Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Regulation of masculinization: androgen signalling for external genitalia development

Abstract

The biology of masculinization is fundamentally important for understanding the embryonic developmental processes that are involved in the development of the male reproductive tract, external genitalia, and also the tumorigenesis of prostate cancer. The molecular mechanisms of masculinization are of interest to many researchers and clinicians involved in varied fields, including molecular developmental biology, cancer research, endocrinology, and urology. Androgen signalling is mediated by the nuclear androgen receptor, which has fundamental roles in masculinization during development. Various modes of androgen signalling, including 5α-dihydrotestosterone-induced regulation of mesenchymal cell proliferation, have been observed in masculinization. Such regulation is essential for regulating urogenital tissue development, including external genitalia development. Androgen-induced genes, such as MAFB, which belongs to the activator protein 1 (AP-1) superfamily of genes, have essential roles in male urethral formation, and disruption of its signalling can interfere with urethral formation, which often results in hypospadias. Another AP-1 superfamily gene, ATF3, could be responsible for some instances of hypospadias in humans. These androgen-dependent signals and downstream events are crucial for not only developmental processes but also processes of diseases such as hypospadias and prostate cancer.

Key points

  • The molecular mechanisms of masculinization are fundamental topics of many fields of science, including molecular developmental biology, cancer research, endocrinology, and urology.

  • One of the activator protein 1 (AP-1) superfamily genes, MAFB, has been identified as an androgen target gene and has essential roles in male-type urethral formation.

  • Mesenchymal cell proliferation can be regulated by testosterone and 5α-dihydrotestosterone via the androgen receptor.

  • Putatively similar mesenchymal cell characteristics in embryos and prostate-cancer-associated fibroblasts have been described, including the identification of AP-1 superfamily genes.

  • Genes such as ATF3 that are involved in various signalling pathways are affected by oestrogen receptor-mediated cellular processes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The processes of masculinization of the embryonic external genitalia by Mafb.
Fig. 2: ATF3 gene and upstream signals in hypospadias.

Similar content being viewed by others

References

  1. Nordenskjöld, A. et al. Screening for mutations in candidate genes for hypospadias. Urol. Res. 27, 49–55 (1999).

    Article  PubMed  Google Scholar 

  2. Beleza-Meireles, A. et al. FGFR2, FGF8, FGF10 and BMP7 as candidate genes for hypospadias. Eur. J. Hum. Genet. 15, 405–410 (2007).

    Article  PubMed  CAS  Google Scholar 

  3. Murashima, A., Kishigami, S., Thomson, A. & Yamada, G. Androgens and mammalian male reproductive tract development. Biochim. Biophys. Acta 1849, 163–170 (2015).

    Article  PubMed  CAS  Google Scholar 

  4. Ahmed, S. F. & Hughes, I. A. The genetics of male undermasculinization. Clin. Endocrinol. 56, 1–18 (2002).

    Article  CAS  Google Scholar 

  5. Doehnert, U., Bertelloni, S., Werner, R., Dati, E. & Hiort, O. Characteristic features of reproductive hormone profiles in late adolescent and adult females with complete androgen insensitivity syndrome. Sex. Dev. 9, 69–74 (2015).

    Article  PubMed  CAS  Google Scholar 

  6. Yamada, G., Satoh, Y., Baskin, L. S. & Cunha, G. R. Cellular and molecular mechanisms of development of the external genitalia. Differentiation 71, 445–460 (2003).

    Article  PubMed  Google Scholar 

  7. Omori, A. et al. Essential roles of epithelial bone morphogenetic protein signaling during prostatic development. Endocrinology 155, 2534–2544 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Ashley, G. R., Grace, O. C., Vanpoucke, G. & Thomson, A. A. Identification of ephrinb1 expression in prostatic mesenchyme and a role for ephb-ephrinb signalling in prostate development. Differentiation 80, 89–98 (2010).

    Article  PubMed  CAS  Google Scholar 

  9. Thomson, A. A. Mesenchymal mechanisms in prostate organogenesis. Differentiation 76, 587–598 (2008).

    Article  PubMed  CAS  Google Scholar 

  10. Kasper, S. et al. Development, progression, and androgen-dependence of prostate tumors in probasin-large T antigen transgenic mice: a model for prostate cancer. Lab Invest. 78, 319–333 (1998).

    PubMed  CAS  Google Scholar 

  11. Yamada, G. et al. Molecular genetic cascades for external genitalia formation: an emerging organogenesis program. Dev. Dyn. 235, 1738–1752 (2006).

    Article  PubMed  CAS  Google Scholar 

  12. Murakami, R. & Mizuno, T. Proximal-distal sequence of development of the skeletal tissues in the penis of rat and the inductive effect of epithelium. J. Embryol. Exp. Morphol. 92, 133–143 (1986).

    PubMed  CAS  Google Scholar 

  13. Suzuki, H., Suzuki, K. & Yamada, G. Systematic analyses of murine masculinization processes based on genital sex differentiation parameters. Dev. Growth Differ. 57, 639–647 (2015).

    Article  PubMed  CAS  Google Scholar 

  14. Lyon, M. F. & Hawkes, S. G. X-Linked gene for testicular feminization in the mouse. Nature 227, 1217–1219 (1970).

    Article  PubMed  CAS  Google Scholar 

  15. Ipulan, L. A. et al. Investigation of sexual dimorphisms through mouse models and hormone/hormone-disruptor treatments. Differentiation 91, 78–89 (2016).

    Article  PubMed  CAS  Google Scholar 

  16. Tsai, M. Y. et al. Differential effects of spermatogenesis and fertility in mice lacking androgen receptor in individual testis cells. Proc. Natl Acad. Sci. USA 103, 18975–18980 (2006).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Wang, R. S., Yeh, S., Tzeng, C. R. & Chang, C. Androgen receptor roles in spermatogenesis and fertility: lessons from testicular cell-specific androgen receptor knockout mice. Endocr. Rev. 30, 119–132 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Chang, C. et al. Infertility with defective spermatogenesis and hypotestosteronemia in male mice lacking the androgen receptor in Sertoli cells. Proc. Natl Acad. Sci. USA 101, 6876–6881 (2004).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. De Gendt, K. et al. A Sertoli cell-selective knockout of the androgen receptor causes spermatogenic arrest in meiosis. Proc. Natl Acad. Sci. USA 101, 1327–1332 (2004).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Holdcraft, R. W. & Braun, R. E. Androgen receptor function is required in Sertoli cells for the terminal differentiation of haploid spermatids. Development 131, 459–467 (2004).

    Article  PubMed  CAS  Google Scholar 

  21. Miyagawa, S. et al. Genetic interactions of the androgen and Wnt/beta-catenin pathways for the masculinization of external genitalia. Mol. Endocrinol. 23, 871–880 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Sajjad, Y. Development of the genital ducts and external genitalia in the early human embryo. J. Obstet. Gynaecol. Res. 36, 929–937 (2010).

    Article  PubMed  Google Scholar 

  23. Baskin, L. S., Himes, K. & Colborn, T. Hypospadias and endocrine disruption: is there a connection? Environ. Health Perspect. 109, 1175–1183 (2001).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Baskin, L. S., Erol, A., Li, Y. W. & Cunha, G. R. Anatomical studies of hypospadias. J. Urol. 160, 1108–1115; discussion 1137 (1998).

  25. Baskin, L. S. et al. Urethral seam formation and hypospadias. Cell Tissue Res. 305, 379–387 (2001).

    Article  PubMed  CAS  Google Scholar 

  26. Cox, K. et al. Shorter anogenital and anoscrotal distances correlate with the severity of hypospadias: a prospective study. J. Pediatr. Urol. 13, 57.e1–57.e5 (2016).

    Article  Google Scholar 

  27. Beleza-Meireles, A. et al. Activating transcription factor 3: a hormone responsive gene in the etiology of hypospadias. Eur. J. Endocrinol. 158, 729–739 (2008).

    Article  PubMed  CAS  Google Scholar 

  28. Ahmed, S. F. et al. UK guidance on the initial evaluation of an infant or an adolescent with a suspected disorder of sex development. Clin. Endocrinol. 75, 12–26 (2011).

    Article  Google Scholar 

  29. Utsch, B., Albers, N. & Ludwig, M. Genetic and molecular aspects of hypospadias. Eur. J. Pediatr. Surg. 14, 297–302 (2004).

    Article  PubMed  CAS  Google Scholar 

  30. Phillips, T. R., Wright, D. K., Gradie, P. E., Johnston, L. A. & Pask, A. J. A. Comprehensive atlas of the adult mouse penis. Sex. Dev. 9, 162–172 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Kojima, Y., Kohri, K. & Hayashi, Y. Genetic pathway of external genitalia formation and molecular etiology of hypospadias. J. Pediatr. Urol. 6, 346–354 (2010).

    Article  PubMed  Google Scholar 

  32. Kaftanovskaya, E. M. et al. Cryptorchidism in mice with an androgen receptor ablation in gubernaculum testis. Mol. Endocrinol. 26, 598–607 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Zheng, Z., Armfield, B. A. & Cohn, M. J. Timing of androgen receptor disruption and estrogen exposure underlies a spectrum of congenital penile anomalies. Proc. Natl Acad. Sci. USA 112, E7194–E7203 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Welsh, M. et al. Identification in rats of a programming window for reproductive tract masculinization, disruption of which leads to hypospadias and cryptorchidism. J. Clin. Invest. 118, 1479–1490 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Welsh, M., Suzuki, H. & Yamada, G. The masculinization programming window. Endocr. Dev. 27, 17–27 (2014).

    Article  PubMed  Google Scholar 

  36. Suzuki, H., Matsushita, S., Suzuki, K. & Yamada, G. 5α-Dihydrotestosterone negatively regulates cell proliferation of the periurethral ventral mesenchyme during urethral tube formation in the murine male genital tubercle. Andrology 5, 146–152 (2017).

    Article  PubMed  CAS  Google Scholar 

  37. Ipulan, L. A. et al. Nonmyocytic androgen receptor regulates the sexually dimorphic development of the embryonic bulbocavernosus muscle. Endocrinology 155, 2467–2479 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Welsh, M., Saunders, P. T. & Sharpe, R. M. The critical time window for androgen-dependent development of the Wolffian duct in the rat. Endocrinology 148, 3185–3195 (2007).

    Article  PubMed  CAS  Google Scholar 

  39. Karimian, A., Ahmadi, Y. & Yousefi, B. Multiple functions of p21 in cell cycle, apoptosis and transcriptional regulation after DNA damage. DNA Repair 42, 63–71 (2016).

    Article  PubMed  CAS  Google Scholar 

  40. Lu, S., Liu, M., Epner, D. E., Tsai, S. Y. & Tsai, M. J. Androgen regulation of the cyclin-dependent kinase inhibitor p21 gene through an androgen response element in the proximal promoter. Mol. Endocrinol. 13, 376–384 (1999).

    Article  PubMed  CAS  Google Scholar 

  41. Wilson, J. D. The critical role of androgens in prostate development. Endocrinol. Metab. Clin. North Am. 40, 577–590 (2011).

    Article  PubMed  CAS  Google Scholar 

  42. Veyssière, G. et al. [Sexual organogenesis and circulating androgens in the rabbit fetus. Study after active immunization of mothers against testosterone (author’s transl)]. Arch. Anat. Microsc. Morphol. Exp. 69, 17–28 (1980).

    PubMed  Google Scholar 

  43. Mahendroo, M. S. & Russell, D. W. Male and female isoenzymes of steroid 5alpha-reductase. Rev. Reprod. 4, 179–183 (1999).

    Article  PubMed  CAS  Google Scholar 

  44. Suzuki, K. et al. Sexually dimorphic expression of Mafb regulates masculinization of the embryonic urethral formation. Proc. Natl Acad. Sci. USA 111, 16407–16412 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Pfaff, D. W. Hormones, Brain, and Behavior (Academic Press, 2009).

  46. Rahman, M., Miyamoto, H. & Chang, C. Androgen receptor coregulators in prostate cancer: mechanisms and clinical implications. Clin. Cancer Res. 10, 2208–2219 (2004).

    Article  PubMed  CAS  Google Scholar 

  47. Montgomery, R. B. et al. Maintenance of intratumoral androgens in metastatic prostate cancer: a mechanism for castration-resistant tumor growth. Cancer Res. 68, 4447–4454 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Soto, A. M. et al. Variants of the human prostate LNCaP cell line as tools to study discrete components of the androgen-mediated proliferative response. Oncol. Res. 7, 545–558 (1995).

    PubMed  CAS  Google Scholar 

  49. Heisler, L. E. et al. Androgen-dependent cell cycle arrest and apoptotic death in PC-3 prostatic cell cultures expressing a full-length human androgen receptor. Mol. Cell Endocrinol. 126, 59–73 (1997).

    Article  PubMed  CAS  Google Scholar 

  50. Niu, Y. et al. Differential androgen receptor signals in different cells explain why androgen-deprivation therapy of prostate cancer fails. Oncogene 29, 3593–3604 (2010).

    Article  PubMed  CAS  Google Scholar 

  51. Ogino, Y. et al. Essential functions of androgen signaling emerged through the developmental analysis of vertebrate sex characteristics. Evol. Dev. 13, 315–325 (2011).

    Article  PubMed  Google Scholar 

  52. Haraguchi, R. et al. Molecular analysis of external genitalia formation: the role of fibroblast growth factor (Fgf) genes during genital tubercle formation. Development 127, 2471–2479 (2000).

    PubMed  CAS  Google Scholar 

  53. Haraguchi, R. et al. Unique functions of sonic hedgehog signaling during external genitalia development. Development 128, 4241–4250 (2001).

    PubMed  CAS  Google Scholar 

  54. Suzuki, K. et al. Regulation of outgrowth and apoptosis for the terminal appendage: external genitalia development by concerted actions of BMP signaling [corrected]. Development 130, 6209–6220 (2003).

    Article  PubMed  CAS  Google Scholar 

  55. Perriton, C. L., Powles, N., Chiang, C., Maconochie, M. K. & Cohn, M. J. Sonic hedgehog signaling from the urethral epithelium controls external genital development. Dev. Biol. 247, 26–46 (2002).

    Article  PubMed  CAS  Google Scholar 

  56. Haraguchi, R. et al. Molecular analysis of coordinated bladder and urogenital organ formation by hedgehog signaling. Development 134, 525–533 (2007).

    Article  PubMed  CAS  Google Scholar 

  57. Huang, Y. C., Chen, F. & Li, X. Clarification of mammalian cloacal morphogenesis using high-resolution episcopic microscopy. Dev. Biol. 409, 106–113 (2016).

    Article  PubMed  CAS  Google Scholar 

  58. Satoh, Y. et al. Regulation of external genitalia development by concerted actions of FGF ligands and FGF receptors. Anat. Embryol. 208, 479–486 (2004).

    Article  PubMed  CAS  Google Scholar 

  59. Petiot, A., Perriton, C. L., Dickson, C. & Cohn, M. J. Development of the mammalian urethra is controlled by Fgfr2-IIIb. Development 132, 2441–2450 (2005).

    Article  PubMed  CAS  Google Scholar 

  60. Harada, M. et al. Tissue-specific roles of FGF signaling in external genitalia development. Dev. Dyn. 244, 759–773 (2015).

    Article  PubMed  Google Scholar 

  61. Gredler, M. L., Seifert, A. W. & Cohn, M. J. Tissue-specific roles of Fgfr2 in development of the external genitalia. Development 142, 2203–2212 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Ogino, Y., Katoh, H. & Yamada, G. Androgen dependent development of a modified anal fin, gonopodium, as a model to understand the mechanism of secondary sexual character expression in vertebrates. FEBS Lett. 575, 119–126 (2004).

    Article  PubMed  CAS  Google Scholar 

  63. Chung, J. W., Pask, A. J. & Renfree, M. B. Seminiferous cord formation is regulated by hedgehog signaling in the marsupial. Biol. Reprod. 86, 80 (2012).

    Article  PubMed  CAS  Google Scholar 

  64. Miyagawa, S. et al. The role of sonic hedgehog-Gli2 pathway in the masculinization of external genitalia. Endocrinology 152, 2894–2903 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. He, F. et al. Adult Gli2+/−;Gli3Δ699/ + male and female mice display a spectrum of genital malformation. PLoS ONE 11, e0165958 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Yao, H. H., Whoriskey, W. & Capel, B. Desert hedgehog/patched 1 signaling specifies fetal Leydig cell fate in testis organogenesis. Genes Dev. 16, 1433–1440 (2002).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Jameson, S. A., Lin, Y. T. & Capel, B. Testis development requires the repression of Wnt4 by Fgf signaling. Dev. Biol. 370, 24–32 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. Zhu, H. et al. Analysis of Wnt gene expression in prostate cancer: mutual inhibition by WNT11 and the androgen receptor. Cancer Res. 64, 7918–7926 (2004).

    Article  PubMed  CAS  Google Scholar 

  69. Bengoa-Vergniory, N. et al. Identification of noncanonical wnt receptors required for Wnt-3a-induced early differentiation of human neural stem cells. Mol. Neurobiol. 54, 6213–6224 (2016).

    Article  PubMed  CAS  Google Scholar 

  70. Reutter, H. et al. Genome-wide association study and mouse expression data identify a highly conserved 32 kb intergenic region between WNT3 and WNT9b as possible susceptibility locus for isolated classic exstrophy of the bladder. Hum. Mol. Genet. 23, 5536–5544 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  71. Miyagawa, S. et al. Dosage-dependent hedgehog signals integrated with Wnt/beta-catenin signaling regulate external genitalia formation as an appendicular program. Development 136, 3969–3978 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  72. Miyagawa, S. et al. Disruption of the temporally regulated cloaca endodermal β-catenin signaling causes anorectal malformations. Cell Death Differ. 21, 990–997 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  73. Lin, C., Yin, Y., Long, F. & Ma, L. Tissue-specific requirements of beta-catenin in external genitalia development. Development 135, 2815–2825 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  74. Lin, C. et al. Delineating a conserved genetic cassette promoting outgrowth of body appendages. PLoS Genet. 9, e1003231 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  75. Pawlowski, J. E. et al. Liganded androgen receptor interaction with beta-catenin: nuclear co-localization and modulation of transcriptional activity in neuronal cells. J. Biol. Chem. 277, 20702–20710 (2002).

    Article  PubMed  CAS  Google Scholar 

  76. von Ahrens, D., Bhagat, T. D., Nagrath, D., Maitra, A. & Verma, A. The role of stromal cancer-associated fibroblasts in pancreatic cancer. J. Hematol. Oncol. 10, 76 (2017).

    Article  CAS  Google Scholar 

  77. Leach, D. A. et al. Cell-lineage specificity and role of AP-1 in the prostate fibroblast androgen receptor cistrome. Mol. Cell Endocrinol. 439, 261–272 (2017).

    Article  PubMed  CAS  Google Scholar 

  78. Wikström, P., Marusic, J., Stattin, P. & Bergh, A. Low stroma androgen receptor level in normal and tumor prostate tissue is related to poor outcome in prostate cancer patients. Prostate 69, 799–809 (2009).

    Article  PubMed  CAS  Google Scholar 

  79. Tanner, M. J. et al. Effects of androgen receptor and androgen on gene expression in prostate stromal fibroblasts and paracrine signaling to prostate cancer cells. PLoS ONE 6, e16027 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  80. Yang, Y. A. & Yu, J. Current perspectives on FOXA1 regulation of androgen receptor signaling and prostate cancer. Genes Dis. 2, 144–151 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  81. Mazahery, A. R. et al. Functional analysis of ectodermal β-catenin during external genitalia formation. Congenit. Anom. 53, 34–41 (2013).

    Article  CAS  Google Scholar 

  82. Matsushita, S. et al. Androgen regulates Mafb expression through its 3’UTR during mouse urethral masculinization. Endocrinology 157, 844–857 (2016).

    Article  PubMed  CAS  Google Scholar 

  83. Kataoka, K., Fujiwara, K. T., Noda, M. & Nishizawa, M. MafB, a new Maf family transcription activator that can associate with Maf and Fos but not with Jun. Mol. Cell. Biol. 14, 7581–7591 (1994).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  84. Moriguchi, T. et al. MafB is essential for renal development and F4/80 expression in macrophages. Mol. Cell. Biol. 26, 5715–5727 (2006).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  85. Wagner, E. F. Functions of AP1 (Fos/Jun) in bone development. Ann Rheum Dis 61(Suppl 2), ii40–ii42 (2002).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  86. Shaulian, E. & Karin, M. AP-1 as a regulator of cell life and death. Nat. Cell Biol. 4, E131–E136 (2002).

    Article  PubMed  CAS  Google Scholar 

  87. Shaulian, E. & Karin, M. AP-1 in cell proliferation and survival. Oncogene 20, 2390–2400 (2001).

    Article  PubMed  CAS  Google Scholar 

  88. Jochum, W., Passegué, E. & Wagner, E. F. AP-1 in mouse development and tumorigenesis. Oncogene 20, 2401–2412 (2001).

    Article  PubMed  CAS  Google Scholar 

  89. Villaseñor, T. et al. Activation of the Wnt Pathway by Mycobacterium tuberculosis: a Wnt-Wnt Situation. Front. Immunol. 8, 50 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  90. Suda, N. et al. Dimeric combinations of MafB, cFos and cJun control the apoptosis-survival balance in limb morphogenesis. Development 141, 2885–2894 (2014).

    Article  PubMed  CAS  Google Scholar 

  91. Kelly, L. M., Englmeier, U., Lafon, I., Sieweke, M. H. & Graf, T. MafB is an inducer of monocytic differentiation. EMBO J. 19, 1987–1997 (2000).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  92. Kim, K. et al. MafB negatively regulates RANKL-mediated osteoclast differentiation. Blood 109, 3253–3259 (2007).

    Article  PubMed  CAS  Google Scholar 

  93. Abdellatif, A. M. et al. Role of large MAF transcription factors in the mouse endocrine pancreas. Exp. Anim. 64, 305–312 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  94. Tillmanns, S. et al. SUMO modification regulates MafB-driven macrophage differentiation by enabling Myb-dependent transcriptional repression. Mol. Cell. Biol. 27, 5554–5564 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  95. van Stralen, E. et al. Identification of primary MAFB target genes in multiple myeloma. Exp. Hematol. 37, 78–86 (2009).

    Article  PubMed  CAS  Google Scholar 

  96. Zankl, A. et al. Multicentric carpotarsal osteolysis is caused by mutations clustering in the amino-terminal transcriptional activation domain of MAFB. Am. J. Hum. Genet. 90, 494–501 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  97. Beaty, T. H. et al. A genome-wide association study of cleft lip with and without cleft palate identifies risk variants near MAFB and ABCA4. Nat. Genet. 42, 525–529 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  98. Joss, S. K., Paterson, W., Donaldson, M. D. & Tolmie, J. L. Cleft palate, hypotelorism, and hypospadias: Schilbach-Rott syndrome. Am. J. Med. Genet. 113, 105–107 (2002).

    Article  PubMed  CAS  Google Scholar 

  99. Leirós, G. J., Ceruti, J. M., Castellanos, M. L., Kusinsky, A. G. & Balañá, M. E. Androgens modify Wnt agonists/antagonists expression balance in dermal papilla cells preventing hair follicle stem cell differentiation in androgenetic alopecia. Mol. Cell Endocrinol. 439, 26–34 (2017).

    Article  PubMed  CAS  Google Scholar 

  100. Zitzmann, M. & Nieschlag, E. The CAG repeat polymorphism within the androgen receptor gene and maleness. Int. J. Androl 26, 76–83 (2003).

    Article  PubMed  CAS  Google Scholar 

  101. Heemers, H. V. & Tindall, D. J. Androgen receptor (AR) coregulators: a diversity of functions converging on and regulating the AR transcriptional complex. Endocr. Rev. 28, 778–808 (2007).

    Article  PubMed  CAS  Google Scholar 

  102. Schneider, J. A. & Logan, S. K. Revisiting the role of Wnt/ß-catenin signaling in prostate cancer. Mol. Cell Endocrinol. 15, 3–8 (2017).

    Google Scholar 

  103. Sturgeon, K. et al. Cdx1 refines positional identity of the vertebrate hindbrain by directly repressing Mafb expression. Development 138, 65–74 (2011).

    Article  PubMed  CAS  Google Scholar 

  104. Menéndez-Gutiérrez, M. P. et al. Retinoid X receptors orchestrate osteoclast differentiation and postnatal bone remodeling. J. Clin. Invest. 125, 809–823 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  105. Yao, H. H., Tilmann, C., Zhao, G. Q. & Capel, B. The battle of the sexes: opposing pathways in sex determination. Novartis Found. Symp. 244, 187–198; discussion 198–206, 253–257 (2002).

    PubMed  Google Scholar 

  106. DeFalco, T. et al. Macrophages contribute to the spermatogonial niche in the adult testis. Cell Rep. 12, 1107–1119 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  107. Yoshida, S. et al. Neurogenin3 delineates the earliest stages of spermatogenesis in the mouse testis. Dev. Biol. 269, 447–458 (2004).

    Article  PubMed  CAS  Google Scholar 

  108. Febbo, P. G. et al. Androgen mediated regulation and functional implications of fkbp51 expression in prostate cancer. J. Urol. 173, 1772–1777 (2005).

    Article  PubMed  CAS  Google Scholar 

  109. Yong, W. et al. Essential role for co-chaperone Fkbp52 but not Fkbp51 in androgen receptor-mediated signaling and physiology. J. Biol. Chem. 282, 5026–5036 (2007).

    Article  PubMed  CAS  Google Scholar 

  110. Chen, H. et al. Fkbp52 regulates androgen receptor transactivation activity and male urethra morphogenesis. J. Biol. Chem. 285, 27776–27784 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  111. Storer Samaniego, C. et al. The FKBP52 cochaperone acts in synergy with β-catenin to potentiate androgen receptor signaling. PLoS ONE 10, e0134015 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  112. Nishida, H. et al. Gene expression analyses on embryonic external genitalia: identification of regulatory genes possibly involved in masculinization processes. Congenit. Anom. 48, 63–67 (2008).

    Article  CAS  Google Scholar 

  113. Ni, L. et al. FKBP51 promotes assembly of the Hsp90 chaperone complex and regulates androgen receptor signaling in prostate cancer cells. Mol. Cell. Biol. 30, 1243–1253 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  114. Makkonen, H., Kauhanen, M., Paakinaho, V., Jääskeläinen, T. & Palvimo, J. J. Long-range activation of FKBP51 transcription by the androgen receptor via distal intronic enhancers. Nucleic Acids Res. 37, 4135–4148 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  115. Yucel, S., Dravis, C., Garcia, N., Henkemeyer, M. & Baker, L. A. Hypospadias and anorectal malformations mediated by Eph/ephrin signaling. J. Pediatr. Urol. 3, 354–363 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  116. Ipulan, L. A. et al. Development of the external genitalia and their sexual dimorphic regulation in mice. Sex. Dev. 8, 297–310 (2014).

    Article  PubMed  CAS  Google Scholar 

  117. Bennett, N. C., Gardiner, R. A., Hooper, J. D., Johnson, D. W. & Gobe, G. C. Molecular cell biology of androgen receptor signalling. Int. J. Biochem. Cell Biol. 42, 813–827 (2010).

    Article  PubMed  CAS  Google Scholar 

  118. Chauvin, T. R. & Griswold, M. D. Androgen-regulated genes in the murine epididymis. Biol. Reprod. 71, 560–569 (2004).

    Article  PubMed  CAS  Google Scholar 

  119. Bowman, C. J. et al. Altered gene expression during rat Wolffian duct development following di(n-butyl) phthalate exposure. Toxicol. Sci. 86, 161–174 (2005).

    Article  PubMed  CAS  Google Scholar 

  120. Turner, K. J. et al. Altered gene expression during rat Wolffian duct development in response to in utero exposure to the antiandrogen linuron. Toxicol. Sci. 74, 114–128 (2003).

    Article  PubMed  CAS  Google Scholar 

  121. Hannema, S. E. & Hughes, I. A. Regulation of Wolffian duct development. Horm. Res. 67, 142–151 (2007).

    PubMed  CAS  Google Scholar 

  122. Hu, S. et al. Research resource: genome-wide mapping of in vivo androgen receptor binding sites in mouse epididymis. Mol. Endocrinol. 24, 2392–2405 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  123. Murashima, A. et al. Essential roles of androgen signaling in Wolffian duct stabilization and epididymal cell differentiation. Endocrinology 152, 1640–1651 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  124. Suzuki, K. et al. Abnormal urethra formation in mouse models of split-hand/split-foot malformation type 1 and type 4. Eur. J. Hum. Genet. 16, 36–44 (2008).

    Article  PubMed  CAS  Google Scholar 

  125. Nagel, S. C. & Bromfield, J. J. Bisphenol a: a model endocrine disrupting chemical with a new potential mechanism of action. Endocrinology 154, 1962–1964 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  126. Oliveira, C. A. et al. Differential hormonal regulation of estrogen receptors ERalpha and ERbeta and androgen receptor expression in rat efferent ductules. Reproduction 128, 73–86 (2004).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  127. Sinclair, A. W., Cao, M., Pask, A., Baskin, L. & Cunha, G. R. Flutamide-induced hypospadias in rats: a critical assessment. Differentiation 94, 37–57 (2017).

    Article  PubMed  CAS  Google Scholar 

  128. Cunha, G. R., Sinclair, A., Risbridger, G., Hutson, J. & Baskin, L. S. Current understanding of hypospadias: relevance of animal models. Nat. Rev. Urol. 12, 271–280 (2015).

    Article  PubMed  Google Scholar 

  129. Hiort, O. The differential role of androgens in early human sex development. BMC Med. 11, 152 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  130. Toppari, J., Virtanen, H. E., Main, K. M. & Skakkebaek, N. E. Cryptorchidism and hypospadias as a sign of testicular dysgenesis syndrome (TDS): environmental connection. Birth Defects Res. A Clin. Mol. Teratol. 88, 910–919 (2010).

    Article  PubMed  CAS  Google Scholar 

  131. Yiee, J. H. & Baskin, L. S. Environmental factors in genitourinary development. J. Urol. 184, 34–41 (2010).

    Article  PubMed  CAS  Google Scholar 

  132. Diamanti-Kandarakis, E. et al. Endocrine-disrupting chemicals: an endocrine society scientific statement. Endocr. Rev. 30, 293–342 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  133. Lubahn, D. B. et al. Alteration of reproductive function but not prenatal sexual development after insertional disruption of the mouse estrogen receptor gene. Proc. Natl Acad. Sci. USA 90, 11162–11166 (1993).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  134. Miyagawa, S. et al. Characterization of diethylstilbestrol-induced hypospadias in female mice. Anat. Rec. 266, 43–50 (2002).

    Article  PubMed  Google Scholar 

  135. Schramm, C. et al. De novo microduplication at 22q11.21 in a patient with VACTERL association. Eur. J. Med. Genet. 54, 9–13 (2011).

    Article  PubMed  Google Scholar 

  136. Moggs, J. G. et al. Anti-proliferative effect of estrogen in breast cancer cells that re-express ERalpha is mediated by aberrant regulation of cell cycle genes. J. Mol. Endocrinol. 34, 535–551 (2005).

    Article  PubMed  CAS  Google Scholar 

  137. Sabbah, M., Courilleau, D., Mester, J. & Redeuilh, G. Estrogen induction of the cyclin D1 promoter: involvement of a cAMP response-like element. Proc. Natl Acad. Sci. USA 96, 11217–11222 (1999).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  138. Ma, L. M. et al. Estrogen effects on fetal penile and urethral development in organotypic mouse genital tubercle culture. J. Urol. 182, 2511–2517 (2009).

    Article  PubMed  CAS  Google Scholar 

  139. Kalfa, N. et al. Genomic variants of ATF3 in patients with hypospadias. J. Urol. 180, 2183–2188 (2008).

    Article  PubMed  CAS  Google Scholar 

  140. Wang, H. et al. The stress response mediator ATF3 represses androgen signaling by binding the androgen receptor. Mol. Cell. Biol. 32, 3190–3202 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  141. Tanaka, Y. et al. Systems analysis of ATF3 in stress response and cancer reveals opposing effects on pro-apoptotic genes in p53 pathway. PLoS ONE 6, e26848 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  142. Tamura, K. et al. Stress response gene ATF3 is a target of c-myc in serum-induced cell proliferation. EMBO J. 24, 2590–2601 (2005).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  143. Li, J., Willingham, E. & Baskin, L. S. Gene expression profiles in mouse urethral development. BJU Int. 98, 880–885 (2006).

    Article  PubMed  CAS  Google Scholar 

  144. Kang, Y., Chen, C. R. & Massagué, J. A self-enabling TGFbeta response coupled to stress signaling: Smad engages stress response factor ATF3 for Id1 repression in epithelial cells. Mol. Cell 11, 915–926 (2003).

    Article  PubMed  CAS  Google Scholar 

  145. Willingham, E. & Baskin, L. S. Candidate genes and their response to environmental agents in the etiology of hypospadias. Nat. Clin. Pract. Urol. 4, 270–279 (2007).

    Article  PubMed  CAS  Google Scholar 

  146. Tannour-Louet, M. et al. Increased gene copy number of VAMP7 disrupts human male urogenital development through altered estrogen action. Nat. Med. 20, 715–724 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  147. Dahlman-Wright, K. et al. Interplay between AP-1 and estrogen receptor α in regulating gene expression and proliferation networks in breast cancer cells. Carcinogenesis 33, 1684–1691 (2012).

    Article  PubMed  CAS  Google Scholar 

  148. Reutter, H., Hilger, A. C., Hildebrandt, F. & Ludwig, M. Underlying genetic factors of the VATER/VACTERL association with special emphasis on the “Renal” phenotype. Pediatr. Nephrol. 31, 2025–2033 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  149. Niederreither, K. & Dollé, P. Retinoic acid in development: towards an integrated view. Nat. Rev. Genet. 9, 541–553 (2008).

    Article  PubMed  CAS  Google Scholar 

  150. Jiang, J., Ma, L., Yuan, L., Wang, X. & Zhang, W. Study on developmental abnormalities in hypospadiac male rats induced by maternal exposure to di-n-butyl phthalate (DBP). Toxicology 232, 286–293 (2007).

    Article  PubMed  CAS  Google Scholar 

  151. Ogino, Y. et al. External genitalia formation: role of fibroblast growth factor, retinoic acid signaling, and distal urethral epithelium. Ann. NY Acad. Sci. 948, 13–31 (2001).

    Article  PubMed  CAS  Google Scholar 

  152. Liu, L. et al. Retinoic acid signaling regulates sonic hedgehog and bone morphogenetic protein signalings during genital tubercle development. Birth Defects Res. B Dev. Reprod. Toxicol. 95, 79–88 (2012).

    PubMed  CAS  Google Scholar 

  153. Fukami, M. et al. Anorectal and urinary anomalies and aberrant retinoic acid metabolism in cytochrome P450 oxidoreductase deficiency. Mol. Genet. Metab. 100, 269–273 (2010).

    Article  PubMed  CAS  Google Scholar 

  154. Udhane, S. S., Pandey, A. V., Hofer, G., Mullis, P. E. & Flück, C. E. Retinoic acid receptor beta and angiopoietin-like protein 1 are involved in the regulation of human androgen biosynthesis. Sci. Rep. 5, 10132 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  155. Li, M. T., Richter, F., Chang, C., Irwin, R. J. & Huang, H. Androgen and retinoic acid interaction in LNCaP cells, effects on cell proliferation and expression of retinoic acid receptors and epidermal growth factor receptor. BMC Cancer 2, 16 (2002).

    Article  PubMed  PubMed Central  Google Scholar 

  156. Rivera-Gonzalez, G. C. et al. Retinoic acid and androgen receptors combine to achieve tissue specific control of human prostatic transglutaminase expression: a novel regulatory network with broader significance. Nucleic Acids Res. 40, 4825–4840 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank A. Thomson, L. Baskin, J. Cunha, R. Nishinakamura, S. Takahashi, G. Prins, K.-I. Matsumoto, H. Reutter, and T. DeFalco for their encouragement and discussion points. The authors also thank T. I. Iba and all laboratory colleagues for their assistance. This work was supported by the Japan Society for the Promotion of Science grants 18K06938, 18K06837, 17K18024, 15H04300, 15K15403, 15K10647, 15K19013, and 15J11033.

Author information

Authors and Affiliations

Authors

Contributions

S.Ma., K.S., and G.Y. discussed the content, wrote the manuscript, and reviewed and edited the manuscript before submission. A.M., D.K., A.R.A., S.Mi., R.H., and Y.O. discussed the content and wrote the manuscript.

Corresponding author

Correspondence to Gen Yamada.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Matsushita, S., Suzuki, K., Murashima, A. et al. Regulation of masculinization: androgen signalling for external genitalia development. Nat Rev Urol 15, 358–368 (2018). https://doi.org/10.1038/s41585-018-0008-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41585-018-0008-y

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing