Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Translational models of prostate cancer bone metastasis

Abstract

Metastatic disease is the principal cause of prostate-cancer-related mortality. Our ability to accurately recapitulate the spread of prostate cancer to bone — the most common site of metastasis — is critical to the development of novel metastasis-directed therapies. Several translational models of prostate cancer bone metastasis have been developed, including animal models, cell line injection models, 3D in vitro models, bone implant models, and patient-derived xenograft models. The use of these models has led to numerous advances in elucidating the molecular mechanisms of metastasis and innovations in targeted therapy. Despite this progress, current models are limited by a failure to holistically reproduce each individual element of the metastatic cascade in prostate cancer bone metastasis. In addition, factors such as accurate recapitulation of immunobiological events and improvements in tumour heterogeneity require further consideration. Knowledge gained from historical and currently used models will improve the development of next-generation models. An introspective appraisal of current preclinical models demonstrating bone metastases is warranted to narrow research focus, improve future translational modelling, and expedite the delivery of urgently needed metastasis-directed treatments.

Key points

  • The development of novel metastasis-directed prostate cancer therapies is highly reliant on our ability to accurately reproduce the underlying mechanisms in vivo.

  • Existing models frequently employ a modular approach towards recapitulating particular aspects of disease progression.

  • Each model possesses specific advantages and limitations that are important to experimental design and outcomes.

  • Several valuable molecular and therapeutic advances have been made, despite the potential limitations of current models.

  • The aims of next-generation models should be to improve tumour heterogeneity and enable the study of disease immunobiology.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The journey of a cancer cell to bone and interactions within the bone microenvironment.
Fig. 2: The vicious cycle of bone metastasis.

Similar content being viewed by others

References

  1. Torre, L. A. et al. Global cancer statistics, 2012. CA Cancer J. Clin. 65, 87–108 (2015).

    Article  PubMed  Google Scholar 

  2. Howlander, N. et al. SEER cancer statistics review. National Cancer Institute https://seer.cancer.gov/csr/1975_2014/ (2017).

  3. Hiraga, T. Targeted agents in preclinical and early clinical development for the treatment of cancer bone metastases. Expert Opin. Investig. Drugs 25, 319–334 (2016).

    Article  PubMed  CAS  Google Scholar 

  4. Clarke, N. W., Hart, C. A. & Brown, M. D. Molecular mechanisms of metastasis in prostate cancer. Asian J. Androl. 11, 57–67 (2009).

    Article  PubMed  CAS  Google Scholar 

  5. Smith, B. N. & Odero-Marah, V. A. The role of Snail in prostate cancer. Cell Adh. Migr. 6, 433–441 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Nagle, R. B. & Cress, A. E. Metastasis update: human prostate carcinoma invasion via tubulogenesis. Prostate Cancer 2011, 249290 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Taichman, R. S. et al. Use of the stromal cell-derived factor-1/CXCR4 pathway in prostate cancer metastasis to bone. Cancer Res. 62, 1832–1837 (2002).

    PubMed  CAS  Google Scholar 

  8. Engl, T. et al. CXCR4 chemokine receptor mediates prostate tumor cell adhesion through alpha5 and beta3 integrins. Neoplasia 8, 290–301 (2006).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Greenbaum, A. et al. CXCL12 in early mesenchymal progenitors is required for haematopoietic stem-cell maintenance. Nature 495, 227–230 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. McCabe, N. P., De, S., Vasanji, A., Brainard, J. & Byzova, T. V. Prostate cancer specific integrin alphavbeta3 modulates bone metastatic growth and tissue remodeling. Oncogene 26, 6238–6243 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Hall, C. L., Dai, J., van Golen, K. L., Keller, E. T. & Long, M. W. Type I collagen receptor (alpha 2 beta 1) signaling promotes the growth of human prostate cancer cells within the bone. Cancer Res. 66, 8648–8654 (2006).

    Article  PubMed  CAS  Google Scholar 

  12. Sottnik, J. L. et al. Integrin alpha2beta1 (α2β1) promotes prostate cancer skeletal metastasis. Clin. Exp. Metastasis 30, 569–578 (2013).

    Article  PubMed  CAS  Google Scholar 

  13. Lynch, C. C. et al. MMP-7 promotes prostate cancer-induced osteolysis via the solubilization of RANKL. Cancer Cell 7, 485–496 (2005).

    Article  PubMed  CAS  Google Scholar 

  14. Kruger, S. et al. Molecular characterization of exosome-like vesicles from breast cancer cells. BMC Cancer 14, 44 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Luzzi, K. J. et al. Multistep nature of metastatic inefficiency: dormancy of solitary cells after successful extravasation and limited survival of early micrometastases. Am. J. Pathol. 153, 865–873 (1998).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Williams, K. C. et al. Cancer dissemination from a physical sciences perspective. Converg. Sci. Phys. Oncol. 2, 23001 (2016).

    Article  CAS  Google Scholar 

  17. Kan, C., Vargas, G., Le Pape, F. & Clézardin, P. Cancer cell colonisation in the bone microenvironment. Int. J. Mol. Sci. 17, 1674 (2016).

    Article  PubMed Central  CAS  Google Scholar 

  18. Shiozawa, Y. et al. Human prostate cancer metastases target the hematopoietic stem cell niche to establish footholds in mouse bone marrow. J. Clin. Invest. 121, 1298–1312 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Lawson, M. A. et al. Osteoclasts control reactivation of dormant myeloma cells by remodelling the endosteal niche. Nat. Commun. 6, 8983 (2015).

    Article  PubMed  CAS  Google Scholar 

  20. Ghajar, C. M. et al. The perivascular niche regulates breast tumour dormancy. Nat. Cell Biol. 15, 807–817 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Jung, Y. et al. Annexin 2–CXCL12 interactions regulate metastatic cell targeting and growth in the bone marrow. Mol. Cancer Res. 13, 197–207 (2015).

    Article  PubMed  CAS  Google Scholar 

  22. Taichman, R. S. et al. GAS6 receptor status is associated with dormancy and bone metastatic tumor formation. PLoS ONE 8, e61873 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Sosa, M. S. et al. NR2F1 controls tumour cell dormancy via SOX9- and RARβ-driven quiescence programmes. Nat. Commun. 6, 6170 (2015).

    Article  PubMed  CAS  Google Scholar 

  24. Ono, M. et al. Exosomes from bone marrow mesenchymal stem cells contain a microRNA that promotes dormancy in metastatic breast cancer cells. Sci. Signal. 7, ra63 (2014).

    Article  PubMed  CAS  Google Scholar 

  25. Giancotti, F. G. Mechanisms governing metastatic dormancy and reactivation. Cell 155, 750–764 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Pasero, C. et al. Inherent and tumor-driven immune tolerance in the prostate microenvironment impairs natural killer cell antitumor activity. Cancer Res. 76, 2153–2165 (2016).

    Article  PubMed  CAS  Google Scholar 

  27. Weilbaecher, K. N., Guise, T. A. & McCauley, L. K. Cancer to bone: a fatal attraction. Nat. Rev. Cancer 11, 411–425 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Kozlow, W. & Guise, T. A. Breast cancer metastasis to bone: mechanisms of osteolysis and implications for therapy. J. Mammary Gland Biol. Neoplasia 10, 169–180 (2005).

    Article  PubMed  Google Scholar 

  29. Ell, B. & Kang, Y. SnapShot: bone metastasis. Cell 151, 690–690.e1 (2012).

    Article  PubMed  CAS  Google Scholar 

  30. Ren, G., Esposito, M. & Kang, Y. Bone metastasis and the metastatic niche. J. Mol. Med. 93, 1203–1212 (2015).

    Article  PubMed  CAS  Google Scholar 

  31. Roudier, M. P. et al. Histopathological assessment of prostate cancer bone osteoblastic metastases. J. Urol. 180, 1154–1160 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Hall, C. L., Daignault, S. D., Shah, R. B., Pienta, K. J. & Keller, E. T. Dickkopf-1 expression increases early in prostate cancer development and decreases during progression from primary tumor to metastasis. Prostate 68, 1396–1404 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Logothetis, C. J. & Lin, S.-H. Osteoblasts in prostate cancer metastasis to bone. Nat. Rev. Cancer 5, 21–28 (2005).

    Article  PubMed  CAS  Google Scholar 

  34. Dunning, W. F. Prostate cancer in the rat. Natl Cancer Inst. Monogr. 12, 351–369 (1963).

    PubMed  CAS  Google Scholar 

  35. Isaacs, J. T., Heston, W. D., Weissman, R. M. & Coffey, D. S. Animal models of the hormone-sensitive and -insensitive prostatic adenocarcinomas, Dunning R-3327-H, R-3327-HI, and R-3327-AT. Cancer Res. 38, 4353–4359 (1978).

    PubMed  CAS  Google Scholar 

  36. Isaacs, J. T., Isaacs, W. B., Feitz, W. F. J. & Scheres, J. Establishment and characterization of seven dunning rat prostatic cancer cell lines and their use in developing methods for predicting metastatic abilities of prostatic cancers. Prostate 9, 261–281 (1986).

    Article  PubMed  CAS  Google Scholar 

  37. Heinlein, C. A. & Chang, C. Androgen receptor in prostate cancer. Endocr. Rev. 25, 276–308 (2004).

    Article  PubMed  CAS  Google Scholar 

  38. Waters, D. J. et al. Workgroup 4: spontaneous prostate carcinoma in dogs and nonhuman primates. Prostate 36, 64–67 (1998).

    Article  PubMed  CAS  Google Scholar 

  39. Obradovich, J., Walshaw, R. & Goullaud, E. The influence of castration on the development of prostatic carcinoma in the dog 43 cases (1978–1985). J. Vet. Intern. Med. 1, 183–187 (1987).

    Article  PubMed  CAS  Google Scholar 

  40. Wang, M. & Stearns, M. E. Isolation and characterization of PC-3 human prostatic tumor sublines which preferentially metastasize to select organs in S.C.I.D. mice. Differentiation 48, 115–125 (1991). These researchers determine that invasive cell line sublines could be harvested from the metastases of a mouse inoculated with prostate cancer.

    Article  PubMed  CAS  Google Scholar 

  41. Haq, M., Goltzman, D., Tremblay, G., Cells, M. E. & Brodi, P. Rat prostate adenocarcinoma cells disseminate to bone and adhere preferentially to bone marrow-derived endothelial cells. Cancer Res. 52, 4613–4619 (1992). This paper describes the intracardiac injection method of cancer cell inoculation, first described by Haq et al., that is a cornerstone method to produce bone metastases.

    PubMed  CAS  Google Scholar 

  42. Geldof, A. A. & Rao, B. R. Prostatic tumor (R3327) skeletal metastasis. Prostate 16, 279–290 (1990).

    Article  PubMed  CAS  Google Scholar 

  43. Arguello, F. et al. Pathogenesis of vertebral metastasis and epidural spinal cord compression. Cancer 65, 98–106 (1990).

    Article  PubMed  CAS  Google Scholar 

  44. Sobel, R. E. & Sadar, M. D. Cell lines used in prostate cancer research: a compendium of old and new lines-part 2. J. Urol. 173, 342–359 (2005).

    Article  PubMed  CAS  Google Scholar 

  45. Kaighn, M. E., Narayan, K. S., Ohnuki, Y., Lechner, J. F. & Jones, L. W. Establishment and characterization of a human prostatic carcinoma cell line (PC-3). Invest. Urol. 17, 16–23 (1979). In this article, Kaighn et al. describe the predominant cell line in prostate cancer research, PC3.

    PubMed  CAS  Google Scholar 

  46. Keer, H. N. et al. Elevated transferrin receptor content in human prostate cancer cell lines assessed in vitro and in vivo. J. Urol. 143, 381–385 (1990).

    Article  PubMed  CAS  Google Scholar 

  47. Ching, K. Z. et al. Expression of mRNA for epidermal growth factor, transforming growth factor-alpha and their receptor in human prostate tissue and cell lines. Mol. Cell. Biochem. 126, 151–158 (1993).

    Article  PubMed  CAS  Google Scholar 

  48. Shi, X.-B., Nesslinger, N. J., Deitch, A. D., Gumerlock, P. H. & deVere White, R. W. Complex functions of mutantp53 alleles from human prostate cancer. Prostate 51, 59–72 (2002).

    Article  PubMed  CAS  Google Scholar 

  49. Vlietstra, R. J., van Alewijk, D. C., Hermans, K. G., van Steenbrugge, G. J. & Trapman, J. Frequent inactivation of PTEN in prostate cancer cell lines and xenografts. Cancer Res. 58, 2720–2723 (1998).

    PubMed  CAS  Google Scholar 

  50. Tai, S. et al. PC3 is a cell line characteristic of prostatic small cell carcinoma. Prostate 71, 1668–1679 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Kozlowski, J. M. et al. Metastatic behavior of human tumor cell lines grown in the nude mouse. Cancer Res. 44, 3522–3529 (1984).

    PubMed  CAS  Google Scholar 

  52. Pettaway, C. A. et al. Selection of highly metastatic variants of different human prostatic carcinomas using orthotopic implantation in nude mice. Clin. Cancer Res. 2, 1627–1636 (1996).

    PubMed  CAS  Google Scholar 

  53. Dai, J., Hensel, J., Wang, N., Kruithof-de Julio, M. & Shiozawa, Y. Mouse models for studying prostate cancer bone metastasis. Bonekey Rep. 5, 777 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Ablin, R. J. & Mason, M. D. Metastasis of Prostate Cancer. (Springer, Netherlands, 2007).

    Book  Google Scholar 

  55. Stone, K. R., Mickey, D. D., Wunderli, H., Mickey, G. H. & Paulson, D. F. Isolation of human prostate carcinoma cell line (DU 145). Int. J. Cancer 21, 274–281 (1978).

    Article  PubMed  CAS  Google Scholar 

  56. Bajgelman, M. C. & Strauss, B. E. The DU145 human prostate carcinoma cell line harbors a temperature-sensitive allele of p53. Prostate 66, 1455–1462 (2006).

    Article  PubMed  CAS  Google Scholar 

  57. Carruba, G. et al. Steroid-growth factor interaction in human prostate cancer. Short term effects of transforming growth factors on growth of human prostate cancer cells. Steroids 59, 412–420 (1994).

    Article  PubMed  CAS  Google Scholar 

  58. Pietrzkowski, Z. et al. Inhibition of growth of prostatic cancer cell lines by peptide analogues of insulin-like growth factor. Cancer Res. 53, 1102–1106 (1993).

    PubMed  CAS  Google Scholar 

  59. Connolly, J. M. & Rose, D. P. Production of epidermal growth factor and transforming growth factor-alpha by the androgen-responsive LNCaP human prostate cancer cell line. Prostate 16, 209–218 (1990).

    Article  PubMed  CAS  Google Scholar 

  60. Nakamoto, T., Chang, C., Li, A. & Chodak, G. W. Basic fibroblast growth factor in human prostate cancer cells. Cancer Res. 52, 571–577 (1992).

    PubMed  CAS  Google Scholar 

  61. Carroll, A. G., Voeller, H. J., Sugars, L. & Gelmann, E. P. p53 oncogene mutations in three human prostate cancer cell lines. Prostate 23, 123–134 (1993).

    Article  PubMed  CAS  Google Scholar 

  62. Veldscholte, J. et al. A mutation in the ligand binding domain of the androgen receptor of human LNCaP cells affects steroid binding characteristics and response to anti-androgens. Biochem. Biophys. Res. Commun. 173, 534–540 (1990).

    Article  PubMed  CAS  Google Scholar 

  63. Thalmann, G. N. et al. Androgen-independent cancer progression and bone metastasis in the LNCaP model of human prostate cancer. Cancer Res. 54, 2577–2581 (1994).

    PubMed  CAS  Google Scholar 

  64. Hong, M. K. H. et al. Tracking the origins and drivers of subclonal metastatic expansion in prostate cancer. Nat. Commun. 6, 6605 (2015).

    Article  PubMed  CAS  Google Scholar 

  65. Liepe, K. et al. New model for the induction of osteoblastic bone metastases in rat. Anticancer Res. 25, 1067–1073 (2005).

    PubMed  CAS  Google Scholar 

  66. Wilson, M. J., Kapoor, S., Vogel, M. M. & Sinha, A. A. Characterization of gelatin-degrading metalloproteinase activities of the Dunning rat prostate tumor grown in nude mice. Prostate 19, 237–250 (1991).

    Article  PubMed  CAS  Google Scholar 

  67. Roodman, G. D. Mechanisms of bone metastasis. N. Engl. J. Med. 350, 1655–1664 (2004).

    Article  PubMed  CAS  Google Scholar 

  68. Blouin, S., Baslé, M. F. & Chappard, D. Rat models of bone metastases. Clin. Exp. Metastasis 22, 605–614 (2005).

    Article  PubMed  Google Scholar 

  69. Lamoureux, F. et al. Relevance of a new rat model of osteoblastic metastases from prostate carcinoma for preclinical studies using zoledronic acid. Int. J. Cancer 122, 751–760 (2008).

    Article  PubMed  CAS  Google Scholar 

  70. LeRoy, B. E. et al. New bone formation and osteolysis by a metastatic, highly invasive canine prostate carcinoma xenograft. Prostate 66, 1213–1222 (2006).

    Article  PubMed  CAS  Google Scholar 

  71. Simmons, J. K. et al. Animal models of bone metastasis. Vet. Pathol. 52, 827–841 (2015).

    Google Scholar 

  72. Thudi, N. K. et al. Dickkopf-1 (DKK-1) stimulated prostate cancer growth and metastasis and inhibited bone formation in osteoblastic bone metastases. Prostate 71, 615–625 (2011).

    Article  PubMed  CAS  Google Scholar 

  73. Thompson, T. C., Southgate, J., Kitchener, G. & Land, H. Multistage carcinogenesis induced by ras and myc oncognes in a reconstituted organ. Cell 56, 917–930 (1989).

    Article  PubMed  CAS  Google Scholar 

  74. Baley, P. A., Yoshida, K., Qian, W., Sehgal, I. & Thompson, T. C. Progression to androgen insensitivity in a novel in vitro mouse model for prostate cancer. J. Steroid Biochem. Mol. Biol. 52, 403–413 (1995).

    Article  PubMed  CAS  Google Scholar 

  75. Power, C. A. et al. A novel model of bone-metastatic prostate cancer in immunocompetent mice. Prostate 69, 1613–1623 (2009).

    Article  PubMed  CAS  Google Scholar 

  76. Lin, D. et al. Next generation patient-derived prostate cancer xenograft models. Asian J. Androl. 16, 407–412 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  77. Lin, D. et al. High fidelity patient-derived xenografts for accelerating prostate cancer discovery and drug development. Cancer Res. 74, 1272–1283 (2014).

    Article  PubMed  CAS  Google Scholar 

  78. Ellis, J., Buhier, R., True, D., Vessella, L. & Bigler, A. Characterization of a novel antigen-producing prostatic carcinoma xenograft: LuCaP 23. Clin. Cancer Res. 2, 1039–1048 (1996).

    PubMed  CAS  Google Scholar 

  79. Nguyen, H. M. et al. LuCaP prostate cancer patient-derived xenografts reflect the molecular heterogeneity of advanced disease and serve as models for evaluating cancer therapeutics. Prostate 77, 654–671 (2017). This article describes 21 developed and characterized PDX models, which encompass a wide variety of genomic and phenotypic features of prostate cancer.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  80. Ben-David, U. et al. Patient-derived xenografts undergo mouse-specific tumor evolution. Nat. Genet. 49, 1567–1575 (2017). This is a critical look into the stability of the heterogeneity of PDX tumours that are serially propagated in mice.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  81. Tentler, J. J. et al. Patient-derived tumour xenografts as models for oncology drug development. Nat. Rev. Clin. Oncol. 9, 338–350 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  82. Wang, Y. et al. An orthotopic metastatic prostate cancer model in SCID mice via grafting of a transplantable human prostate tumor line. Lab. Invest. 85, 1392–1404 (2005). This study describes a PDX model that exhibits bone metastases after an orthotopic inoculation method, paving the way for PDX research that can follow the metastatic cascade from primary tumour growth to distant bone metastasis.

    Article  PubMed  Google Scholar 

  83. Godebu, E. et al. PCSD1, a new patient-derived model of bone metastatic prostate cancer, is castrate-resistant in the bone-niche. J. Transl Med. 12, 275–287 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  84. Neudert, M., Fischer, C., Krempien, B., Bauss, F. & Seibel, M. J. Site-specific human breast cancer (MDA-MB-231) metastases in nude rats: model characterisation and in vivo effects of ibandronate on tumour growth. Int. J. Cancer 107, 468–477 (2003).

    Article  PubMed  CAS  Google Scholar 

  85. Valta, M. P. et al. Spheroid culture of LuCaP 136 patient-derived xenograft enables versatile preclinical models of prostate cancer. Clin. Exp. Metastasis 33, 325–337 (2016). This 3D culture method enables PDX models, which were formerly capable of being grown only in vivo, to be grown in vitro.

    Article  PubMed  Google Scholar 

  86. Fong, E. L. S. et al. Hydrogel-based 3D model of patient-derived prostate xenograft tumors suitable for drug screening. Mol. Pharm. 11, 2040–2050 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  87. Rhee, H. W. et al. Permanent phenotypic and genotypic changes of prostate cancer cells cultured in a three-dimensional rotating-wall vessel. In Vitro Cell. Dev. Biol. Anim. 37, 127–140 (2001).

    Article  PubMed  CAS  Google Scholar 

  88. Sung, S.-Y. et al. Coevolution of prostate cancer and bone stroma in three-dimensional coculture: implications for cancer growth and metastasis. Cancer Res. 68, 9996–10003 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  89. Kim, W. et al. RUNX1 is essential for mesenchymal stem cell proliferation and myofibroblast differentiation. Proc. Natl Acad. Sci. USA 111, 16389–16394 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  90. Parikh, M. R., Minser, K. E., Rank, L. M., Glackin, C. A. & Kirshner, J. A reconstructed metastasis model to recapitulate the metastatic spread in vitro. Biotechnol. J. 9, 1129–1139 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  91. Bostwick, D. G. et al. Human prostate cancer risk factors. Cancer 101, 2371–2490 (2004).

    Article  PubMed  CAS  Google Scholar 

  92. Greenberg, N. M. et al. Prostate cancer in a transgenic mouse. Proc. Natl Acad. Sci. USA 92, 3439–3443 (1995).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  93. Gingrich, J. R. et al. Metastatic prostate cancer in a transgenic mouse. Cancer Res. 56, 4096–4102 (1996). This article describes a transgenic model of prostate cancer that could show metastasis to bone, albeit infrequently.

    PubMed  CAS  Google Scholar 

  94. Jeet, V., Russell, P. J. & Khatri, A. Modeling prostate cancer: a perspective on transgenic mouse models. Cancer Metastasis Rev. 29, 123–142 (2010).

    Article  PubMed  Google Scholar 

  95. Kasper, S. et al. Development, progression, and androgen-dependence of prostate tumors in probasin-large T antigen transgenic mice: a model for prostate cancer. Lab. Invest. 78, i–xv (1998).

    PubMed  CAS  Google Scholar 

  96. Klezovitch, O. et al. Hepsin promotes prostate cancer progression and metastasis. Cancer Cell 6, 185–195 (2004).

    Article  PubMed  CAS  Google Scholar 

  97. Hu, Y., Ippolito, J. E., Garabedian, E. M., Humphrey, P. A. & Gordon, J. I. Molecular characterization of a metastatic neuroendocrine cell cancer arising in the prostates of transgenic mice. J. Biol. Chem. 277, 44462–44474 (2002).

    Article  PubMed  CAS  Google Scholar 

  98. Perez-Stable, C. et al. Prostate, adrenocortical, and brown adipose tumors in fetal globin/T antigen transgenic mice. Lab. Invest. 74, 363–373 (1996).

    PubMed  CAS  Google Scholar 

  99. Lawson, D. A. et al. Basal epithelial stem cells are efficient targets for prostate cancer initiation. Proc. Natl Acad. Sci. USA 107, 2610–2615 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  100. Ding, Z. et al. Genome unstable murine prostate cancers acquire genomic aberrations and bone metastatic features of the human disease. Cell 148, 896–907 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  101. Ku, S. Y. et al. Rb1 and Trp53 cooperate to suppress prostate cancer lineage plasticity, metastasis, and antiandrogen resistance. Science 355, 78–83 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  102. Chang, M. T. et al. Identifying recurrent mutations in cancer reveals widespread lineage diversity and mutational specificity. Nat. Biotechnol. 34, 155–163 (2016).

    Article  PubMed  CAS  Google Scholar 

  103. Kasper, S. Survey of genetically engineered mouse models for prostate cancer: analyzing the molecular basis of prostate cancer development, progression, and metastasis. J. Cell. Biochem. 94, 279–297 (2005).

    Article  PubMed  CAS  Google Scholar 

  104. Alanee, S. et al. Contemporary incidence and mortality rates of neuroendocrine prostate cancer. Anticancer Res. 35, 4145–4150 (2015).

    PubMed  Google Scholar 

  105. Nemeth, J. A. et al. Severe combined immunodeficient-hu model of human prostate cancer metastasis to human bone. Cancer Res. 59, 1987–1993 (1999).

    PubMed  CAS  Google Scholar 

  106. Schuster, J., Zhang, J. & Longo, M. A novel human osteoblast-derived severe combined immunodeficiency mouse model of bone metastasis. J. Neurosurg. Spine 4, 388–391 (2006).

    Article  PubMed  Google Scholar 

  107. Lee, Y. P. et al. Use of zoledronate to treat osteoblastic versus osteolytic lesions in a severe-combined-immunodeficient mouse model. Cancer Res. 62, 5564–5570 (2002).

    PubMed  CAS  Google Scholar 

  108. Pettway, G. J. & McCauley, L. K. Ossicle and vossicle implant model systems. Methods Mol. Biol. 455, 101–110 (2008).

    Article  PubMed  Google Scholar 

  109. Koh, A. J. et al. Cells of the osteoclast lineage as mediators of the anabolic actions of parathyroid hormone in bone. Endocrinology 146, 4584–4596 (2005). In this article, Koh et al. describe the method to transplant mouse vossicles into host mice, paving the way for a novel bone implant model of prostate cancer.

    Article  PubMed  CAS  Google Scholar 

  110. Shiozawa, Y. et al. GAS6/AXL axis regulates prostate cancer invasion, proliferation, and survival in the bone marrow niche. Neoplasia 12, 116–127 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  111. Park, H.-J. & Bolton, E. C. Glial cell line-derived neurotrophic factor induces cell proliferation in the mouse urogenital sinus. Mol. Endocrinol. 29, 289–306 (2015).

    Article  PubMed  CAS  Google Scholar 

  112. Thompson, T. C. et al. Loss of p53 function leads to metastasis in ras+myc-initiated mouse prostate cancer. Oncogene 10, 869–879 (1995).

    PubMed  CAS  Google Scholar 

  113. Li, Z. G. et al. Androgen receptor-negative human prostate cancer cells induce osteogenesis in mice through FGF9-mediated mechanisms. J. Clin. Invest. 118, 2697–2710 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  114. Huang, Y. et al. Overexpression of FGF9 in prostate epithelial cells augments reactive stroma formation and promotes prostate cancer progression. Int. J. Biol. Sci. 11, 948–960 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  115. Lee, Y.-C. et al. Secretome analysis of an osteogenic prostate tumor identifies complex signaling networks mediating cross-talk of cancer and stromal cells within the tumor microenvironment. Mol. Cell. Proteom. 14, 471–483 (2015).

    Article  CAS  Google Scholar 

  116. Deng, M. et al. miR-26a suppresses tumor growth and metastasis by targeting FGF9 in gastric cancer. PLoS ONE 8, e72662 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  117. Hurley, P. J. et al. Secreted protein, acidic and rich in cysteine-like 1 (SPARCL1) is down regulated in aggressive prostate cancers and is prognostic for poor clinical outcome. Proc. Natl Acad. Sci. USA 109, 14977–14982 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  118. Xiang, Y. et al. SPARCL1 suppresses metastasis in prostate cancer. Mol. Oncol. 7, 1019–1030 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  119. Guo, W. et al. HEF1 promotes epithelial mesenchymal transition and bone invasion in prostate cancer under the regulation of microRNA-145. J. Cell. Biochem. 114, 1606–1615 (2013).

    Article  PubMed  CAS  Google Scholar 

  120. Mundi, P. S., Sachdev, J., McCourt, C. & Kalinsky, K. AKT in cancer: new molecular insights and advances in drug development. Br. J. Clin. Pharmacol. 82, 943–956 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  121. Salmena, L., Carracedo, A. & Pandolfi, P. P. Tenets of PTEN tumor suppression. Cell 133, 403–414 (2008).

    Article  PubMed  CAS  Google Scholar 

  122. Berquin, I. M., Min, Y., Wu, R., Wu, H. & Chen, Y. Q. Expression signature of the mouse prostate. J. Biol. Chem. 280, 36442–36451 (2005).

    Article  PubMed  CAS  Google Scholar 

  123. Conley-LaComb, M. K. et al. PTEN loss mediated Akt activation promotes prostate tumor growth and metastasis via CXCL12/CXCR4 signaling. Mol. Cancer 12, 85 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  124. Gravina, G. L. et al. CXCR4 pharmacogical inhibition reduces bone and soft tissue metastatic burden by affecting tumor growth and tumorigenic potential in prostate cancer preclinical models. Prostate 75, 1227–1246 (2015).

    Article  PubMed  CAS  Google Scholar 

  125. Winkler, I. G. et al. Vascular niche E-selectin regulates hematopoietic stem cell dormancy, self renewal and chemoresistance. Nat. Med. 18, 1651–1657 (2012).

    Article  PubMed  CAS  Google Scholar 

  126. Dimitroff, C. J., Lechpammer, M., Long-Woodward, D. & Kutok, J. L. Rolling of human bone-metastatic prostate tumor cells on human bone marrow endothelium under shear flow is mediated by E-selectin. Cancer Res. 64, 5261–5269 (2004).

    Article  PubMed  CAS  Google Scholar 

  127. Li, J. et al. Human fucosyltransferase 6 enables prostate cancer metastasis to bone. Br. J. Cancer 109, 3014–3022 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  128. Verras, M. & Sun, Z. Roles and regulation of Wnt signaling and beta-catenin in prostate cancer. Cancer Lett. 237, 22–32 (2006).

    Article  PubMed  CAS  Google Scholar 

  129. Lu, W. et al. Suppression of Wnt/beta-catenin signaling inhibits prostate cancer cell proliferation. Eur. J. Pharmacol. 602, 8–14 (2009).

    Article  PubMed  CAS  Google Scholar 

  130. Lennartsson, J. & Rönnstrand, L. The stem cell factor receptor/c-Kit as a drug target in cancer. Curr. Cancer Drug Targets 6, 65–75 (2006).

    Article  PubMed  CAS  Google Scholar 

  131. Regan, J. L. et al. c-Kit is required for growth and survival of the cells of origin of Brca1-mutation-associated breast cancer. Oncogene 31, 869–883 (2012).

    Article  PubMed  CAS  Google Scholar 

  132. Mainetti, L. E. et al. Bone-induced c-kit expression in prostate cancer: A driver of intraosseous tumor growth. Int. J. Cancer 136, 11–20 (2015).

    Article  PubMed  CAS  Google Scholar 

  133. Moro, L. et al. Loss of BRCA2 promotes prostate cancer cell invasion through up-regulation of matrix metalloproteinase-9. Cancer Sci. 99, 553–563 (2008).

    Article  PubMed  CAS  Google Scholar 

  134. Karayi, M. K. & Markham, A. F. Molecular biology of prostate cancer. Prostate Cancer Prostat. Dis. 7, 6–20 (2004).

    Article  CAS  Google Scholar 

  135. Bubendorf, L. et al. Metastatic patterns of prostate cancer: an autopsy study of 1,589 patients. Hum. Pathol. 31, 578–583 (2000).

    Article  PubMed  CAS  Google Scholar 

  136. Drake, M. T., Clarke, B. L. & Khosla, S. Bisphosphonates: mechanism of action and role in clinical practice. Mayo Clin. Proc. 83, 1032–1045 (2008).

    Article  PubMed  CAS  Google Scholar 

  137. Rogers, M. J., Crockett, J. C., Coxon, F. P. & Mönkkönen, J. Biochemical and molecular mechanisms of action of bisphosphonates. Bone 49, 34–41 (2011).

    Article  PubMed  CAS  Google Scholar 

  138. Stresing, V., Daubiné, F., Benzaid, I., Mönkkönen, H. & Clézardin, P. Bisphosphonates in cancer therapy. Cancer Lett. 257, 16–35 (2007).

    Article  PubMed  CAS  Google Scholar 

  139. Yang, M. et al. The bisphosphonate olpadronate inhibits skeletal prostate cancer progression in a green fluorescent protein nude mouse model. Clin. Cancer Res. 12, 2602–2606 (2006).

    Article  PubMed  CAS  Google Scholar 

  140. Tuomela, J. M., Valta, M. P., Väänänen, K. & Härkönen, P. L. Alendronate decreases orthotopic PC-3 prostate tumor growth and metastasis to prostate-draining lymph nodes in nude mice. BMC Cancer 8, 81 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  141. Stearns, M. E. & Wang, M. Alendronate blocks metalloproteinase secretion and bone collagen I release by PC-3 ML cells in SCID mice. Clin. Exp. Metastasis 16, 693–702 (1998).

    Article  PubMed  CAS  Google Scholar 

  142. Miwa, S. et al. The bisphosphonate YM529 inhibits osteolytic and osteoblastic changes and CXCR-4-induced invasion in prostate cancer. Cancer Res. 65, 8818–8825 (2005).

    Article  PubMed  CAS  Google Scholar 

  143. Berry, S., Waldron, T., Winquist, E. & Lukka, H. The use of bisphosphonates in men with hormone-refractory prostate cancer: a systematic review of randomized trials. Can. J. Urol. 13, 3180–3188 (2006).

    PubMed  Google Scholar 

  144. Dearnaley, D. P., Mason, M. D., Parmar, M. K., Sanders, K. & Sydes, M. R. Adjuvant therapy with oral sodium clodronate in locally advanced and metastatic prostate cancer: long-term overall survival results from the MRC PR04 and PR05 randomised controlled trials. Lancet Oncol. 10, 872–876 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  145. Brown, J. M. et al. Osteoprotegerin and rank ligand expression in prostate cancer. Urology 57, 611–616 (2001).

    Article  PubMed  CAS  Google Scholar 

  146. Anderson, D. M. et al. A homologue of the TNF receptor and its ligand enhance T cell growth and dendritic-cell function. Nature 390, 175–179 (1997).

    Article  PubMed  CAS  Google Scholar 

  147. Zhau, H. E. et al. Epithelial to mesenchymal transition (EMT) in human prostate cancer: lessons learned from ARCaP model. Clin. Exp. Metastasis 25, 601–610 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  148. Lacey, D. L. et al. Bench to bedside: elucidation of the OPG-RANK-RANKL pathway and the development of denosumab. Nat. Rev. Drug Discov. 11, 401–419 (2012).

    Article  PubMed  CAS  Google Scholar 

  149. Foltz, I. N., Gunasekaran, K. & King, C. T. Discovery and bio-optimization of human antibody therapeutics using the XenoMouse® transgenic mouse platform. Immunol. Rev. 270, 51–64 (2016).

    Article  PubMed  CAS  Google Scholar 

  150. Jakobovits, A., Amado, R. G., Yang, X., Roskos, L. & Schwab, G. From XenoMouse technology to panitumumab, the first fully human antibody product from transgenic mice. Nat. Biotechnol. 25, 1134–1143 (2007).

    Article  PubMed  CAS  Google Scholar 

  151. Kostenuik, P. J. et al. Denosumab, a fully human monoclonal antibody to RANKL, inhibits bone resorption and increases BMD in knock-in mice that express chimeric (murine/human) RANKL. J. Bone Miner. Res. 24, 182–195 (2009).

    Article  PubMed  CAS  Google Scholar 

  152. Smith, M. R. et al. Denosumab in men receiving androgen-deprivation therapy for prostate cancer. N. Engl. J. Med. 361, 745–755 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  153. Smith, M. R. et al. Denosumab and bone-metastasis-free survival in men with castration-resistant prostate cancer: results of a phase 3, randomised, placebo-controlled trial. Lancet 379, 39–46 (2012).

    Article  PubMed  CAS  Google Scholar 

  154. Ignatoski, K. M. W. et al. RANKL inhibition is an effective adjuvant for docetaxel in a prostate cancer bone metastases model. Prostate 68, 820–829 (2008).

    Article  PubMed  CAS  Google Scholar 

  155. Virk, M. S. et al. Influence of simultaneous targeting of the bone morphogenetic protein pathway and RANK/RANKL axis in osteolytic prostate cancer lesion in bone. Bone 44, 160–167 (2009).

    Article  PubMed  CAS  Google Scholar 

  156. Miller, R. E. et al. RANK ligand inhibition plus docetaxel improves survival and reduces tumor burden in a murine model of prostate cancer bone metastasis. Mol. Cancer Ther. 7, 2160–2169 (2008).

    Article  PubMed  CAS  Google Scholar 

  157. Fizazi, K. The role of Src in prostate cancer. Ann. Oncol. 18, 1765–1773 (2007).

    Article  PubMed  CAS  Google Scholar 

  158. Yeatman, T. J. A renaissance for SRC. Nat. Rev. Cancer 4, 470–480 (2004).

    Article  PubMed  CAS  Google Scholar 

  159. Slack, J. K. et al. Alterations in the focal adhesion kinase/Src signal transduction pathway correlate with increased migratory capacity of prostate carcinoma cells. Oncogene 20, 1152–1163 (2001).

    Article  PubMed  CAS  Google Scholar 

  160. Koreckij, T. et al. Dasatinib inhibits the growth of prostate cancer in bone and provides additional protection from osteolysis. Br. J. Cancer 101, 263–268 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  161. Yu, E. Y. et al. Phase II study of dasatinib in patients with metastatic castration-resistant prostate cancer. Clin. Cancer Res. 15, 7421–7428 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  162. Araujo, J. C. et al. Docetaxel and dasatinib or placebo in men with metastatic castration-resistant prostate cancer (READY): a randomised, double-blind phase 3 trial. Lancet Oncol. 14, 1307–1316 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  163. Yang, J. C. et al. Effect of the specific Src family kinase inhibitor saracatinib on osteolytic lesions using the PC-3 bone model. Mol. Cancer Ther. 9, 1629–1637 (2010).

    Article  PubMed  CAS  Google Scholar 

  164. US National Library of Medicine. ClinicalTrials.gov https://www.clinicaltrials.gov/ct2/show/NCT01267266 (2015).

  165. Posadas, E. M. et al. Saracatinib as a metastasis inhibitor in metastatic castration-resistant prostate cancer: a University of Chicago Phase 2 Consortium and DOD/PCF. Prostate Cancer Clinical Trials Consortium Study. Prostate 76, 286–293 (2016).

    PubMed  CAS  Google Scholar 

  166. Naidoo, A., Naidoo, K., Yende-zuma, N. & Gengiah, T. N. Peptidomimetic src/pretubulin inhibitor KX-01 alone and in combination with paclitaxel suppresses growth, metastasis in human ER/PR/HER2-negative tumor xenografts. Mol. Cancer Ther. 19, 161–169 (2012).

    Google Scholar 

  167. US National Library of Medicine. ClinicalTrials.gov https://www.clinicaltrials.gov/ct2/show/NCT01074138 (2016).

  168. Antonarakis, E. S. et al. A phase 2 study of KX2-391, an oral inhibitor of Src kinase and tubulin polymerization, in men with bone-metastatic castration-resistant prostate cancer. Cancer Chemother. Pharmacol. 71, 883–892 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  169. Rabbani, S. A., Valentino, M. L., Arakelian, A., Ali, S. & Boschelli, F. SKI-606 (Bosutinib) blocks prostate cancer invasion, growth, and metastasis in vitro and in vivo through regulation of genes involved in cancer growth and skeletal metastasis. Mol. Cancer Ther. 9, 1147–1157 (2010).

    Article  PubMed  CAS  Google Scholar 

  170. Tucker, G. C. Integrins: molecular targets in cancer therapy. Curr. Oncol. Rep. 8, 96–103 (2006).

    Article  PubMed  CAS  Google Scholar 

  171. Horton, M. A. The alpha v beta 3 integrin ‘vitronectin receptor’. Int. J. Biochem. Cell Biol. 29, 721–725 (1997).

    Article  PubMed  CAS  Google Scholar 

  172. Mulgrew, K. et al. Direct targeting of AvB3 integrin on tumor cells with a monoclonal antibody. Abegrin. Mol. Cancer Ther. 5, 3122–3129 (2006).

    Article  PubMed  CAS  Google Scholar 

  173. US National Library of Medicine. ClinicalTrials.gov https://www.clinicaltrials.gov/ct2/show/study/NCT00072930 (2008).

  174. Mestas, J. & Hughes, C. C. W. Of mice and not men: differences between mouse and human immunology. J. Immunol. 172, 2731–2738 (2004).

    Article  PubMed  CAS  Google Scholar 

  175. Hackam, D. G. & Redelmeier, D. A. Translation of research evidence from animals to humans. JAMA 296, 1727 (2006).

    Article  Google Scholar 

  176. Fu, J. et al. Autologous reconstitution of human cancer and immune system in vivo. Oncotarget 8, 2053–2068 (2017).

    PubMed  Google Scholar 

  177. Schaue, D., Koya, R. C., Liao, Y.-P., Ribas, A. & McBride, W. H. Immune rejection in a humanized model of murine prostate cancer. Anticancer Res. 30, 409–414 (2010).

    PubMed  Google Scholar 

  178. Roth, M. D. & Harui, A. Human tumor infiltrating lymphocytes cooperatively regulate prostate tumor growth in a humanized mouse model. J. Immunother. Cancer 3, 12 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  179. Wu, T. T. et al. Establishing human prostate cancer cell xenografts in bone: Induction of osteoblastic reaction by prostate-specific antigen-producing tumors in athymic and SCID/bg mice using LNCaP and lineage-derived metastatic sublines. Int. J. Cancer 77, 887–894 (1998).

    Article  PubMed  CAS  Google Scholar 

  180. Chu, L. W., Pettaway, C. A. & Liang, J. C. Genetic abnormalities specifically associated with varying metastatic potential of prostate cancer cell lines as detected by comparative genomic hybridization. Cancer Genet. Cytogenet. 127, 161–167 (2001).

    Article  PubMed  CAS  Google Scholar 

  181. Dudley, a C., Shih, S.-C., Cliffe, a R., Hida, K. & Klagsbrun, M. Attenuated p53 activation in tumour-associated stromal cells accompanies decreased sensitivity to etoposide and vincristine. Br. J. Cancer 99, 118–125 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  182. Horoszewicz, J. S. et al. The LNCaP cell line — a new model for studies on human prostatic carcinoma. Prog. Clin. Biol. Res. 37, 115–132 (1980).

    PubMed  CAS  Google Scholar 

  183. Jia, L. & Coetzee, G. A. Androgen receptor-dependent PSA expression in androgen-independent prostate cancer cells does not involve androgen receptor occupancy of the PSA locus. Cancer Res. 65, 8003–8008 (2005).

    Article  PubMed  CAS  Google Scholar 

  184. Gravina, G. L. et al. KPT-330, a potent and selective exportin-1 (XPO-1) inhibitor, shows antitumor effects modulating the expression of cyclin D1 and surviving in prostate cancer models. BMC Cancer 15, 941 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  185. Voigt, W. & Dunning, W. F. In vivo metabolism of testosterone-3 H in R-3327, an androgen-sensitive rat prostatic adenocarcinoma. Cancer Res. 34, 1447–1450 (1974).

    PubMed  CAS  Google Scholar 

  186. Newhall, K. R., Isaacs, J. T. & Wright, G. L. Dunning rat prostate tumors and cultured cell lines fail to express human prostate carcinoma-associated antigens. Prostate 17, 317–325 (1990).

    Article  PubMed  CAS  Google Scholar 

  187. Cooke, D. B., Quarmby, V. E., Mickey, D. D., Isaacs, J. T. & French, F. S. Oncogene expression in prostate cancer: Dunning R3327 rat dorsal prostatic adenocarcinoma system. Prostate 13, 263–272 (1988).

    Article  PubMed  CAS  Google Scholar 

  188. Isaacs, J. T. & Hukku, B. Nonrandom involvement of chromosome 4 in the progression of rat prostatic cancer. Prostate 13, 165–188 (1988).

    Article  PubMed  CAS  Google Scholar 

  189. Chekmareva, M. A. et al. Localization of prostate cancer metastasis-suppressor activity on human chromosome 17. Prostate 33, 271–280 (1997).

    Article  PubMed  CAS  Google Scholar 

  190. Pollard, M. Mestastatic adenocarcinoma of the prostate. Anim. Model. Hum. Dis. 86, 277–280 (1977).

    CAS  Google Scholar 

  191. Pollard, M., Luckert, P. H. & Scheu, J. Effects of diphosphonate and x-rays on bone lesions induced in rats by prostate cancer cells. Cancer 61, 2027–2032 (1988).

    Article  PubMed  CAS  Google Scholar 

  192. Boulanger, J., Reyes-Moreno, C. & Koutsilieris, M. Mediation of glucocorticoid receptor function by the activation of latent transforming growth factor beta 1 in MG-63 human osteosarcoma cells. Int. J. Cancer 61, 692–697 (1995).

    Article  PubMed  CAS  Google Scholar 

  193. Suckow, M. A., Wheeler, J. & Yan, M. PAIII prostate tumors express prostate specific antigen (PSA) in Lobund-Wistar rats. Can. J. Vet. Res. 73, 39–41 (2009).

    PubMed  PubMed Central  Google Scholar 

  194. Fisher, J. et al. An in vivo model of prostate carcinoma growth and invasion in bone. Cell Tissue Res. 307, 337–345 (2002).

    Article  PubMed  CAS  Google Scholar 

  195. Bonfil, R. D. et al. Prostate cancer-associated membrane type 1-matrix metalloproteinase: a pivotal role in bone response and intraosseous tumor growth. Am. J. Pathol. 170, 2100–2111 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  196. Zou, M. et al. Multiple metastases in a novel LNCaP model of human prostate cancer. Oncol. Rep. 30, 615–622 (2013).

    Article  PubMed  CAS  Google Scholar 

  197. Corey, E. et al. Establishment and characterization of osseous prostate cancer models: Intra-tibial injection of human prostate cancer cells. Prostate 52, 20–33 (2002).

    Article  PubMed  Google Scholar 

  198. Jantscheff, P. et al. Anti-metastatic effects of liposomal gemcitabine in a human orthotopic LNCaP prostate cancer xenograft model. Clin. Exp. Metastasis 26, 981–992 (2009).

    Article  PubMed  CAS  Google Scholar 

  199. Bi, X. et al. Prostate cancer metastases alter bone mineral and matrix composition independent of effects on bone architecture in mice — a quantitative study using microCT and Raman spectroscopy. Bone 56, 454–460 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  200. Kitagawa, Y. et al. Vascular endothelial growth factor contributes to prostate cancer-mediated osteoblastic activity. Cancer Res. 65, 10921–10929 (2005).

    Article  PubMed  CAS  Google Scholar 

  201. Havens, A. M. et al. An in vivo mouse model for human prostate cancer metastasis. Neoplasia 10, 371–380 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  202. Wang, N. et al. The frequency of osteolytic bone metastasis is determined by conditions of the soil, not the number of seeds; evidence from in vivo models of breast and prostate cancer. J. Exp. Clin. Cancer Res. 34, 124 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  203. Chu, K. et al. Cadherin-11 promotes the metastasis of prostate cancer cells to bone. Mol. Cancer Res. 6, 1259–1267 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  204. Schneider, A. et al. Bone turnover mediates preferential localization of prostate cancer in the skeleton. Endocrinology 146, 1727–1736 (2005).

    Article  PubMed  CAS  Google Scholar 

  205. Xu, S. et al. An EP4 antagonist ONO-AE3-208 suppresses cell invasion, migration, and metastasis of prostate cancer. Cell Biochem. Biophys. 70, 521–527 (2014).

    Article  PubMed  CAS  Google Scholar 

  206. Li, X. et al. Inhibitory effects of megakaryocytic cells in prostate cancer skeletal metastasis. J. Bone Miner. Res. 26, 125–134 (2011).

    Article  PubMed  CAS  Google Scholar 

  207. Winkelmann, C. T., Figueroa, S. D., Sieckman, G. L., Rold, T. L. & Hoffman, T. J. Non-invasive MicroCT imaging characterization and in vivo targeting of BB2 receptor expression of a PC-3 bone metastasis model. Mol. Imag. Biol. 14, 667–675 (2012).

    Article  Google Scholar 

  208. Angelucci, A. et al. Suppression of EGF-R signaling reduces the incidence of prostate cancer metastasis in nude mice. Endocr. Relat. Cancer 13, 197–210 (2006).

    Article  PubMed  CAS  Google Scholar 

  209. Margheri, F. et al. Effects of blocking urokinase receptor signaling by antisense oligonucleotides in a mouse model of experimental prostate cancer bone metastases. Gene Ther. 12, 702–714 (2005).

    Article  PubMed  CAS  Google Scholar 

  210. Jung, Y. et al. Prevalence of prostate cancer metastases after intravenous inoculation provides clues into the molecular basis of dormancy in the bone marrow microenvironment. Neoplasia 14, 429–439 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  211. Valta, M. P. et al. FGF-8 is involved in bone metastasis of prostate cancer. Int. J. Cancer 123, 22–31 (2008).

    Article  PubMed  CAS  Google Scholar 

  212. Zhang, Y. et al. Real-time GFP intravital imaging of the differences in cellular and angiogenic behavior of subcutaneous and orthotopic nude-mouse models of human PC-3 prostate cancer. J. Cell. Biochem. 117, 2546–2551 (2016).

    Article  PubMed  CAS  Google Scholar 

  213. Gamradt, S. C. et al. The effect of cyclooxygenase-2 (COX-2) inhibition on human prostate cancer induced osteoblastic and osteolytic lesions in bone. Anticancer Res. 25, 107–115 (2005).

    PubMed  CAS  Google Scholar 

  214. Whang, P. G., Schwarz, E. M., Gamradt, S. C., Dougall, W. C. & Lieberman, J. R. The effects of RANK blockade and osteoclast depletion in a model of pure osteoblastic prostate cancer metastasis in bone. J. Orthop. Res. 23, 1475–1483 (2005).

    Article  PubMed  CAS  Google Scholar 

  215. Yang, J. et al. Prostate cancer cells induce osteoblast differentiation through a Cbfa1-dependent pathway. Cancer Res. 61, 5652–5659 (2001).

    PubMed  CAS  Google Scholar 

  216. Mohamedali, K. A. et al. Inhibition of prostate tumor growth and bone remodeling by the vascular targeting agent VEGF121/rGel. Cancer Res. 66, 10919–10928 (2006).

    Article  PubMed  CAS  Google Scholar 

  217. Hsu, Y.-H. et al. Anti-IL-20 monoclonal antibody suppresses prostate cancer growth and bone osteolysis in murine models. PLoS ONE 10, e0139871 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  218. Shevrin, D. H., Kukreja, S. C., Ghosh, L. & Lad, T. E. Development of skeletal metastasis by human prostate cancer in athymic nude mice. Clin. Exp. Metastasis 6, 401–409 (1988).

    Article  PubMed  CAS  Google Scholar 

  219. Yang, M. et al. A fluorescent orthotopic bone metastasis model of human prostate cancer. Cancer Res. 59, 781–786 (1999).

    PubMed  CAS  Google Scholar 

  220. Raheem, O. et al. A novel patient-derived intra-femoral xenograft model of bone metastatic prostate cancer that recapitulates mixed osteolytic and osteoblastic lesions. J. Transl Med. 9, 185–168 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  221. Wise-Milestone, L. et al. Evaluating the effects of mixed osteolytic/osteoblastic metastasis on vertebral bone quality in a new rat model. J. Orthop. Res. 30, 817–823 (2012).

    Article  PubMed  Google Scholar 

  222. Thudi, N. K. et al. Zoledronic acid decreased osteolysis but not bone metastasis in a nude mouse model of canine prostate cancer with mixed bone lesions. Prostate 68, 1116–1125 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  223. McCabe, N. P., Madajka, M., Vasanji, A. & Byzova, T. V. Intraosseous injection of RM1 murine prostate cancer cells promotes rapid osteolysis and periosteal bone deposition. Clin. Exp. Metastasis 25, 581–590 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  224. Llorián-Salvador, M. et al. Hypernociceptive responses following the intratibial inoculation of RM1 prostate cancer cells in mice. Prostate 75, 70–83 (2015).

    Article  PubMed  CAS  Google Scholar 

  225. Hung, T.-T., Chan, J., Russell, P. J. & Power, C. A. Zoledronic acid preserves bone structure and increases survival but does not limit tumour incidence in a prostate cancer bone metastasis model. PLoS ONE 6, e19389 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  226. Yonou, H. et al. The bisphosphonate YM529 inhibits osteoblastic bone tumor proliferation of prostate cancer. Prostate 67, 999–1009 (2007).

    Article  PubMed  CAS  Google Scholar 

  227. Yonou, H. et al. Intraosseous growth of human prostate cancer in implanted adult human bone: relationship of prostate cancer cells to osteoclasts in osteoblastic metastatic lesions. Prostate 58, 406–413 (2004).

    Article  PubMed  Google Scholar 

  228. Nie, D. et al. Increased metastatic potential in human prostate carcinoma cells by over-expression of arachidonate 12-lipoxygenase. Clin. Exp. Metasis 20, 657–663 (2003).

    Article  CAS  Google Scholar 

  229. Hesami, P. et al. A humanized tissue-engineered in vivo model to dissect interactions between human prostate cancer cells and human bone. Clin. Exp. Metastasis 31, 435–446 (2014).

    Article  PubMed  CAS  Google Scholar 

  230. Thompson, T. C., Timme, T. L., Park, S. H., Yang, G. & Ren, C. Mouse prostate reconstitution model system: a series of in vivo and in vitro models for benign and malignant prostatic disease. Prostate 43, 248–254 (2000).

    Article  PubMed  CAS  Google Scholar 

  231. Proctor, J. W., Auclair, B. G. & Rudenstam, C. M. The distribution and fate of blood-borne 125IUdR-labelled tumour cells in immune syngeneic rats. Int. J. Cancer 18, 255–262 (1976).

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors’ research work was supported by the Prostate Cancer Canada's Rising Star Research Grant to H.S.L.

Author information

Authors and Affiliations

Authors

Contributions

All authors researched data for the article, wrote the manuscript, made substantial contributions to discussions of content, and edited the manuscript before submission.

Corresponding author

Correspondence to Hon S. Leong.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Intravasation

The migration of a cancer cell into a blood or lymphatic vessel from its primary site or the surrounding tissue.

Extravasation

The migration of a cancer cell out of the vasculature into a secondary site, typically bone for prostate cancer.

Metastatic cascade

The series of events describing the progression of cancer from a primary site to distant metastasis.

Cell lines

Populations of cells originally derived from living tissue but adapted to be grown in vitro indefinitely.

Patient-derived xenograft

(PDX). Tumour line derived from patient tissue that is usually maintained in vivo and retains natural tumour heterogeneity.

Epithelial-to-mesenchymal transition

(EMT). The evolution of a cancer cell into an invasive phenotype before metastasizing; often characterized based on the changes to cytoskeletal and adhesion proteins.

Dormancy

The ability of a cancer cell to remain in a latent, inactive state before the production of overt metastases.

Perivascular niche

A microenvironmental target adjacent to blood vessels that supports the long-term survival of specific cell types, including stem or progenitor cells.

Osteolytic lesions

Lesions characterized by the demineralization and destruction of bone.

Lateral tail vein

A commonly used vein on the lateral aspect of rodent tails used for the systematic inoculation of cancer cells; often produces lung metastases.

Intracardiac injections

Systematic inoculations of cancer cells by injection into the left ventricle of the heart; often used to initiate bone metastasis.

Osteoblastic lesions

Lesions characterized by the formation of mechanically weak woven bone.

Mouse prostate reconstitution

A model of prostate cancer involving the generation of a cancerous reconstituted prostate from fetal urogenital sinus tissue.

Subrenal capsule

A region surrounding the kidney where cells can be engrafted for the study of primary tumours; offers high take rate owing to high regional vascularity.

Orthotopic

A region where cells can be engrafted primarily for the study of primary tumours or local invasion; defined as being the region where the cell normally belongs, such as the prostate.

Tumour heterogeneity

A characteristic of tumours that are derived from more than one clonally expanded cell, giving them mixed populations of phenotypically different cells.

Transgenic mouse models

Spontaneous disease models generated by modifying expression of specific genes.

Bone implant models

Models that are often humanized disease models in which foreign mouse, human, or engineered bone tissue is engrafted subcutaneously into recipient mice.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Berish, R.B., Ali, A.N., Telmer, P.G. et al. Translational models of prostate cancer bone metastasis. Nat Rev Urol 15, 403–421 (2018). https://doi.org/10.1038/s41585-018-0020-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41585-018-0020-2

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer