Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

OPINION

Do dietary calcium and vitamin D matter in men with prostate cancer?

Abstract

Active surveillance (AS) is an attractive alternative to immediate treatment for men with low-risk prostate cancer. Thus, the identification of environmental factors that promote the progression of indolent disease towards aggressive stages is critical to optimize clinical management. Epidemiological studies suggest that calcium-rich diets contribute to an increased risk of developing prostate cancer and that vitamin D reduces this risk. However, the potential effect of these nutrients on the progression of early-stage prostate tumours is uncertain, as studies in this setting are scarce and have not provided unambiguous conclusions. By contrast, the results of a preclinical study from our own group demonstrate that a diet high in calcium dose-dependently accelerated the progression of early-stage prostate tumours and that dietary vitamin D prevented this effect. The extent to which the conclusions of preclinical and epidemiological studies support a role for calcium and vitamin D and the relevance of monitoring and adjustment of calcium and/or vitamin D intake in patients on AS require further investigation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Expression of CaSR, TRPC6, and proinflammatory cytokines in prostate and immune cells in models of three dietary contexts13 (upper panels) and sections (stained with haematoxylin and eosin) of prostate harvested from mice fed with corresponding diets (lower panels).

Similar content being viewed by others

References

  1. Siegel, R. L., Miller, K. D. & Jemal, A. Cancer Statistics, 2017. CA Cancer J. Clin. 67, 7–30 (2017).

    Article  PubMed  Google Scholar 

  2. Potosky, A. L., Miller, B. A., Albertsen, P. C. & Kramer, B. S. The role of increasing detection in the rising incidence of prostate cancer. JAMA 273, 548–552 (1995).

    Article  PubMed  CAS  Google Scholar 

  3. Skinner, H. G. & Schwartz, G. G. The relation of serum parathyroid hormone and serum calcium to serum levels of prostate-specific antigen: a population-based study. Cancer Epidemiol. Biomarkers Prev. 18, 2869–2873 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Aune, D. et al. Dairy products, calcium, and prostate cancer risk: a systematic review and meta-analysis of cohort studies. Am. J. Clin. Nutr. 101, 87–117 (2015).

    Article  PubMed  CAS  Google Scholar 

  5. Yang, E. S., Maiorino, C. A., Roos, B. A., Knight, S. R. & Burnstein, K. L. Vitamin D-mediated growth inhibition of an androgen-ablated LNCaP cell line model of human prostate cancer. Mol. Cell Endocrinol. 186, 69–79 (2002).

    Article  PubMed  CAS  Google Scholar 

  6. Moreno, J., Krishnan, A. V. & Feldman, D. Molecular mechanisms mediating the anti-proliferative effects of vitamin D in prostate cancer. J. Steroid Biochem. Mol. Biol. 97, 31–36 (2005).

    Article  PubMed  CAS  Google Scholar 

  7. Bao, B. Y., Yeh, S. D. & Lee, Y. F. 1alpha, 25-dihydroxyvitamin D3 inhibits prostate cancer cell invasion via modulation of selective proteases. Carcinogenesis 27, 32–42 (2006).

    Article  PubMed  CAS  Google Scholar 

  8. Sung, V. & Feldman, D. 1,25-Dihydroxyvitamin D3 decreases human prostate cancer cell adhesion and migration. Mol. Cell. Endocrinol. 164, 133–143 (2000).

    Article  PubMed  CAS  Google Scholar 

  9. Bao, B. Y., Yao, J. & Lee, Y. F. 1alpha, 25-dihydroxyvitamin D3 suppresses interleukin-8-mediated prostate cancer cell angiogenesis. Carcinogenesis 27, 1883–1893 (2006).

    Article  PubMed  CAS  Google Scholar 

  10. Giovannucci, E. Dietary influences of 1,25(OH)2 vitamin D in relation to prostate cancer: a hypothesis. Cancer Causes Control 9, 567–582 (1998).

    Article  PubMed  CAS  Google Scholar 

  11. Dell’Atti, L., Galosi, A. B. & Ippolito, C. Prostatic calculi detected in peripheral zone of the gland during a transrectal ultrasound biopsy can be significant predictors of prostate cancer. Arch. Ital. Urol. Androl. 88, 304–307 (2016).

    Article  PubMed  Google Scholar 

  12. Smolski, M., Turo, R., Whiteside, S., Bromage, S. & Collins, G. N. Prevalence of prostatic calcification subtypes and association with prostate cancer. Urology 85, 178–181 (2015).

    Article  PubMed  Google Scholar 

  13. Bernichtein, S. et al. Vitamin D3 prevents calcium-induced progression of early-stage prostate tumors by counteracting TRPC6 and calcium sensing receptor upregulation. Cancer Res. 77, 355–365 (2017).

    Article  PubMed  CAS  Google Scholar 

  14. Giovannucci, E., Liu, Y., Stampfer, M. J. & Willett, W. C. A prospective study of calcium intake and incident and fatal prostate cancer. Cancer Epidemiol. Biomarkers Prev. 15, 203–210 (2006).

    Article  PubMed  CAS  Google Scholar 

  15. Park, Y. et al. Calcium, dairy foods, and risk of incident and fatal prostate cancer: the NIH-AARP Diet and Health Study. Am. J. Epidemiol. 166, 1270–1279 (2007).

    Article  PubMed  Google Scholar 

  16. Bristow, S. M. et al. Calcium supplements and cancer risk: a meta-analysis of randomised controlled trials. Br. J. Nutr. 110, 1384–1393 (2013).

    Article  PubMed  CAS  Google Scholar 

  17. Rowland, G. W., Schwartz, G. G., John, E. M. & Ingles, S. A. Calcium intake and prostate cancer among African Americans: effect modification by vitamin D receptor calcium absorption genotype. J. Bone Miner. Res. 27, 187–194 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Giovannucci, E. et al. Calcium and fructose intake in relation to risk of prostate cancer. Cancer Res. 58, 442–447 (1998).

    PubMed  CAS  Google Scholar 

  19. Wright, M. E., Bowen, P., Virtamo, J., Albanes, D. & Gann, P. H. Estimated phytanic acid intake and prostate cancer risk: a prospective cohort study. Int. J. Cancer 131, 1396–1406 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Ahn, J. et al. Dairy products, calcium intake, and risk of prostate cancer in the prostate, lung, colorectal, and ovarian cancer screening trial. Cancer Epidemiol. Biomarkers Prev. 16, 2623–2630 (2007).

    Article  PubMed  CAS  Google Scholar 

  21. Allen, N. E. et al. Animal foods, protein, calcium and prostate cancer risk: the European Prospective Investigation into Cancer and Nutrition. Br. J. Cancer 98, 1574–1581 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Keum, N., Aune, D., Greenwood, D. C., Ju, W. & Giovannucci, E. L. Calcium intake and colorectal cancer risk: dose-response meta-analysis of prospective observational studies. Int. J. Cancer 135, 1940–1948 (2014).

    Article  PubMed  CAS  Google Scholar 

  23. Tantamango-Bartley, Y. et al. Independent associations of dairy and calcium intakes with colorectal cancers in the Adventist Health Study-2 cohort. Public Health Nutr. 20, 2577–2586 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Margolis, K. L. & Manson, J. E. Calcium supplements and cardiovascular disease risk: what do clinicians and patients need to know? Ann. Intern. Med. 165, 884–885 (2016).

    Article  PubMed  Google Scholar 

  25. Pettersson, A. et al. Milk and dairy consumption among men with prostate cancer and risk of metastases and prostate cancer death. Cancer Epidemiol. Biomarkers Prev. 21, 428–436 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Gilbert, R. et al. Associations of circulating and dietary vitamin D with prostate cancer risk: a systematic review and dose-response meta-analysis. Cancer Causes Control 22, 319–340 (2011).

    Article  PubMed  Google Scholar 

  27. Xu, Y. et al. Positive association between circulating 25-hydroxyvitamin D levels and prostate cancer risk: new findings from an updated meta-analysis. J. Cancer Res. Clin. Oncol. 140, 1465–1477 (2014).

    Article  PubMed  CAS  Google Scholar 

  28. Jackson, M. D. et al. Both serum 25-hydroxyvitamin D and calcium levels may increase the risk of incident prostate cancer in Caribbean men of African ancestry. Cancer Med. 4, 925–935 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Wong, Y. Y. et al. In older men, lower plasma 25-hydroxyvitamin D is associated with reduced incidence of prostate, but not colorectal or lung cancer. PLoS ONE 9, e99954 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Sawada, N. et al. Plasma 25-hydroxy vitamin D and subsequent prostate cancer risk in a nested Case-Control study in Japan: the JPHC study. Eur. J. Clin. Nutr. 71, 132–136 (2017).

    Article  PubMed  CAS  Google Scholar 

  31. Skaaby, T. et al. Prospective population-based study of the association between serum 25-hydroxyvitamin-D levels and the incidence of specific types of cancer. Cancer Epidemiol. Biomarkers Prev. 23, 1220–1229 (2014).

    Article  PubMed  CAS  Google Scholar 

  32. Layne, T. M. et al. Serum 25-hydroxyvitamin D, vitamin D binding protein, and prostate cancer risk in black men. Cancer 123, 2698–2704 (2017).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  33. Deschasaux, M. et al. A prospective study of plasma 25-hydroxyvitamin D concentration and prostate cancer risk. Br. J. Nutr. 115, 305–314 (2016).

    Article  PubMed  CAS  Google Scholar 

  34. Paller, C. J. et al. Risk of prostate cancer in African-American men: evidence of mixed effects of dietary quercetin by serum vitamin D status. Prostate 75, 1376–1383 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Kristal, A. R. et al. Plasma vitamin D and prostate cancer risk: results from the Selenium and Vitamin E Cancer Prevention Trial. Cancer Epidemiol. Biomarkers Prev. 23, 1494–1504 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Tuohimaa, P. et al. Both high and low levels of blood vitamin D are associated with a higher prostate cancer risk: a longitudinal, nested case-control study in the Nordic countries. Int. J. Cancer 108, 104–108 (2004).

    Article  PubMed  CAS  Google Scholar 

  37. Schenk, J. M. et al. Serum 25-hydroxyvitamin D concentrations and risk of prostate cancer: results from the Prostate Cancer Prevention Trial. Cancer Epidemiol. Biomarkers Prev. 23, 1484–1493 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Ross, A. C. et al. The 2011 report on dietary reference intakes for calcium and vitamin D from the Institute of Medicine: what clinicians need to know. J. Clin. Endocrinol. Metab. 96, 53–58 (2011).

    Article  PubMed  CAS  Google Scholar 

  39. Garland, C. F. & Gorham, E. D. Dose-response of serum 25-hydroxyvitamin D in association with risk of colorectal cancer: a meta-analysis. J. Steroid Biochem. Mol. Biol. 168, 1–8 (2017).

    Article  PubMed  CAS  Google Scholar 

  40. Vaughan-Shaw, P. G. et al. The impact of vitamin D pathway genetic variation and circulating 25-hydroxyvitamin D on cancer outcome: systematic review and meta-analysis. Br. J. Cancer 116, 1092–1110 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Brandstedt, J., Almquist, M., Manjer, J. & Malm, J. Vitamin D, PTH, and calcium in relation to survival following prostate cancer. Cancer Causes Control 27, 669–677 (2016).

    Article  PubMed  Google Scholar 

  42. Mondul, A. M., Weinstein, S. J., Moy, K. A., Mannisto, S. & Albanes, D. Circulating 25-hydroxyvitamin D and prostate cancer survival. Cancer Epidemiol. Biomarkers Prev. 25, 665–669 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Marshall, D. T. et al. Vitamin D3 supplementation at 4000 international units per day for one year results in a decrease of positive cores at repeat biopsy in subjects with low-risk prostate cancer under active surveillance. J. Clin. Endocrinol. Metab. 97, 2315–2324 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Beer, T. M. & Myrthue, A. Calcitriol in cancer treatment: from the lab to the clinic. Mol. Cancer Ther. 3, 373–381 (2004).

    PubMed  CAS  Google Scholar 

  45. Trump, D. L. et al. Anti-tumor activity of calcitriol: pre-clinical and clinical studies. J. Steroid Biochem. Mol. Biol. 89–90, 519–526 (2004).

    Article  PubMed  CAS  Google Scholar 

  46. Medioni, J. et al. Phase I safety and pharmacodynamic of inecalcitol, a novel VDR agonist with docetaxel in metastatic castration-resistant prostate cancer patients. Clin. Cancer Res. 20, 4471–4477 (2014).

    Article  PubMed  CAS  Google Scholar 

  47. Ray, R. et al. Effect of dietary vitamin D and calcium on the growth of androgen-insensitive human prostate tumor in a murine model. Anticancer Res. 32, 727–731 (2012).

    PubMed  PubMed Central  CAS  Google Scholar 

  48. Swami, S., Krishnan, A. V. & Feldman, D. Vitamin D metabolism and action in the prostate: implications for health and disease. Mol. Cell. Endocrinol. 347, 61–69 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Ittmann, M. et al. Animal models of human prostate cancer: the consensus report of the New York meeting of the Mouse Models of Human Cancers Consortium Prostate Pathology Committee. Cancer Res. 73, 2718–2736 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Kovalenko, P. L. et al. Dietary vitamin D and vitamin D receptor level modulate epithelial cell proliferation and apoptosis in the prostate. Cancer Prev. Res. 4, 1617–1625 (2011).

    Article  CAS  Google Scholar 

  51. Mordan-McCombs, S. et al. Tumor progression in the LPB-Tag transgenic model of prostate cancer is altered by vitamin D receptor and serum testosterone status. J. Steroid Biochem. Mol. Biol. 121, 368–371 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Banach-Petrosky, W. et al. Vitamin D inhibits the formation of prostatic intraepithelial neoplasia in Nkx3.1;Pten mutant mice. Clin. Cancer Res. 12, 5895–5901 (2006).

    Article  PubMed  CAS  Google Scholar 

  53. Bernichtein, S. et al. High milk consumption does not affect prostate tumor progression in two mouse models of benign and neoplastic lesions. PLoS ONE 10, e0125423 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Capiod, T. The need for calcium channels in cell proliferation. Recent Patents Anti-Cancer Drug Discov. 8, 4–17 (2013).

    Article  CAS  Google Scholar 

  55. Whitfield, J. F. Calcium signals and cancer. Crit. Rev. Oncog. 3, 55–90 (1992).

    PubMed  CAS  Google Scholar 

  56. Capiod, T. Extracellular calcium has multiple targets to control cell proliferation. Adv. Exp. Med. Biol. 898, 133–156 (2016).

    Article  PubMed  CAS  Google Scholar 

  57. Brown, E. M. et al. Cloning and characterization of an extracellular Ca(2+)-sensing receptor from bovine parathyroid. Nature 366, 575–580 (1993).

    Article  PubMed  CAS  Google Scholar 

  58. Riccardi, D. & Kemp, P. J. The calcium-sensing receptor beyond extracellular calcium homeostasis: conception, development, adult physiology, and disease. Annu. Rev. Physiol. 74, 271–297 (2012).

    Article  PubMed  CAS  Google Scholar 

  59. Sheinin, Y. et al. Immunocytochemical localization of the extracellular calcium-sensing receptor in normal and malignant human large intestinal mucosa. J. Histochem. Cytochem. 48, 595–602 (2000).

    Article  PubMed  CAS  Google Scholar 

  60. Haven, C. J., van Puijenbroek, M., Karperien, M., Fleuren, G. J. & Morreau, H. Differential expression of the calcium sensing receptor and combined loss of chromosomes 1q and 11q in parathyroid carcinoma. J. Pathol. 202, 86–94 (2004).

    Article  PubMed  CAS  Google Scholar 

  61. Mateo-Lozano, S., Garcia, M., Rodriguez-Hernandez, C. J. & de Torres, C. Regulation of differentiation by calcium-sensing receptor in normal and tumoral developing nervous system. Front. Physiol. 7, 169 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  62. Joeckel, E. et al. High calcium concentration in bones promotes bone metastasis in renal cell carcinomas expressing calcium-sensing receptor. Mol. Cancer 13, 42 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Mihai, R., Stevens, J., McKinney, C. & Ibrahim, N. B. Expression of the calcium receptor in human breast cancer — a potential new marker predicting the risk of bone metastases. Eur. J. Surg. Oncol. 32, 511–515 (2006).

    Article  PubMed  CAS  Google Scholar 

  64. Ahearn, T. U. et al. Calcium sensing receptor tumor expression and lethal prostate cancer progression. J. Clin. Endocrinol. Metab. 101, 2520–2527 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Colella, M., Gerbino, A., Hofer, A. M. & Curci, S. Recent advances in understanding the extracellular calcium-sensing receptor. F1000Res 5, 2535 (2016).

    Article  CAS  Google Scholar 

  66. Mamillapalli, R., VanHouten, J., Zawalich, W. & Wysolmerski, J. Switching of G-protein usage by the calcium-sensing receptor reverses its effect on parathyroid hormone-related protein secretion in normal versus malignant breast cells. J. Biol. Chem. 283, 24435–24447 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Fiorio Pla, A. & Gkika, D. Emerging role of TRP channels in cell migration: from tumor vascularization to metastasis. Front. Physiol. 4, 311 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  68. Thebault, S. et al. Differential role of transient receptor potential channels in Ca2+ entry and proliferation of prostate cancer epithelial cells. Cancer Res. 66, 2038–2047 (2006).

    Article  PubMed  CAS  Google Scholar 

  69. Yue, D., Wang, Y., Xiao, J. Y., Wang, P. & Ren, C. S. Expression of TRPC6 in benign and malignant human prostate tissues. Asian J. Androl 11, 541–547 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  70. Olszak, I. T. et al. Extracellular calcium elicits a chemokinetic response from monocytes in vitro and in vivo. J. Clin. Invest. 105, 1299–1305 (2000).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  71. Hendy, G. N. & Canaff, L. Calcium-sensing receptor, proinflammatory cytokines and calcium homeostasis. Semin. Cell Dev. Biol. 49, 37–43 (2016).

    Article  PubMed  CAS  Google Scholar 

  72. Bornefalk, E. et al. Regulation of interleukin-6 secretion from mononuclear blood cells by extracellular calcium. J. Bone Miner. Res. 12, 228–233 (1997).

    Article  PubMed  CAS  Google Scholar 

  73. Canaff, L., Zhou, X. & Hendy, G. N. The proinflammatory cytokine, interleukin-6, up-regulates calcium-sensing receptor gene transcription via Stat1/3 and Sp1/3. J. Biol. Chem. 283, 13586–13600 (2008).

    Article  PubMed  CAS  Google Scholar 

  74. Cifuentes, M. et al. Calcium sensing receptor activation elevates proinflammatory factor expression in human adipose cells and adipose tissue. Mol. Cell. Endocrinol. 361, 24–30 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  75. Giangreco, A. A. et al. Differential expression and regulation of vitamin D hydroxylases and inflammatory genes in prostate stroma and epithelium by 1,25-dihydroxyvitamin D in men with prostate cancer and an in vitro model. J. Steroid Biochem. Mol. Biol. 148, 156–165 (2015).

    Article  PubMed  CAS  Google Scholar 

  76. Zhang, Y. et al. Vitamin D inhibits monocyte/macrophage proinflammatory cytokine production by targeting MAPK phosphatase-1. J. Immunol. 188, 2127–2135 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  77. De Marzo, A. M. et al. Inflammation in prostate carcinogenesis. Nat. Rev. Cancer 7, 256–269 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  78. Xie, D. D. et al. Low vitamin D status is associated with inflammation in patients with prostate cancer. Oncotarget 8, 22076–22085 (2017).

    PubMed  PubMed Central  Google Scholar 

  79. Tennakoon, S., Aggarwal, A. & Kallay, E. The calcium-sensing receptor and the hallmarks of cancer. Biochim. Biophys. Acta 1863, 1398–1407 (2016).

    Article  PubMed  CAS  Google Scholar 

  80. Hagenau, T. et al. Global vitamin D levels in relation to age, gender, skin pigmentation and latitude: an ecologic meta-regression analysis. Osteoporos Int. 20, 133–140 (2009).

    Article  PubMed  CAS  Google Scholar 

  81. Palacios, C. & Gonzalez, L. Is vitamin D deficiency a major global public health problem? J. Steroid Biochem. Mol. Biol. 144, 138–145 (2014).

    Article  PubMed  CAS  Google Scholar 

  82. Hilger, J. et al. A systematic review of vitamin D status in populations worldwide. Br. J. Nutr. 111, 23–45 (2014).

    Article  PubMed  CAS  Google Scholar 

  83. Lassemillante, A. C., Doi, S. A., Hooper, J. D., Prins, J. B. & Wright, O. R. Prevalence of osteoporosis in prostate cancer survivors II: a meta-analysis of men not on androgen deprivation therapy. Endocrine 50, 344–354 (2015).

    Article  PubMed  CAS  Google Scholar 

  84. Lassemillante, A. C., Doi, S. A., Hooper, J. D., Prins, J. B. & Wright, O. R. Prevalence of osteoporosis in prostate cancer survivors: a meta-analysis. Endocrine 45, 370–381 (2014).

    Article  PubMed  CAS  Google Scholar 

  85. Wang, A. et al. Risk of fracture in men with prostate cancer on androgen deprivation therapy: a population-based cohort study in New Zealand. BMC Cancer 15, 837 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  86. Holick, M. F. et al. Evaluation, treatment, and prevention of vitamin D deficiency: an Endocrine Society clinical practice guideline. J. Clin. Endocrinol. Metab. 96, 1911–1930 (2011).

    Article  PubMed  CAS  Google Scholar 

  87. United States Department of Agriculture. USDA national nutrient database for standard reference release 28. USDA Food Composition Databases http://ndb.nal.usda.gov/ndb/foods (2015).

  88. Singhal, S., Baker, R. D. & Baker, S. S. A. Comparison of the nutritional value of cow’s milk and nondairy beverages. J. Pediatr. Gastroenterol. Nutr. 64, 799–805 (2017).

    Article  PubMed  CAS  Google Scholar 

  89. Brown, E. M. & MacLeod, R. J. Extracellular calcium sensing and extracellular calcium signaling. Physiol. Rev. 81, 239–297 (2001).

    Article  PubMed  CAS  Google Scholar 

  90. Nemeth, E. F. Calcimimetic and calcilytic drugs: just for parathyroid cells? Cell Calcium 35, 283–289 (2004).

    Article  PubMed  CAS  Google Scholar 

  91. Conigrave, A. D. & Hampson, D. R. Broad-spectrum L-amino acid sensing by class 3 G-protein-coupled receptors. Trends Endocrinol. Metab. 17, 398–407 (2006).

    Article  PubMed  CAS  Google Scholar 

  92. Conigrave, A. D., Mun, H. C. & Lok, H. C. Aromatic L-amino acids activate the calcium-sensing receptor. J. Nutr. 137, (Suppl. 1), 1524S–1527S (2007).

    Article  PubMed  CAS  Google Scholar 

  93. Brennan, S. C. et al. Receptor expression modulates calcium-sensing receptor mediated intracellular Ca2+ mobilization. Endocrinology 156, 1330–1342 (2015).

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the Association pour la Recherche sur les Tumeurs de la Prostate (ARTP), the Institut Européen d’Expertise en Physiologie (IEEP), INSERM, the Centre National de la Recherche Scientifique (CNRS), and the University Paris Descartes for funding support of this project. They also thank the numerous colleagues who participated in the preclinical study described herein and L. Sackmann Sala for critical reading of the manuscript. T.C., N.B.D., N.P., and V.G. are members of the French Network for Nutrition and Cancer Research (NACRe network, team 63).

Author information

Authors and Affiliations

Authors

Contributions

V.G., T.C., N.P., and J.-C.S. researched data for the article. All authors made substantial contributions to the discussion of content. V.G., T.C., N.B.D., and J.-C.S. wrote the manuscript, and V.G., T.C., N.B.D., and J.-C.S. reviewed and edited the manuscript before submission.

Corresponding author

Correspondence to Vincent Goffin.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Capiod, T., Barry Delongchamps, N., Pigat, N. et al. Do dietary calcium and vitamin D matter in men with prostate cancer?. Nat Rev Urol 15, 453–461 (2018). https://doi.org/10.1038/s41585-018-0015-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41585-018-0015-z

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer