Review Article | Published:

Personalization of prostate cancer therapy through phosphoproteomics

Nature Reviews Urologyvolume 15pages483497 (2018) | Download Citation

Abstract

Castration-resistant prostate cancer (CRPC) remains incurable despite the approval of several new treatments. Identification of new biomarkers and therapeutic targets to enable personalization of CRPC therapy, with the aim of maximizing therapeutic responses and minimizing toxicity in patients, is urgently needed. Prostate cancer progression and therapeutic resistance are frequently driven by aberrantly activated kinase signalling pathways that are amenable to pharmacological inhibition. Personalized phosphoproteomics, which enables the analysis of signalling networks in individual tumours, is a promising approach to advance personalized therapy by discovering biomarkers of pathway activity and clinically actionable targets. Several technologies for global and targeted phosphoproteomic analysis exist, each with its own strengths and shortcomings. Global discovery phosphoproteomics is predominantly conducted using liquid chromatography–tandem mass spectrometry coupled with data-dependent or data-independent acquisition technologies. Multiplexed targeted phosphoproteomics can be divided into platforms based on mass spectrometry or antibodies, including selected or parallel reaction monitoring and triggered by offset, multiplexed, accurate mass, high-resolution, absolute quantification (known as TOMAHAQ) or forward-phase or reverse-phase protein arrays, respectively. Several obstacles still need to be overcome before the full potential of phosphoproteomics can be realized in routine clinical practice, but a future phosphoproteomics-centric trans-omic profiling approach should enable optimized personalized CRPC management through improved biomarkers and targeted treatments.

Key points

  • To improve outcomes of patients with castration-resistant prostate cancer, identification of new biomarkers and therapeutic targets is needed to enable personalized management with maximized therapeutic responses and minimized toxicity.

  • Aberrantly activated kinase signalling frequently drives prostate cancer progression and therapeutic resistance but might be amenable to pharmacological inhibition.

  • Phosphoproteomics approaches that enable the analysis of signalling networks in individual tumours are a promising approach to advance personalized therapy by discovering biomarkers of pathway activity and clinically actionable targets.

  • Phosphoproteomic analysis can be performed on a global discovery or a targeted level, employing methods based on untargeted liquid chromatography–tandem mass spectrometry, or on targeted mass spectrometry or antibody detection, respectively.

  • Current obstacles to the routine clinical use of phosphoproteomics include preanalytical variation, tumour heterogeneity, analysis sensitivity, availability of high-quality phosphosite-specific antibodies, and absolute quantification of kinase pathway activity.

  • A future phosphoproteomics-centric trans-omic profiling approach should enable optimized personalized prostate cancer management through improved biomarkers and targeted treatments.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Additional information

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

References

  1. 1.

    Wong, M. C. et al. Global incidence and mortality for prostate cancer: analysis of temporal patterns and trends in 36 countries. Eur. Urol. 70, 862–874 (2016).

  2. 2.

    Komura, K. et al. Current treatment strategies for advanced prostate cancer. Int. J. Urol. 25, 220–231 (2018).

  3. 3.

    Smith, M. R. et al. Apalutamide treatment and metastasis-free survival in prostate cancer. N. Engl. J. Med. https://doi.org/10.1056/NEJMoa1715546 (2018).

  4. 4.

    Ramalingam, S., Ramamurthy, V. P. & Njar, V. C. O. Dissecting major signaling pathways in prostate cancer development and progression: mechanisms and novel therapeutic targets. J. Steroid Biochem. Mol. Biol. 166, 16–27 (2017).

  5. 5.

    Siegel, R. L., Miller, K. D. & Jemal, A. Cancer statistics, 2018. CA Cancer J. Clin. 68, 7–30 (2018).

  6. 6.

    Fakhrejahani, F., Madan, R. A. & Dahut, W. L. Management options for biochemically recurrent prostate cancer. Curr. Treat. Opt. Oncol. 18, 26 (2017).

  7. 7.

    Zhou, Y., Bolton, E. C. & Jones, J. O. Androgens and androgen receptor signaling in prostate tumorigenesis. J. Mol. Endocrinol. 54, R15–29 (2015).

  8. 8.

    Harris, W. P., Mostaghel, E. A., Nelson, P. S. & Montgomery, B. Androgen deprivation therapy: progress in understanding mechanisms of resistance and optimizing androgen depletion. Nat. Clin. Pract. Urol. 6, 76–85 (2009).

  9. 9.

    Mahon, K. L., Henshall, S. M., Sutherland, R. L. & Horvath, L. G. Pathways of chemotherapy resistance in castration-resistant prostate cancer. Endocr. Relat. Cancer 18, R103–123 (2011).

  10. 10.

    Scher, H. I. & Sawyers, C. L. Biology of progressive, castration-resistant prostate cancer: directed therapies targeting the androgen-receptor signaling axis. J. Clin. Oncol. 23, 8253–8261 (2005).

  11. 11.

    Kahn, B., Collazo, J. & Kyprianou, N. Androgen receptor as a driver of therapeutic resistance in advanced prostate cancer. Int. J. Biol. Sci. 10, 588–595 (2014).

  12. 12.

    de Bono, J. S. et al. Abiraterone and increased survival in metastatic prostate cancer. N. Engl. J. Med. 364, 1995–2005 (2011).

  13. 13.

    Scher, H. I. et al. Increased survival with enzalutamide in prostate cancer after chemotherapy. N. Engl. J. Med. 367, 1187–1197 (2012).

  14. 14.

    Wadosky, K. M. & Koochekpour, S. Molecular mechanisms underlying resistance to androgen deprivation therapy in prostate cancer. Oncotarget 7, 64447–64470 (2016).

  15. 15.

    Kantoff, P. W. et al. Sipuleucel-T immunotherapy for castration-resistant prostate cancer. N. Engl. J. Med. 363, 411–422 (2010).

  16. 16.

    de Bono, J. S. et al. Prednisone plus cabazitaxel or mitoxantrone for metastatic castration-resistant prostate cancer progressing after docetaxel treatment: a randomised open-label trial. Lancet 376, 1147–1154 (2010).

  17. 17.

    Smith, M. R. et al. Denosumab in men receiving androgen-deprivation therapy for prostate cancer. N. Engl. J. Med. 361, 745–755 (2009).

  18. 18.

    Parker, C. et al. Alpha emitter radium-223 and survival in metastatic prostate cancer. N. Engl. J. Med. 369, 213–223 (2013).

  19. 19.

    Watson, P. A., Arora, V. K. & Sawyers, C. L. Emerging mechanisms of resistance to androgen receptor inhibitors in prostate cancer. Nat. Rev. Cancer 15, 701–711 (2015).

  20. 20.

    Halabi, S. et al. Updated prognostic model for predicting overall survival in first-line chemotherapy for patients with metastatic castration-resistant prostate cancer. J. Clin. Oncol. 32, 671–677 (2014).

  21. 21.

    Coutinho, I., Day, T. K., Tilley, W. D. & Selth, L. A. Androgen receptor signaling in castration-resistant prostate cancer: a lesson in persistence. Endocr. Relat. Cancer 23, T179–T197 (2016).

  22. 22.

    US National Library of Medicine. ClinicalTrials.gov http://www.clinicaltrials.gov/ct2/show/NCT02799602 (2018).

  23. 23.

    US National Library of Medicine. ClinicalTrials.gov http://www.clinicaltrials.gov/ct2/show/NNCT02438007 (2018).

  24. 24.

    Bluemn, E. G. et al. Androgen receptor pathway-independent prostate cancer is sustained through FGF signaling. Cancer Cell 32, 474–489.e6 (2017).

  25. 25.

    Brennen, W. N. & Isaacs, J. T. Cellular origin of androgen receptor pathway-independent prostate cancer and implications for therapy. Cancer Cell 32, 399–401 (2017).

  26. 26.

    Nakazawa, M., Paller, C. & Kyprianou, N. Mechanisms of therapeutic resistance in prostate cancer. Curr. Oncol. Rep. 19, 13 (2017).

  27. 27.

    Vlachostergios, P. J., Puca, L. & Beltran, H. Emerging variants of castration-resistant prostate cancer. Curr. Oncol. Rep. 19, 32 (2017).

  28. 28.

    Davies, A. H., Beltran, H. & Zoubeidi, A. Cellular plasticity and the neuroendocrine phenotype in prostate cancer. Nat. Rev. Urol. https://doi.org/10.1038/nrurol.2018.22 (2018).

  29. 29.

    Gharwan, H. & Groninger, H. Kinase inhibitors and monoclonal antibodies in oncology: clinical implications. Nat. Rev. Clin. Oncol. 13, 209–227 (2016).

  30. 30.

    Hunter, T. Protein kinases and phosphatases: the yin and yang of protein phosphorylation and signaling. Cell 80, 225–236 (1995).

  31. 31.

    Brognard, J. & Hunter, T. Protein kinase signaling networks in cancer. Curr. Opin. Genet. Dev. 21, 4–11 (2011).

  32. 32.

    Manning, G., Whyte, D. B., Martinez, R., Hunter, T. & Sudarsanam, S. The protein kinase complement of the human genome. Science 298, 1912–1934 (2002).

  33. 33.

    Chen, M. J., Dixon, J. E. & Manning, G. Genomics and evolution of protein phosphatases. Sci. Signal. 10, eaag1796 (2017).

  34. 34.

    Gross, S., Rahal, R., Stransky, N., Lengauer, C. & Hoeflich, K. P. Targeting cancer with kinase inhibitors. J. Clin. Invest. 125, 1780–1789 (2015).

  35. 35.

    Rodrigues, D. N. et al. The molecular underpinnings of prostate cancer: impacts on management and pathology practice. J. Pathol. 241, 173–182 (2017).

  36. 36.

    Gururajan, M. et al. SRC family kinase FYN promotes the neuroendocrine phenotype and visceral metastasis in advanced prostate cancer. Oncotarget 6, 44072–44083 (2015).

  37. 37.

    Chakraborty, P. K. et al. G protein-coupled receptor kinase GRK5 phosphorylates moesin and regulates metastasis in prostate cancer. Cancer Res. 74, 3489–3500 (2014).

  38. 38.

    Pavese, J. M. et al. Mitogen-activated protein kinase kinase 4 (MAP2K4) promotes human prostate cancer metastasis. PLoS ONE 9, e102289 (2014).

  39. 39.

    Faltermeier, C. M. et al. Functional screen identifies kinases driving prostate cancer visceral and bone metastasis. Proc. Natl Acad. Sci. USA 113, E172–E181 (2016).

  40. 40.

    Sang, M. et al. GRK3 is a direct target of CREB activation and regulates neuroendocrine differentiation of prostate cancer cells. Oncotarget 7, 45171–45185 (2016).

  41. 41.

    Craft, N., Shostak, Y., Carey, M. & Sawyers, C. L. A mechanism for hormone-independent prostate cancer through modulation of androgen receptor signaling by the HER-2/neu tyrosine kinase. Nat. Med. 5, 280–285 (1999).

  42. 42.

    Lee, J. T. Jr., Steelman, L. S. & McCubrey, J. A. Phosphatidylinositol 3′-kinase activation leads to multidrug resistance protein-1 expression and subsequent chemoresistance in advanced prostate cancer cells. Cancer Res. 64, 8397–8404 (2004).

  43. 43.

    Ha, S. et al. Phosphorylation of the androgen receptor by PIM1 in hormone refractory prostate cancer. Oncogene 32, 3992–4000 (2013).

  44. 44.

    Lee, B. Y. et al. Phosphoproteomic profiling identifies focal adhesion kinase as a mediator of docetaxel resistance in castrate-resistant prostate cancer. Mol. Cancer Ther. 13, 190–201 (2014).

  45. 45.

    Mahajan, K. et al. ACK1/TNK2 regulates histone H4 Tyr88-phosphorylation and AR gene expression in castration-resistant prostate cancer. Cancer Cell 31, 790–803.e8 (2017).

  46. 46.

    Choudhury, A. D. et al. Castration resistance in prostate cancer is mediated by the kinase NEK6. Cancer Res. 77, 753–765 (2017).

  47. 47.

    Druker, B. J. et al. Five-year follow-up of patients receiving imatinib for chronic myeloid leukemia. N. Engl. J. Med. 355, 2408–2417 (2006).

  48. 48.

    Santhosh, S., Kumar, P., Ramprasad, V. & Chaudhuri, A. Evolution of targeted therapies in cancer: opportunities and challenges in the clinic. Future Oncol. 11, 279–293 (2015).

  49. 49.

    Klaeger, S. et al. Chemical proteomics reveals ferrochelatase as a common off-target of kinase inhibitors. ACS Chem. Biol. 11, 1245–1254 (2016).

  50. 50.

    Ferguson, F. M. & Gray, N. S. Kinase inhibitors: the road ahead. Nat. Rev. Drug Discov. https://doi.org/10.1038/nrd.2018.21 (2018).

  51. 51.

    Twardowski, P. W. et al. A phase II trial of dasatinib in patients with metastatic castration-resistant prostate cancer treated previously with chemotherapy. Anticancer Drugs 24, 743–753 (2013).

  52. 52.

    Smith, M. R. et al. Cabozantinib in chemotherapy-pretreated metastatic castration-resistant prostate cancer: results of a phase II nonrandomized expansion study. J. Clin. Oncol. 32, 3391–3399 (2014).

  53. 53.

    Araujo, J. C. et al. Docetaxel and dasatinib or placebo in men with metastatic castration-resistant prostate cancer (READY): a randomised, double-blind phase 3 trial. Lancet Oncol. 14, 1307–1316 (2013).

  54. 54.

    Smith, M. et al. Phase III study of cabozantinib in previously treated metastatic castration-resistant prostate cancer: COMET-1. J. Clin. Oncol. 34, 3005–3013 (2016).

  55. 55.

    Roychowdhury, S. & Chinnaiyan, A. M. Translating cancer genomes and transcriptomes for precision oncology. CA Cancer J. Clin. 66, 75–88 (2016).

  56. 56.

    Kotelnikova, E. A., Pyatnitskiy, M., Paleeva, A., Kremenetskaya, O. & Vinogradov, D. Practical aspects of NGS-based pathways analysis for personalized cancer science and medicine. Oncotarget 7, 52493–52516 (2016).

  57. 57.

    Cayer, D. M., Nazor, K. L. & Schork, N. J. Mission critical: the need for proteomics in the era of next-generation sequencing and precision medicine. Hum. Mol. Genet. 25, R182–R189 (2016).

  58. 58.

    Lawrence, M. S. et al. Mutational heterogeneity in cancer and the search for new cancer-associated genes. Nature 499, 214–218 (2013).

  59. 59.

    The AACR Project GENIE Consortium. AACR Project GENIE: powering precision medicine through an international consortium. Cancer Discov. https://doi.org/10.1158/2159-8290.CD-17-0151 (2017).

  60. 60.

    Robinson, D. et al. Integrative clinical genomics of advanced prostate cancer. Cell 161, 1215–1228 (2015).

  61. 61.

    Califano, A. & Alvarez, M. J. The recurrent architecture of tumour initiation, progression and drug sensitivity. Nat. Rev. Cancer 17, 116–130 (2017).

  62. 62.

    Sun, S. et al. Comprehensive analysis of protein glycosylation by solid-phase extraction of N-linked glycans and glycosite-containing peptides. Nat. Biotechnol. 34, 84–88 (2016).

  63. 63.

    Elia, A. E. et al. Quantitative proteomic atlas of ubiquitination and acetylation in the DNA damage response. Mol. Cell 59, 867–881 (2015).

  64. 64.

    Yang, W., Di Vizio, D., Kirchner, M., Steen, H. & Freeman, M. R. Proteome scale characterization of human S-acylated proteins in lipid raft-enriched and non-raft membranes. Mol. Cell Proteom. 9, 54–70 (2010).

  65. 65.

    Popovic, D., Vucic, D. & Dikic, I. Ubiquitination in disease pathogenesis and treatment. Nat. Med. 20, 1242–1253 (2014).

  66. 66.

    Vajaria, B. N. & Patel, P. S. Glycosylation: a hallmark of cancer? Glycoconj. J. 34, 147–156 (2017).

  67. 67.

    Nguyen, A. T. et al. Organelle specific O-glycosylation drives MMP14 activation, tumor growth, and metastasis. Cancer Cell 32, 639–653.e6 (2017).

  68. 68.

    Pinho, S. S. & Reis, C. A. Glycosylation in cancer: mechanisms and clinical implications. Nat. Rev. Cancer 15, 540–555 (2015).

  69. 69.

    Di Martile, M., Del Bufalo, D. & Trisciuoglio, D. The multifaceted role of lysine acetylation in cancer: prognostic biomarker and therapeutic target. Oncotarget 7, 55789–55810 (2016).

  70. 70.

    Blanc, R. S. & Richard, S. Arginine methylation: the coming of age. Mol. Cell 65, 8–24 (2017).

  71. 71.

    Resh, M. D. Palmitoylation of proteins in cancer. Biochem. Soc. Trans. 45, 409–416 (2017).

  72. 72.

    Gu, H. et al. Quantitative profiling of post-translational modifications by immunoaffinity enrichment and LC-MS/MS in cancer serum without immunodepletion. Mol. Cell Proteom. 15, 692–702 (2016).

  73. 73.

    Shen, Z. et al. Global-scale profiling of differential expressed lysine acetylated proteins in colorectal cancer tumors and paired liver metastases. J. Proteom. 142, 24–32 (2016).

  74. 74.

    Song, Y. et al. Quantitative global proteome and lysine succinylome analyses provide insights into metabolic regulation and lymph node metastasis in gastric cancer. Sci. Rep. 7, 42053 (2017).

  75. 75.

    Thygesen, C., Boll, I., Finsen, B., Modzel, M. & Larsen, M. R. Characterizing disease-associated changes in post-translational modifications by mass spectrometry. Expert Rev. Proteom. 15, 245–258 (2018).

  76. 76.

    Aebersold, R. & Mann, M. Mass-spectrometric exploration of proteome structure and function. Nature 537, 347–355 (2016).

  77. 77.

    von Stechow, L., Francavilla, C. & Olsen, J. V. Recent findings and technological advances in phosphoproteomics for cells and tissues. Expert Rev. Proteom. 12, 469–487 (2015).

  78. 78.

    Riley, N. M. & Coon, J. J. Phosphoproteomics in the age of rapid and deep proteome profiling. Anal. Chem. 88, 74–94 (2016).

  79. 79.

    Yates, J. R. 3rd, Eng, J. K., McCormack, A. L. & Schieltz, D. Method to correlate tandem mass spectra of modified peptides to amino acid sequences in the protein database. Anal. Chem. 67, 1426–1436 (1995).

  80. 80.

    Purvine, S., Eppel, J. T., Yi, E. C. & Goodlett, D. R. Shotgun collision-induced dissociation of peptides using a time of flight mass analyzer. Proteomics 3, 847–850 (2003).

  81. 81.

    Venable, J. D., Dong, M. Q., Wohlschlegel, J., Dillin, A. & Yates, J. R. Automated approach for quantitative analysis of complex peptide mixtures from tandem mass spectra. Nat. Methods 1, 39–45 (2004).

  82. 82.

    Gillet, L. C. et al. Targeted data extraction of the MS/MS spectra generated by data-independent acquisition: a new concept for consistent and accurate proteome analysis. Mol. Cell. Proteom. 11, O111.016717 (2012).

  83. 83.

    Egertson, J. D. et al. Multiplexed MS/MS for improved data-independent acquisition. Nat. Methods 10, 744–746 (2013).

  84. 84.

    Gillet, L. C., Leitner, A. & Aebersold, R. Mass spectrometry applied to bottom-up proteomics: entering the high-throughput era for hypothesis testing. Annu. Rev. Anal. Chem. 9, 449–472 (2016).

  85. 85.

    Cox, J. et al. Accurate proteome-wide label-free quantification by delayed normalization and maximal peptide ratio extraction, termed MaxLFQ. Mol. Cell. Proteom. 13, 2513–2526 (2014).

  86. 86.

    Zhang, B., Kall, L. & Zubarev, R. A. DeMix-Q: quantification-centered data processing workflow. Mol. Cell. Proteom. 15, 1467–1478 (2016).

  87. 87.

    Kelstrup, C. D. et al. Performance evaluation of the Q Exactive HF-X for shotgun proteomics. J. Proteome Res. 17, 727–738 (2018).

  88. 88.

    Chen, L., Fang, B., Giorgianni, F., Gingrich, J. R. & Beranova-Giorgianni, S. Investigation of phosphoprotein signatures of archived prostate cancer tissue specimens via proteomic analysis. Electrophoresis 32, 1984–1991 (2011).

  89. 89.

    Drake, J. M. et al. Metastatic castration-resistant prostate cancer reveals intrapatient similarity and interpatient heterogeneity of therapeutic kinase targets. Proc. Natl Acad. Sci. USA 110, E4762–4769 (2013).

  90. 90.

    Drake, J. M. et al. Phosphoproteome integration reveals patient-specific networks in prostate cancer. Cell 166, 1041–1054 (2016).

  91. 91.

    Casado, P. et al. Kinase-substrate enrichment analysis provides insights into the heterogeneity of signaling pathway activation in leukemia cells. Sci. Signal 6, rs6 (2013).

  92. 92.

    Rudolph, J. D., de Graauw, M., van de Water, B., Geiger, T. & Sharan, R. Elucidation of signaling pathways from large-scale phosphoproteomic data using protein interaction networks. Cell Syst. 3, 585–593.e3 (2016).

  93. 93.

    Paull, E. O. et al. Discovering causal pathways linking genomic events to transcriptional states using Tied Diffusion Through Interacting Events (TieDIE). Bioinformatics 29, 2757–2764 (2013).

  94. 94.

    Tuncbag, N. et al. Network-based interpretation of diverse high-throughput datasets through the omics integrator software package. PLoS Comput. Biol. 12, e1004879 (2016).

  95. 95.

    Shannon, P. et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 13, 2498–2504 (2003).

  96. 96.

    Zhang, H. et al. Integrated proteogenomic characterization of human high-grade serous ovarian cancer. Cell 166, 755–765 (2016).

  97. 97.

    Mertins, P. et al. Proteogenomics connects somatic mutations to signalling in breast cancer. Nature 534, 55–62 (2016).

  98. 98.

    McClinch, K. et al. Small molecule activators of protein phosphatase 2A for the treatment of castration-resistant prostate cancer. Cancer Res. https://doi.org/10.1158/0008-5472.CAN-17-0123 (2018).

  99. 99.

    Gioia, R. et al. Quantitative phosphoproteomics revealed interplay between Syk and Lyn in the resistance to nilotinib in chronic myeloid leukemia cells. Blood 118, 2211–2221 (2011).

  100. 100.

    Dazert, E. et al. Quantitative proteomics and phosphoproteomics on serial tumor biopsies from a sorafenib-treated HCC patient. Proc. Natl Acad. Sci. USA 113, 1381–1386 (2016).

  101. 101.

    Zhang, X. et al. Quantitative tyrosine phosphoproteomics of epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor-treated lung adenocarcinoma cells reveals potential novel biomarkers of therapeutic response. Mol. Cell. Proteom. 16, 891–910 (2017).

  102. 102.

    Lange, V., Picotti, P., Domon, B. & Aebersold, R. Selected reaction monitoring for quantitative proteomics: a tutorial. Mol. Syst. Biol. 4, 222 (2008).

  103. 103.

    Peterson, A. C., Russell, J. D., Bailey, D. J., Westphall, M. S. & Coon, J. J. Parallel reaction monitoring for high resolution and high mass accuracy quantitative, targeted proteomics. Mol. Cell. Proteom. 11, 1475–1488 (2012).

  104. 104.

    Gallien, S. et al. Targeted proteomic quantification on quadrupole-orbitrap mass spectrometer. Mol. Cell. Proteom. 11, 1709–1723 (2012).

  105. 105.

    Domon, B. & Gallien, S. Recent advances in targeted proteomics for clinical applications. Proteom. Clin. Appl. 9, 423–431 (2015).

  106. 106.

    Faria, S. S. et al. A timely shift from shotgun to targeted proteomics and how it can be groundbreaking for cancer research. Front. Oncol. 7, 13 (2017).

  107. 107.

    Shi, T. et al. Multiplexed targeted mass spectrometry assays for prostate cancer-associated urinary proteins. Oncotarget 8, 101887–101898 (2017).

  108. 108.

    Thomas, S. N. et al. Multiplexed targeted mass spectrometry-based assays for the quantification of N-linked glycosite-containing peptides in serum. Anal. Chem. 87, 10830–10838 (2015).

  109. 109.

    Gamez-Pozo, A. et al. Protein phosphorylation analysis in archival clinical cancer samples by shotgun and targeted proteomics approaches. Mol. Biosyst 7, 2368–2374 (2011).

  110. 110.

    Narumi, R. et al. A strategy for large-scale phosphoproteomics and SRM-based validation of human breast cancer tissue samples. J. Proteome Res. 11, 5311–5322 (2012).

  111. 111.

    Chen, I. H. et al. Phosphoproteins in extracellular vesicles as candidate markers for breast cancer. Proc. Natl Acad. Sci. USA 114, 3175–3180 (2017).

  112. 112.

    Erickson, B. K. et al. A strategy to combine sample multiplexing with targeted proteomics assays for high-throughput protein signature characterization. Mol. Cell 65, 361–370 (2017).

  113. 113.

    Erickson, B. K. et al. in 65th ASMS Conference on Mass Spectrometry and Allied Topics 36 (Indianapolis, IN, USA, 2017).

  114. 114.

    Addona, T. A. et al. Multi-site assessment of the precision and reproducibility of multiple reaction monitoring-based measurements of proteins in plasma. Nat. Biotechnol. 27, 633–641 (2009).

  115. 115.

    Gahoi, N., Ray, S. & Srivastava, S. Array-based proteomic approaches to study signal transduction pathways: prospects, merits and challenges. Proteomics 15, 218–231 (2015).

  116. 116.

    Hu, B. et al. Discovering cancer biomarkers from clinical samples by protein microarrays. Proteom. Clin. Appl. 9, 98–110 (2015).

  117. 117.

    Knezevic, V. et al. Proteomic profiling of the cancer microenvironment by antibody arrays. Proteomics 1, 1271–1278 (2001).

  118. 118.

    Alhamdani, M. S., Schroder, C. & Hoheisel, J. D. Oncoproteomic profiling with antibody microarrays. Genome Med. 1, 68 (2009).

  119. 119.

    Miller, J. C. et al. Antibody microarray profiling of human prostate cancer sera: antibody screening and identification of potential biomarkers. Proteomics 3, 56–63 (2003).

  120. 120.

    Gustavsson, H., Jennbacken, K., Welen, K. & Damber, J. E. Altered expression of genes regulating angiogenesis in experimental androgen-independent prostate cancer. Prostate 68, 161–170 (2008).

  121. 121.

    Shafer, M. W., Mangold, L., Partin, A. W. & Haab, B. B. Antibody array profiling reveals serum TSP-1 as a marker to distinguish benign from malignant prostatic disease. Prostate 67, 255–267 (2007).

  122. 122.

    Vazquez-Martin, A., Oliveras-Ferraros, C., Colomer, R., Brunet, J. & Menendez, J. A. Low-scale phosphoproteome analyses identify the mTOR effector p70 S6 kinase 1 as a specific biomarker of the dual-HER1/HER2 tyrosine kinase inhibitor lapatinib (Tykerb) in human breast carcinoma cells. Ann. Oncol. 19, 1097–1109 (2008).

  123. 123.

    Agarwal, S. et al. Association of constitutively activated hepatocyte growth factor receptor (Met) with resistance to a dual EGFR/Her2 inhibitor in non-small-cell lung cancer cells. Br. J. Cancer 100, 941–949 (2009).

  124. 124.

    Wei, W. et al. Single-cell phosphoproteomics resolves adaptive signaling dynamics and informs targeted combination therapy in glioblastoma. Cancer Cell 29, 563–573 (2016).

  125. 125.

    El-Haibi, C. P. et al. Antibody microarray analysis of signaling networks regulated by Cxcl13 and Cxcr5 in prostate cancer. J. Proteom. Bioinform. 5, 177–184 (2012).

  126. 126.

    Santos, J. et al. Uncovering potential downstream targets of oncogenic GRPR overexpression in prostate carcinomas harboring ETS rearrangements. Oncoscience 2, 497–507 (2015).

  127. 127.

    Paweletz, C. P. et al. Reverse phase protein microarrays which capture disease progression show activation of pro-survival pathways at the cancer invasion front. Oncogene 20, 1981–1989 (2001).

  128. 128.

    Grubb, R. L. et al. Signal pathway profiling of prostate cancer using reverse phase protein arrays. Proteomics 3, 2142–2146 (2003).

  129. 129.

    Grubb, R. L. et al. Pathway biomarker profiling of localized and metastatic human prostate cancer reveal metastatic and prognostic signatures. J. Proteome Res. 8, 3044–3054 (2009).

  130. 130.

    Cancer Genome Atlas Research, N. The molecular taxonomy of primary prostate cancer. Cell 163, 1011–1025 (2015).

  131. 131.

    Zhang, Y. et al. A pan-cancer proteogenomic atlas of PI3K/AKT/mTOR pathway alterations. Cancer Cell 31, 820–832.e3 (2017).

  132. 132.

    Mertins, P. et al. Ischemia in tumors induces early and sustained phosphorylation changes in stress kinase pathways but does not affect global protein levels. Mol. Cell Proteom. 13, 1690–1704 (2014).

  133. 133.

    Espina, V. et al. Tissue is alive: new technologies are needed to address the problems of protein biomarker pre-analytical variability. Proteom. Clin. Appl. 3, 874–882 (2009).

  134. 134.

    Wolf, C. et al. Determination of phosphorylated proteins in tissue specimens requires high-quality samples collected under stringent conditions. Histopathology 64, 431–444 (2014).

  135. 135.

    Dubochet, J. The physics of rapid cooling and its implications for cryoimmobilization of cells. Methods Cell Biol. 79, 7–21 (2007).

  136. 136.

    Mueller, C. et al. One-step preservation of phosphoproteins and tissue morphology at room temperature for diagnostic and research specimens. PLoS ONE 6, e23780 (2011).

  137. 137.

    Svensson, M. et al. Heat stabilization of the tissue proteome: a new technology for improved proteomics. J. Proteome Res. 8, 974–981 (2009).

  138. 138.

    Gundisch, S. et al. The PAXgene® tissue system preserves phosphoproteins in human tissue specimens and enables comprehensive protein biomarker research. PLoS ONE 8, e60638 (2013).

  139. 139.

    Ahmed, M. M. & Gardiner, K. J. Preserving protein profiles in tissue samples: differing outcomes with and without heat stabilization. J. Neurosci. Methods 196, 99–106 (2011).

  140. 140.

    Rountree, C. B. et al. Clinical application for the preservation of phospho-proteins through in-situ tissue stabilization. Proteome Sci. 8, 61 (2010).

  141. 141.

    Ergin, B. et al. Proteomic analysis of PAXgene-fixed tissues. J. Proteome Res. 9, 5188–5196 (2010).

  142. 142.

    Mathieson, W. et al. A critical evaluation of the PAXgene tissue fixation system: morphology, immunohistochemistry, molecular biology, and proteomics. Am. J. Clin. Pathol. 146, 25–40 (2016).

  143. 143.

    Tolkach, Y. & Kristiansen, G. The heterogeneity of prostate cancer: a practical approach. Pathobiology 85, 90–98 (2018).

  144. 144.

    Anderson, N. L. et al. Mass spectrometric quantitation of peptides and proteins using Stable Isotope Standards and Capture by Anti-Peptide Antibodies (SISCAPA). J. Proteome Res. 3, 235–244 (2004).

  145. 145.

    Humphrey, S. J., Azimifar, S. B. & Mann, M. High-throughput phosphoproteomics reveals in vivo insulin signaling dynamics. Nat. Biotechnol. 33, 990–995 (2015).

  146. 146.

    Giudice, G. & Petsalaki, E. Proteomics and phosphoproteomics in precision medicine: applications and challenges. Brief Bioinform. https://doi.org/10.1093/bib/bbx141 (2017).

  147. 147.

    Kurosawa, N. et al. Novel method for the high-throughput production of phosphorylation site-specific monoclonal antibodies. Sci. Rep. 6, 25174 (2016).

Download references

Acknowledgements

The authors gratefully acknowledge financial support from the Cedars-Sinai Precision Health Award (W.Y.), the Steven Spielberg Discovery Fund in Prostate Cancer Research (M.R.F.), and the James F. Hardymon Endowment at the University of Kentucky (N.K.).

Author information

Affiliations

  1. Division of Cancer Biology and Therapeutics, Departments of Surgery and Biomedical Sciences, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA

    • Wei Yang
    •  & Michael R. Freeman
  2. Departments of Urology, Molecular and Cellular Biochemistry, Pathology and Toxicology and Cancer Biology, University of Kentucky College of Medicine, Lexington, KY, USA

    • Natasha Kyprianou

Authors

  1. Search for Wei Yang in:

  2. Search for Michael R. Freeman in:

  3. Search for Natasha Kyprianou in:

Contributions

N.K. and W.Y. researched data for the article and made substantial contributions to discussion of the article content. All authors wrote and reviewed and/or edited the manuscript before submission.

Competing interests

The authors declare no competing interests.

Corresponding author

Correspondence to Natasha Kyprianou.

About this article

Publication history

Published

DOI

https://doi.org/10.1038/s41585-018-0014-0