azoospermic patients. Hum. Reprod. 27, 2233–2239 (2012).

    PubMed  Article  CAS  Google Scholar 

  169. 169.

    Greco, E. et al. Efficient treatment of infertility due to sperm DNA dmage by ICSI with testicular spermatozoa. Hum. Reprod. 20, 226–230 (2005).

    PubMed  Article  Google Scholar 

  170. 170.

    Esteves, S. C., Sánchez-Martín, F., Sánchez-Martín, P., Schneider, D. T. & Gosálvez, J. Comparison of reproductive outcome in oligozoospermic men with high sperm DNA fragmentation undergoing intracytoplasmic sperm injection with ejaculated and testicular sperm. Fertil. Steril. 104, 1398–1405 (2015).

    PubMed  Article  Google Scholar 

  171. 171.

    Moskovtsev, S. I. et al. Testicular spermatozoa have statistically significantly lower DNA damage compared with ejaculated spermatozoa in patients with unsuccessful oral antioxidant treatment. Fertil. Steril. 93, 1142–1146 (2010).

    PubMed  Article  CAS  Google Scholar 

  172. 172.

    Moskovtsev, S. I. et al. A comparison of ejaculated and testicular spermatozoa aneuploidy rates in patients with high sperm DNA damage. Syst. Biol. Reprod. Med. 58, 142–148 (2012).

    PubMed  Article  CAS  Google Scholar 

  173. 173.

    Mehta, A., Bolyakov, A., Schlegel, P. N. & Paduch, D. A. Higher pregnancy rates using testicular sperm in men with severe oligospermia. Fertil. Steril. 104, 1382–1387 (2015).

    PubMed  Article  Google Scholar 

  174. 174.

    Esteves, S. C., Roque, M. & Garrido, N. Use of testicular sperm for intracytoplasmic sperm injection in men with high sperm DNA fragmentation: a SWOT analysis. Asian J. Androl. 20, 1–8 (2018).

    PubMed  Article  Google Scholar 

  175. 175.

    Esteves, S. C., Roque, M., Bradley, C. K. & Garrido, N. Reproductive outcomes of testicular versus ejaculated sperm for intracytoplasmic sperm injection among men with high levels of DNA fragmentation in semen: systematic review and meta-analysis. Fertil. Steril. 108, 456–467 (2017).

    PubMed  Article  CAS  Google Scholar 

  176. 176.

    Abhyankar, N., Kathrins, M. & Niederberger, C. Use of testicular versus ejaculated sperm for intracytoplasmic sperm injection among men with cryptozoospermia: a meta-analysis. Fertil. Steril. 105, 1469–1475 (2016).

    PubMed  Article  Google Scholar 

  177. 177.

    Pabuccu, E. G., Caglar, G. S., Tangal, S., Haliloglu, A. H. & Pabuccu, R. Testicular versus ejaculated spermatozoa in ICSI cycles of normozoospermic men with high sperm DNA fragmentation and previous ART failures. Andrologia 49, https://doi.org/10.1111/and.12609 (2017).

  178. 178.

    Zini, A., Bach, P. V., Al-Malki, A. H. & Schlegel, P. N. Use of testicular sperm for ICSI in oligozoospermic couples: how far should we go? Hum. Reprod. 32, 7–13 (2017).

    PubMed  Google Scholar 

  179. 179.

    Vloeberghs, V., Verheyen, G. & Tournaye, H. Intracytoplasmic spermatid injection and in vitro maturation: fact or fiction? Clinics 68, 151–156 (2013).

    PubMed  PubMed Central  Article  Google Scholar 

  180. 180.

    Ogura, A., Yanagimachi, R. & Usui, N. Behaviour of hamster and mouse round spermatid nuclei incorporated into mature oocytes by electrofusion. Zygote 1, 1–8 (1993).

    PubMed  Article  CAS  Google Scholar 

  181. 181.

    Goswami, G., Singh, S. & Devi, M. G. Successful fertilization and embryo development after spermatid injection: a hope for nonobstructive azospermic patients. J. Hum. Reprod. Sci. 8, 175–177 (2015).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  182. 182.

    Vanderzwalmen, P. et al. Fertilization of an oocyte microinseminated with a spermatid in an in-vitro fertilization programme. Hum. Reprod. 10, 502–503 (1995).

    PubMed  Article  CAS  Google Scholar 

  183. 183.

    Tesarik, J., Mendoza, C. & Testart, J. Viable embryos from injection of round spermatids into oocyte. N. Engl. J. Med. 333, 525 (1995).

    PubMed  Article  CAS  Google Scholar 

  184. 184.

    Fischel, S., Aslam, I. & Tesarik, J. Spermatid conception: a stage too early, or a time too soon? Hum. Reprod. 11, 1371–1375 (1996).

    Article  Google Scholar 

  185. 185.

    Practice Committees of American Society for Reproductive Medicine and Society for Assisted Reproduction Technology. Round spermatid nucleus injection (ROSNI). Fertil. Steril. 90, S199–201 (2008).

    Google Scholar 

  186. 186.

    Tanaka, A. et al. Fourteen babies born after round spermatid injection into human oocytes. Proc. Natl Acad. Sci. USA 112, 14629–14634 (2015).

    PubMed  Article  CAS  Google Scholar 

  187. 187.

    Aitken, R. J. & De Iuliis, G. N. Origins and consequences of DNA damage in male germ cells. Reprod. Biomed. Online 14, 727–733 (2007).

    PubMed  Article  CAS  Google Scholar 

  188. 188.

    Krawetz, S. A. Paternal contribution: new insights and future challenges. Nat. Rev. Genet. 6, 633–642 (2005).

    PubMed  Article  CAS  Google Scholar 

  189. 189.

    Hamada, A. J., Esteves, S. C. & Agarwal, A. A comprehensive review of genetics and genetic testing in azoospermia. Clinics 68 (Suppl. 1), 39–60 (2013).

    PubMed  PubMed Central  Article  Google Scholar 

  190. 190.

    Kumar, M., Kumar, K., Jain, S., Hassan, T. & Dada, R. Novel insights into the genetic and epigenetic paternal contribution to the human embryo. Clinics 68 (Suppl. 1), 5–14 (2013).

    PubMed  PubMed Central  Article  Google Scholar 

  191. 191.

    Lewis, S. E. & Aitken, R. J. DNA damage to spermatozoa has impacts on fertilization and pregnancy. Cell Tissue Res. 322, 33–41 (2005).

    PubMed  Article  CAS  Google Scholar 

  192. 192.

    Terada, Y., Luetjens, C. M., Sutovsky, P. & Schatten, G. Atypical decondensation of the sperm nucleus, delayed replication of the male genome, and sex chromosome positioning following intracytoplasmic human sperm injection (ICSI) into golden hamster eggs: does ICSI itself introduce chromosomal anomalies? Fertil. Steril. 74, 454–460 (2000).

    PubMed  Article  CAS  Google Scholar 

  193. 193.

    Van Der Westerlaken, L. A., Helmerhorst, F. M., Hermans, J. & Naaktgeboren, N. Intracytoplasmic sperm injection: position of the polar body affects pregnancy rate. Hum. Reprod. 14, 2565–2569 (1999).

    Article  Google Scholar 

  194. 194.

    Coates, A. et al. Use of suboptimal sperm increases the risk of aneuploidy of the sex chromosomes in preimplantation blastocyst embryos. Fertil. Steril. 104, 866–872 (2015).

    PubMed  Article  Google Scholar 

  195. 195.

    Pandey, S., Shetty, A., Hamilton, M., Bhattacharya, S. & Maheshwari, A. Obstetric and perinatal outcomes in singleton pregnancies resulting from IVF/ICSI: a systematic review and meta-analysis. Hum. Reprod. Update 18, 485–503 (2012).

    PubMed  Article  Google Scholar 

  196. 196.

    Hansen, M., Kurinczuk, J. J., Milne, E., de Klerk, N. & Bower, C. Assisted reproductive technology and birth defects: a systematic review and meta-analysis. Hum. Reprod. Update 19, 330–353 (2013).

    PubMed  Article  Google Scholar 

  197. 197.

    Qin, J. et al. Assisted reproductive technology and risk of congenital malformations: a meta-analysis based on cohort studies. Arch. Gynecol. Obstet. 292, 777–798 (2015).

    PubMed  Article  Google Scholar 

  198. 198.

    Wen, J. et al. Birth defects in children conceived by in vitro fertilization and intracytoplasmic sperm injection: a meta-analysis. Fertil. Steril. 97, 1331–1337 (2012).

    PubMed  Article  Google Scholar 

  199. 199.

    Rimm, A. A., Katayama, A. C. & Katayama, K. P. A meta-analysis of the impact of IVF and ICSI on major malformations after adjusting for the effect of subfertility. J. Assist Reprod. Genet. 28, 699–705 (2011).

    PubMed  PubMed Central  Article  Google Scholar 

  200. 200.

    Massaro, P. A., MacLellan, D. L., Anderson, P. A. & Romao, R. L. Does intracytoplasmic sperm injection pose an increased risk of genitourinary congenital malformations in offspring compared to in vitro fertilization? A systematic review and meta-analysis. J. Urol. 193, 1837–1842 (2015).

    PubMed  Article  Google Scholar 

  201. 201.

    Rossi, A. C. & D’Addario, V. Neonatal outcomes of assisted and naturally conceived twins: systematic review and meta-analysis. J. Perinat Med. 39, 489–493 (2011).

    PubMed  Article  Google Scholar 

  202. 202.

    Zhu, J. L., Basso, O., Obel, C., Bille, C. & Olsen, J. Infertility, infertility treatment, and congenital malformations: Danish national birth cohort. BMJ 333, 679AE (2006).

    PubMed  PubMed Central  Article  Google Scholar 

  203. 203.

    Kissin, D. M. et al. Association of assisted reproductive technology (ART) treatment and parental infertility diagnosis with autism in ART-conceived children. Hum. Reprod. 30, 454–465 (2015).

    PubMed  Article  CAS  Google Scholar 

  204. 204.

    Tollervey, J. R. & Lunyak, V. V. Epigenetics: judge, jury and executioner of stem cell fate. Epigenetics 7, 823–840 (2012).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  205. 205.

    Geiman, T. M. & Robertson, K. D. Chromatin remodeling, histone modifications, and DNA methylation-how does it all fit together? J. Cell. Biochem. 87, 117–125 (2002).

    PubMed  Article  CAS  Google Scholar 

  206. 206.

    Bunkar, N., Pathak, N., Lohiya, N. K. & Mishra, P. K. Epigenetics: a key paradigm in reproductive health. Clin. Exp. Reprod. Med. 43, 59–81 (2016).

    PubMed  PubMed Central  Article  Google Scholar 

  207. 207.

    Hogg, K. & Western, P. S. Refurbishing the germline epigenome: Out with the old, in with the new. Semin. Cell Dev. Biol. 45, 104–113 (2015).

    PubMed  Article  CAS  Google Scholar 

  208. 208.

    Odom, L. N. & Segars, J. Imprinting disorders and assisted reproductive technology. Curr. Opin. Endocrinol. Diabetes Obes. 17, 517–522 (2010).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  209. 209.

    Gosden, R., Trasler, J., Lucifero, D. & Faddy, M. Rare congenital disorders, imprinted genes, and assisted reproductive technology. Lancet 361, 1975–1977 (2003).

    PubMed  Article  Google Scholar 

  210. 210.

    Kobayashi, H. et al. Aberrant DNA methylation of imprinted loci in sperm from oligospermic patients. Hum. Mol. Genet. 16, 2542–2551 (2007).

    PubMed  Article  CAS  Google Scholar 

  211. 211.

    de Waal, E. et al. Gonadotropin stimulation contributes to an increased incidence of epimutations in ICSI-derived mice. Hum. Mol. Genet. 21, 4460–4472 (2012).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  212. 212.

    Hartmann, S., Bergmann, M., Bohle, R. M., Weidner, W. & Steger, K. Genetic imprinting during impaired spermatogenesis. Mol. Hum. Reprod. 12, 407–411 (2006).

    PubMed  Article  CAS  Google Scholar 

  213. 213.

    Marques, C. et al. Abnormal methylation of imprinted genes in human sperm is associated with oligozoospermia. Mol. Hum. Reprod. 14, 67–74 (2008).

    PubMed  Article  CAS  Google Scholar 

  214. 214.

    Kobayashi, H. et al. DNA methylation errors at imprinted loci after assisted conception originate in the parental sperm. Eur. J. Hum. Genet. 17, 1582–1591 (2009).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  215. 215.

    Marques, C. et al. Methylation defects of imprinted genes in human testicular spermatozoa. Fertil. Steril. 94, 585–594 (2010).

    PubMed  Article  CAS  Google Scholar 

  216. 216.

    Boissonnas, C. et al. Specific epigenetic alterations of IGF2-H19 locus in spermatozoa from infertile men. Eur. J. Hum. Genet. 18, 73–80 (2010).

    PubMed  Article  CAS  Google Scholar 

  217. 217.

    Gomes, M. V., Huber, J., Ferriani, R. A., Amaral Neto, A. M. & Ramos, E. S. Abnormal methylation at the KvDMR1 imprinting control region in clinically normal children conceived by assisted reproductive technologies. Mol. Hum. Reprod. 15, 471–477 (2009).

    PubMed  Article  CAS  Google Scholar 

  218. 218.

    Kanber, D., Buiting, K., Zeschnigk, M., Ludwig, M. & Horsthemke, B. Low frequency of imprinting defects in ICSI children born small for gestational age. Eur. J. Hum. Genet. 17, 22–29 (2009).

    PubMed  Article  CAS  Google Scholar 

  219. 219.

    Tierling, S. et al. Assisted reproductive technologies do not enhance the variability of DNA methylation imprints in human. J. Med. Genet. 47, 371–376 (2010).

    PubMed  Article  CAS  Google Scholar 

  220. 220.

    King, J. L. et al. Skewed X inactivation and IVF-conceived infants. Reprod. Biomed. Online 20, 660–663 (2010).

    PubMed  PubMed Central  Article  Google Scholar 

  221. 221.

    Turan, N. et al. Inter- and intra-individual variation in allele-specific DNA methylation and gene expression in children conceived using assisted reproductive technology. PLOS Genet. 6, e1001033 (2010).

    Article  CAS  Google Scholar 

  222. 222.

    Wong, E. C., Hatakeyama, C., Robinson, W. P. & Ma, S. DNA methylation at H19/IGF2 ICR1 in the placenta of pregnancies conceived by in vitro fertilization and intracytoplasmic sperm injection. Fertil. Steril. 95, 2524–2526.e3 (2011).

    PubMed  Article  CAS  Google Scholar 

  223. 223.

    Li, L. et al. Evaluation of DNA methylation status at differentially methylated regions in IVF-conceived newborn twins. Fertil. Steril. 95, 1975–1979 (2011).

    PubMed  Article  CAS  Google Scholar 

  224. 224.

    Feng, C. et al. General imprinting status is stable in assisted reproduction-conceived offspring. Fertil. Steril. 96, 1417–1423.e9 (2011).

    PubMed  Article  CAS  Google Scholar 

  225. 225.

    Oliver, V. F. et al. Defects in imprinting and genome-wide DNA methylation are not common in the in vitro fertilization population. Fertil. Steril. 97, 147–153 (2012).

    PubMed  Article  CAS  Google Scholar 

  226. 226.

    Rancourt, R. C., Harris, H. R. & Michels, K. B. Methylation levels at imprinting control regions are not altered with ovulation induction or in vitro fertilization in a birth cohort. Hum. Reprod. 27, 2208–2216 (2012).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  227. 227.

    Puumala, S. E. et al. Similar DNA methylation levels in specific imprinting control regions in children conceived with and without assisted reproductive technology: a cross-sectional study. BMC Pediatr. 12, 33 (2012).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  228. 228.

    Hiura, H. et al. Characterization of DNA methylation errors in patients with imprinting disorders conceived by assisted reproduction technologies. Hum. Reprod. 27, 2541–2548 (2012).

    PubMed  Article  CAS  Google Scholar 

  229. 229.

    Nelissen, E. C. et al. Placentas from pregnancies conceived by IVF/ICSI have a reduced DNA methylation level at the H19 and MEST differentially methylated regions. Hum. Reprod. 28, 1117–1126 (2013).

    PubMed  Article  CAS  Google Scholar 

  230. 230.

    Sakian, S. et al. Altered gene expression of H19 and IGF2 in placentas from ART pregnancies. Placenta 36, 1100–1105 (2015).

    PubMed  Article  CAS  Google Scholar 

  231. 231.

    Melamed, N., Choufani, S., Wilkins-Haug, L. E., Koren, G. & Weksberg, R. Comparison of genome-wide and gene-specific DNA methylation between ART and naturally conceived pregnancies. Epigenetics 10, 474–483 (2015).

    PubMed  PubMed Central  Article  Google Scholar 

  232. 232.

    Vincent, R. N., Gooding, L. D., Louie, K., Chan Wong, E. & Ma, S. Altered DNA methylation and expression of PLAGL1 in cord blood from assisted reproductive technology pregnancies compared with natural conceptions. Fertil. Steril. 106, 739–748.e3 (2016).

    PubMed  Article  CAS  Google Scholar 

  233. 233.

    Mehdi, M. et al. Aneuploidy rate in spermatozoa of selected men with severe teratozoospermia. Andrologia 44 (Suppl. 1), 139–143 (2012).

    PubMed  Article  Google Scholar 

  234. 234.

    Hassold, T. et al. Human aneuploidy: incidence, origin, and etiology. Environ. Mol. Mutag. 28, 167–175 (1996).

    Article  CAS  Google Scholar 

  235. 235.

    Morales, C. et al. Cytogenetic study of spontaneous abortions using semi-direct analysis of chorionic villi samples detects the broadest spectrum of chromosome abnormalities. Am. J. Med. Genet. A 146A, 66–70 (2008).

    PubMed  Article  Google Scholar 

  236. 236.

    Griffin, D. K., Hyland, P., Tempest, H. G. & Homa, S. T. Safety issues in assisted reproduction technology: should men undergoing ICSI be screened for chromosome abnormalities in their sperm? Hum. Reprod. 18, 229–235 (2003).

    PubMed  Article  CAS  Google Scholar 

  237. 237.

    Kushnir, V. A. & Frattarelli, J. L. Aneuploidy in abortuses following IVF and ICSI. J. Assist Reprod. Genet. 26, 93–97 (2009).

    PubMed  PubMed Central  Article  Google Scholar 

  238. 238.

    Magli, M. C. et al. Paternal contribution to aneuploidy in preimplantation embryos. Reprod. Biomed. Online 18, 536–542 (2009).

    PubMed  Article  CAS  Google Scholar 

  239. 239.

    Rodrigo, L. et al. Testicular sperm from patients with obstructive and nonobstructive azoospermia: aneuploidy risk and reproductive prognosis using testicular sperm from fertile donors as control samples. Fertil. Steril. 95, 1005–1012 (2011).

    PubMed  Article  Google Scholar 

  240. 240.

    Bingol, B., Abike, F., Gedikbasi, A., Tapisiz, O. L. & Gunenc, Z. Comparison of chromosomal abnormality rates in ICSI for non-male factor and spontaneous conception. J. Assist Reprod. Genet. 29, 25–30 (2012).

    PubMed  Article  Google Scholar 

  241. 241.

    Ghoraeian, P., Mozdarani, H., Aleyasin, A. & Alizadeh-Nili, H. Frequency of sex chromosomal disomy in spermatozoa of normal and oligozoospermic Iranian patients and its effects on fertilisation and implantation rates after ICSI. Andrologia 45, 46–55 (2013).

    PubMed  Article  CAS  Google Scholar 

  242. 242.

    Mau Kai, C. et al. Reduced serum testosterone levels in infant boys conceived by intracytoplasmic sperm injection. J. Clin. Endocrinol. Metab. 92, 2598–2603 (2007).

    PubMed  Article  CAS  Google Scholar 

  243. 243.

    Jensen, T. K. et al. Fertility treatment and reproductive health of male offspring: a study of 1,925 young men from the general population. Am. J. Epidemiol. 165, 583–590 (2007).

    PubMed  Article  Google Scholar 

  244. 244.

    Belva, F. et al. Semen quality of young adult ICSI offspring: the first results. Hum. Reprod. 31, 2811–2820 (2016).

    PubMed  Article  CAS  Google Scholar 

  245. 245.

    Belva, F. et al. Reproductive hormones of ICSI-conceived young adult men: the first results. Hum. Reprod. 32, 439–446 (2017).

    PubMed  Article  Google Scholar 

  246. 246.

    Belva, F. et al. Serum reproductive hormone levels and ultrasound findings in female offspring after intracytoplasmic sperm injection: first results. Fertil. Steril. 107, 934–939 (2017).

    PubMed  Article  CAS  Google Scholar 

  247. 247.

    Andersson, A. M., Jorgensen, N., Frydelund-Larsen, L., Rajpert-De Meyts, E. & Skakkebaek, N. E. Impaired Leydig cell function in infertile men: a study of 357 idiopathic infertile men and 318 proven fertile controls. J. Clin. Endocrinol. Metab. 89, 3161–3167 (2004).

    PubMed  Article  CAS  Google Scholar 

  248. 248.

    Lightfoot, T. J. & Roman, E. Causes of childhood leukaemia and lymphoma. Toxicol. Appl. Pharmacol. 199, 104–117 (2004).

    PubMed  Article  CAS  Google Scholar 

  249. 249.

    Raimondi, S., Pedotti, P. & Taioli, E. Meta-analysis of cancer incidence in children born after assisted reproductive technologies. Br. J. Cancer 93, 1053–1056 (2005).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  250. 250.

    Hargreave, M., Jensen, A., Toender, A., Andersen, K. K. & Kjaer, S. K. Fertility treatment and childhood cancer risk: a systematic meta-analysis. Fertil. Steril. 100, 150–161 (2013).

    PubMed  Article  Google Scholar 

  251. 251.

    Williams, C. L. et al. Cancer risk among children born after assisted conception. N. Engl. J. Med. 369, 1819–1827 (2013).

    PubMed  Article  CAS  Google Scholar 

  252. 252.

    Sundh, K. J. et al. Cancer in children and young adults born after assisted reproductive technology: a Nordic cohort study from the Committee of Nordic ART and Safety (CoNARTaS). Hum. Reprod. 29, 2050–2057 (2014).

    PubMed  Article  Google Scholar 

  253. 253.

    Reigstad, M. M. et al. Risk of cancer in children conceived by assisted reproductive technology. Pediatrics 137, e20152061 (2016).

    Article  Google Scholar 

  254. 254.

    Källén, B. et al. Cancer risk in children and young adults conceived by in vitro fertilization. Pediatrics 126, 270–276 (2010).

    PubMed  Article  Google Scholar 

  255. 255.

    Bay, B., Mortensen, E. L. & Kesmodel, U. S. Assisted reproduction and child neurodevelopmental outcomes: a systematic review. Fertil. Steril. 100, 844–853 (2013).

    PubMed  Article  Google Scholar 

  256. 256.

    Pinborg, A. et al. Why do singletons conceived after assisted reproduction technology have adverse perinatal outcome? Systematic review and meta-analysis. Hum. Reprod. Update 19, 87–104 (2013).

    PubMed  Article  CAS  Google Scholar 

  257. 257.

    Carson, C. et al. Cognitive development following ART: effect of choice of comparison group, confounding and mediating factors. Hum. Reprod. 25, 244–252 (2010).

    PubMed  Article  CAS  Google Scholar 

  258. 258.

    Meijerink, A. M. et al. Behavioral, cognitive, and motor performance and physical development of five-year-old children who were born after intracytoplasmic sperm injection with the use of testicular sperm. Fertil. Steril. 106, 1673–1682.e5 (2016).

    PubMed  Article  Google Scholar 

  259. 259.

    Tsai, C. C. et al. Clinical outcomes and development of children born after intracytoplasmic sperm injection (ICSI) using extracted testicular sperm or ejaculated extreme severe oligo-astheno-teratozoospermia sperm: a comparative study. Fertil. Steril. 96, 567–571 (2011).

    PubMed  Article  Google Scholar 

  260. 260.

    Sandin, S., Nygren, K. G., Iliadou, A., Hultman, C. M. & Reichenberg, A. Autism and mental retardation among offspring born after in vitro fertilization. JAMA 310, 75–84 (2013).

    PubMed  Article  CAS  Google Scholar 

  261. 261.

    Ilioi, E. C. & Golombok, S. Psychological adjustment in adolescents conceived by assisted reproduction techniques: a systematic review. Hum. Reprod. Update 21, 84–96 (2015).

    PubMed  Article  Google Scholar 

  262. 262.

    Spangmose, A. L. et al. Academic performance in adolescents born after ART-a nationwide registry-based cohort study. Hum. Reprod. 32, 447–456 (2017).

    PubMed  Article  CAS  Google Scholar 

  263. 263.

    Balayla, J. et al. Neurodevelopmental outcomes after assisted reproductive technologies. Obstet. Gynecol. 129, 265–272 (2017).

    PubMed  PubMed Central  Article  Google Scholar 

  264. 264.

    Guo, X. Y. et al. Cardiovascular and metabolic profiles of offspring conceived by assisted reproductive technologies: a systematic review and meta-analysis. Fertil. Steril. 107, 622–631 (2017).

    PubMed  Article  Google Scholar 

  265. 265.

    Leary, C., Leese, H. J. & Sturmey, R. G. Human embryos from overweight and obese women display phenotypic and metabolic abnormalities. Hum. Reprod. 30, 122–132 (2015).

    PubMed  Article  Google Scholar 

  266. 266.

    Ebner, T. et al. Quantitative and qualitative trophectoderm grading allows for prediction of live birth and gender. J. Assist Reprod. Genet. 33, 49–57 (2016).

    PubMed  Article  Google Scholar 

  267. 267.

    Pontesilli, M. et al. Subfertility and assisted reproduction techniques are associated with poorer cardiometabolic profiles in childhood. Reprod. Biomed. Online 30, 258–267 (2015).

    PubMed  Article  Google Scholar 

  268. 268.

    Ceelen, M. et al. Cardiometabolic differences in children born after in vitro fertilization: follow-up study. J. Clin. Endocrinol. Metab. 93, 1682–1688 (2008).

    PubMed  Article  CAS  Google Scholar 

  269. 269.

    Belva, F. et al. Are ICSI adolescents at risk for increased adiposity? Hum. Reprod. 27, 257–264 (2012).

    PubMed  Article  Google Scholar 

  270. 270.

    Belva, F. et al. Blood pressure in ICSI-conceived adolescents. Hum. Reprod. 27, 3100–3108 (2012).

    PubMed  Article  CAS  Google Scholar 

  271. 271.

    Gkourogianni, A. et al. Plasma metabolomic profiling suggests early indications for predisposition to latent insulin resistance in children conceived by ICSI. PLOS One 9, e94001 (2014).

    Article  Google Scholar 

  272. 272.

    van der Steeg, J. W. et al. Obesity affects spontaneous pregnancy chances in subfertile, ovulatory women. Hum. Reprod. 23, 324–328 (2008).

    PubMed  Article  Google Scholar 

  273. 273.

    Malvezzi, H. et al. Sperm quality after density gradient centrifugation with three commercially available media: a controlled trial. Reprod. Biol. Endocrinol. 12, 121 (2014).

    PubMed  PubMed Central  Article  Google Scholar 

  274. 274.

    The Center of Assisted Reproduction. Embryological procedures. Masaryk University http://www.ivfbrno.cz/en/embryological-procedures/t1046 (2018).

  275. 275.

    Van Soom, A. et al. Epigenetics and the periconception environment in ruminants. Proc. Belg. R. Acad. Med. 2, 1–23 (2013).

    Google Scholar 

Download references

Review criteria

An extensive search of studies examining the relationship between intracytoplasmic sperm injection and male infertility was performed using PubMed and MEDLINE. The start and end dates for the search were January 2006 and February 2017, respectively. The overall strategy for study identification and data extraction was based on the following key words: “assisted reproductive technology”, “intracytoplasmic sperm injection”, “male infertility”, “pregnancy outcomes”, and “children”, with the filters “humans” and “English language”. Using the aforementioned criteria, 209 relevant articles were identified. Data that were solely published in conference or meeting proceedings, websites, or books were not included. Citations dated outside the search dates were included only if they provided conceptual content.

Author information

Affiliations

Authors

Contributions

S.C.E. designed the manuscript, helped in data interpretation and coordination, and drafted the manuscript. M.R., G.B., and T.H. participated in the acquisition of data and drafted the manuscript. P.H. helped in data interpretation and coordination and drafted and revised the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Sandro C. Esteves.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Esteves, S.C., Roque, M., Bedoschi, G. et al. Intracytoplasmic sperm injection for male infertility and consequences for offspring. Nat Rev Urol 15, 535–562 (2018). https://doi.org/10.1038/s41585-018-0051-8

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing