Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

OPINION

Implications of TERT promoter mutations and telomerase activity in urothelial carcinogenesis

Abstract

Telomerase activity imparts eukaryotic cells with unlimited proliferation capacity, one of the cancer hallmarks. Over 90% of human urothelial carcinoma of the bladder (UCB) tumours are positive for telomerase activity. Telomerase activation can occur through several mechanisms. Mutations in the core promoter region of the human telomerase reverse transcriptase gene (TERT) cause telomerase reactivation in 60–80% of UCBs, whereas the prevalence of these mutations is lower in urothelial cancers of other origins. TERT promoter mutations are the most frequent genetic alteration across all stages of UCB, indicating a strong selection pressure during neoplastic transformation. TERT promoter mutations could arise during regeneration of normal urothelium and, owing to consequential telomerase reactivation, might be the basis of UCB initiation, which represents a new model of urothelial cancer origination. In the future, TERT promoter mutations and telomerase activity might have diagnostic and therapeutic applications in UCB.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Classical concept of telomere and telomerase functions in tumour suppression and initiation.
Fig. 2: Alternative concept of telomere and telomerase functions in tumour suppression and initiation.
Fig. 3: The cell of origin of cancer in urothelial carcinoma of the bladder.

Similar content being viewed by others

References

  1. Vogan, J. M. & Collins, K. Dynamics of human telomerase holoenzyme assembly and subunit exchange across the cell cycle. J. Biol. Chem. 290, 21320–21335 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Bailey, S. M. & Murnane, J. P. Telomeres, chromosome instability and cancer. Nucleic Acids Res. 34, 2408–2417 (2006).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Chadeneau, C., Hay, K., Hirte, H. W., Gallinger, S. & Bacchetti, S. Telomerase activity associated with acquisition of malignancy in human colorectal-cancer. Cancer Res. 55, 2533–2536 (1995).

    PubMed  CAS  Google Scholar 

  4. Greenberg, R. A., Allsopp, R. C., Chin, L., Morin, G. B. & DePinho, R. A. Expression of mouse telomerase reverse transcriptase during development, differentiation and proliferation. Oncogene 16, 1723–1730 (1998).

    Article  PubMed  CAS  Google Scholar 

  5. Prowse, K. R. & Greider, C. W. Developmental and tissue-specific regulation of mouse telomerase and telomere length. Proc. Natl Acad. Sci. USA 92, 4818–4822 (1995).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Ritz, J. M. et al. A novel transgenic mouse model reveals humanlike regulation of an 8-kbp human TERT gene promoter fragment in normal and tumor tissues. Cancer Res. 65, 1187–1196 (2005).

    Article  PubMed  CAS  Google Scholar 

  7. Sirma, H. et al. The promoter of human telomerase reverse transcriptase is activated during liver regeneration and hepatocyte proliferation. Gastroenterology. 141, 326–337.e3 (2011).

    Article  PubMed  CAS  Google Scholar 

  8. Gunes, C., Lichtsteiner, S., Vasserot, A. P. & Englert, C. Expression of the hTERT gene is regulated at the level of transcriptional initiation and repressed by Mad1. Cancer. Res. 60, 2116–2121 (2000).

    PubMed  CAS  Google Scholar 

  9. Kilian, A. et al. Isolation of a candidate human telomerase catalytic subunit gene, which reveals complex splicing patterns in different cell types. Hum. Mol. Genet. 6, 2011–2019 (1997).

    Article  PubMed  CAS  Google Scholar 

  10. Wright, W. E., Piatyszek, M. A., Rainey, W. E., Byrd, W. & Shay, J. W. Telomerase activity in human germline and embryonic tissues and cells. Dev. Genet. 18, 173–179 (1996).

    Article  PubMed  CAS  Google Scholar 

  11. Belair, C. D., Yeager, T. R., Lopez, P. M. & Reznikoff, C. A. Telomerase activity: a biomarker of cell proliferation, not malignant transformation. Proc. Natl Acad. Sci. USA 94, 13677–13682 (1997).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Chiu, C. P. et al. Differential expression of telomerase activity in hematopoietic progenitors from adult human bone marrow. Stem Cells 14, 239–248 (1996).

    Article  PubMed  CAS  Google Scholar 

  13. Georgopoulos, N. T. et al. Immortalisation of normal human urothelial cells compromises differentiation capacity. Eur. Urol. 60, 141–149 (2011).

    Article  PubMed  CAS  Google Scholar 

  14. Hiyama, E. et al. Telomerase activity in human intestine. Int. J. Oncol. 9, 453–458 (1996).

    PubMed  CAS  Google Scholar 

  15. Hiyama, K. et al. Activation of telomerase in human-lymphocytes and hematopoietic progenitor cells. J. Immunol. 155, 3711–3715 (1995).

    PubMed  CAS  Google Scholar 

  16. Morrison, S. J., Prowse, K. R., Ho, P. & Weissman, I. L. Telomerase activity in hematopoietic cells is associated with self-renewal potential. Immunity 5, 207–216 (1996).

    Article  PubMed  CAS  Google Scholar 

  17. Ramirez, R. D., Wright, W. E., Shay, J. W. & Taylor, R. S. Telomerase activity concentrates in the mitotically active segments of human hair follicles. J. Invest. Dermatol. 108, 113–117 (1997).

    Article  PubMed  CAS  Google Scholar 

  18. Ravindranath, N., Dalal, R., Solomon, B., Djakiew, D. & Dym, M. Loss of telomerase activity during male germ cell differentiation. Endocrinology 138, 4026–4029 (1997).

    Article  PubMed  CAS  Google Scholar 

  19. Weise, J. M. & Gunes, C. Telomeres and telomerase. A survey about methods and recent advances in cancer diagnostic and therapy. Histol. Histopathol. 21, 1249–1261 (2006).

    PubMed  CAS  Google Scholar 

  20. Harley, C. B., Futcher, A. B. & Greider, C. W. Telomeres shorten during aging of human fibroblasts. Nature 345, 458–460 (1990).

    Article  PubMed  CAS  Google Scholar 

  21. Shay, J. W., Pereirasmith, O. M. & Wright, W. E. A. Role for both Rb and P53 in the regulation of human cellular senescence. Exp. Cell Res. 196, 33–39 (1991).

    Article  PubMed  CAS  Google Scholar 

  22. Allsopp, R. C. et al. Telomere length predicts replicative capacity of human fibroblasts. Proc. Natl Acad. Sci. USA 89, 10114–10118 (1992).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Chang, E. & Harley, C. B. Telomere length and replicative aging in human vascular tissues. Proc. Natl Acad. Sci. USA 92, 11190–11194 (1995).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Artandi, S. E. et al. Telomere dysfunction promotes non-reciprocal translocations and epithelial cancers in mice. Nature 406, 641–645 (2000).

    Article  PubMed  CAS  Google Scholar 

  25. Chin, L. et al. p53 deficiency rescues the adverse effects of telomere loss and cooperates with telomere dysfunction to accelerate carcinogenesis. Cell 97, 527–538 (1999).

    Article  PubMed  CAS  Google Scholar 

  26. Hackett, J. A., Feldser, D. M. & Greider, C. W. Telomere dysfunction increases mutation rate and genomic instability. Cell 106, 275–286 (2001).

    Article  PubMed  CAS  Google Scholar 

  27. O’Hagan, R. C. et al. Telomere dysfunction provokes regional amplification and deletion in cancer genomes. Cancer. Cell 2, 149–155 (2002).

    Article  PubMed  Google Scholar 

  28. Kim, N. W. et al. Specific association of human telomerase activity with immortal cells and cancer. Science 266, 2011–2015 (1994).

    Article  PubMed  CAS  Google Scholar 

  29. Meyerson, M. et al. hEST2, the putative human telomerase catalytic subunit gene, is up-regulated in tumor cells and during immortalization. Cell 90, 785–795 (1997).

    Article  PubMed  CAS  Google Scholar 

  30. Hahn, W. C. et al. Creation of human tumour cells with defined genetic elements. Nature 400, 464–468 (1999).

    Article  PubMed  CAS  Google Scholar 

  31. Bryan, T. M., Englezou, A., DallaPozza, L., Dunham, M. A. & Reddel, R. R. Evidence for an alternative mechanism for maintaining telomere length in human tumors and tumor-derived cell lines. Nat. Med. 3, 1271–1274 (1997).

    Article  PubMed  CAS  Google Scholar 

  32. Londono-Vallejo, J. A., Der-Sarkissian, H., Cazes, L., Bacchetti, S. & Reddel, R. R. Alternative lengthening of telomeres is characterized by high rates of telomeric exchange. Cancer Res. 64, 2324–2327 (2004).

    Article  PubMed  CAS  Google Scholar 

  33. Heaphy, C. M. et al. Altered telomeres in tumors with ATRX and DAXX mutations. Science 333, 425–425 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Arndt, G. M. & MacKenzie, K. L. New prospects for targeting telomerase beyond the telomere. Nat. Rev. Cancer 16, 508–524 (2016).

    Article  PubMed  CAS  Google Scholar 

  35. Bell, R. J. A. et al. Understanding TERT promoter mutations: a common path to immortality. Mol. Cancer Res. 14, 315–323 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Beroukhim, R. et al. The landscape of somatic copy-number alteration across human cancers. Nature 463, 899–905 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Blokzijl, F. et al. Tissue-specific mutation accumulation in human adult stem cells during life. Nature 538, 260–264 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Carcano, F. M. et al. Hotspot TERT promoter mutations are rare events in testicular germ cell tumors. Tumor Biol. 37, 4901–4907 (2016).

    Article  CAS  Google Scholar 

  39. Cowan, M. L. et al. Detection of TERT promoter mutations in primary adenocarcinoma of the urinary bladder. Hum. Pathol. 53, 8–13 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Critelli, R. et al. Detection of multiple mutations in urinary exfoliated cells from male bladder cancer patients at diagnosis and during follow-up. Oncotarget 7, 67435–67448 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  41. Hoffmann, M. J. K. et al. The new immortalized uroepithelial cell line HBLAK contains defined genetic aberrations typical of early stage urothelial tumors. Bladder Cancer 27, 449–463 (2016).

    Article  Google Scholar 

  42. Hu, Y. et al. Switch telomerase to ALT mechanism by inducing telomeric DNA damages and dysfunction of ATRX and DAXX. Sci. Rep. 6, 32280 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Kumar, M., Lechel, A. & Gunes, C. Telomerase: the devil inside. Genes 7, 43 (2016).

    Article  PubMed Central  CAS  Google Scholar 

  44. Kurtis, B. et al. Recurrent TERT promoter mutations in urothelial carcinoma and potential clinical applications. Ann. Diagn. Pathol. 21, 7–11 (2016).

    Article  PubMed  Google Scholar 

  45. Man, R. J., Chen, L. W. & Zhu, H. L. Telomerase inhibitors: a patent review (2010–2015). Expert Opin. Ther. Pat. 26, 679–688 (2016).

    Article  PubMed  CAS  Google Scholar 

  46. Patel, P. L., Suram, A., Mirani, N., Bischof, O. & Herbig, U. Derepression of hTERT gene expression promotes escape from oncogene-induced cellular senescence. Proc. Natl Acad. Sci. USA 113, E5024–E5033 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Plantinga, M. J. et al. Telomerase suppresses formation of ALT-associated single-stranded telomeric C-circles. Mol. Cancer Res. 11, 557–567 (2013).

    Article  PubMed  CAS  Google Scholar 

  48. Heaphy, C. M. et al. Prevalence of the alternative lengthening of telomeres telomere maintenance mechanism in human cancer subtypes. Am. J. Pathol. 179, 1608–1615 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Hakin-Smith, V. et al. Alternative lengthening of telomeres and survival in patients with glioblastoma multiforme. Lancet 361, 836–838 (2003).

    Article  PubMed  CAS  Google Scholar 

  50. Henson, J. D. et al. A robust assay for alternative lengthening of telomeres in tumors shows the significance of alternative lengthening of telomeres in sarcomas and astrocytomas. Clin. Cancer Res. 11, 217–225 (2005).

    PubMed  CAS  Google Scholar 

  51. Henson, J. D. & Reddel, R. R. Assaying and investigating alternative lengthening of telomeres activity in human cells and cancers. FEBS Lett. 584, 3800–3811 (2010).

    Article  PubMed  CAS  Google Scholar 

  52. Choi, J. K. et al. TERT promotes epithelial proliferation through transcriptional control of a Myc- and Wnt-related developmental program. PLoS Genet. 4, e10 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Gazzaniga, F. S. & Blackburn, E. H. An antiapoptotic role for telomerase RNA in human immune cells independent of telomere integrity or telomerase enzymatic activity. Blood 124, 3675–3684 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Haendeler, J. et al. Mitochondrial telomerase reverse transcriptase binds to and protects mitochondrial DNA and function from damage. Arterioscler. Thromb. Vasc. Biol. 29, 929–935 (2009).

    Article  PubMed  CAS  Google Scholar 

  55. Jin, X. et al. Human telomerase catalytic subunit (hTERT) suppresses p53-mediated anti-apoptotic response via induction of basic fibroblast growth factor. Exp. Mol. Med. 42, 574–582 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Kedde, M. et al. Telomerase-independent regulation of ATR by human telomerase RNA. J. Biol. Chem. 281, 40503–40514 (2006).

    Article  PubMed  CAS  Google Scholar 

  57. Listerman, I., Gazzaniga, F. S. & Blackburn, E. H. An investigation of the effects of the core protein telomerase reverse transcriptase on Wnt signaling in breast cancer cells. Mol. Cell. Biol. 34, 280–289 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Liu, X. L. et al. Highly prevalent TERT promoter mutations in aggressive thyroid cancers. Endocr. Relat. Cancer 20, 603–610 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Park, J. I. et al. Telomerase modulates Wnt signalling by association with target gene chromatin. Nature 460, 66–72 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Singhapol, C. et al. Mitochondrial telomerase protects cancer cells from nuclear DNA damage and apoptosis. PLoS ONE 8, e52989 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. Zhu, H. Y., Fu, W. M. & Mattson, M. P. The catalytic subunit of telomerase protects neurons against amyloid beta-peptide-induced apoptosis. J. Neurochem. 75, 117–124 (2000).

    Article  PubMed  CAS  Google Scholar 

  62. Sarin, K. Y. et al. Conditional telomerase induction causes proliferation of hair follicle stem cells. Nature 436, 1048–1052 (2005).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Strong, M. A. et al. Phenotypes in mTERT(+/−) and mTERT(−/−) mice are due to short telomeres, not telomere-independent functions of telomerase reverse transcriptase. Mol. Cell. Biol. 31, 2369–2379 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Ghosh, A. et al. Telomerase directly regulates NF-kappa B-dependent transcription. Nat. Cell Biol. 14, 1270–1281 (2012).

    Article  PubMed  CAS  Google Scholar 

  65. Gonzalez, O. G. et al. Telomerase stimulates ribosomal DNA transcription under hyperproliferative conditions. Nat. Commun. 5, 4599 (2014).

    Article  PubMed  CAS  Google Scholar 

  66. Hewitt, G. et al. Telomeres are favoured targets of a persistent DNA damage response in ageing and stress-induced senescence. Nat. Commun. 3, 708 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Meena, J. K. et al. Telomerase abrogates aneuploidy-induced telomere replication stress, senescence and cell depletion. EMBO J. 34, 1371–1384 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. Suram, A. et al. Oncogene-induced telomere dysfunction enforces cellular senescence in human cancer precursor lesions. EMBO J. 31, 2839–2851 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  69. Meena, J. K., Rudolph, K. L. & Günes, C. Telomere dysfunction, chromosomal instability and cancer. Recent Results Cancer Res. 200, 61–79 (2015).

    Article  PubMed  CAS  Google Scholar 

  70. Gellert, M., Lipsett, M. N. & Davies, D. R. Helix formation by guanylic acid. Proc. Natl Acad. Sci. USA 48, 2013–2018 (1962).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  71. Parkinson, G. N., Lee, M. P. H. & Neidle, S. Crystal structure of parallel quadruplexes from human telomeric DNA. Nature 417, 876–880 (2002).

    Article  PubMed  CAS  Google Scholar 

  72. Sen, D. & Gilbert, W. Formation of parallel 4-stranded complexes by guanine-rich motifs in DNA and its implications for meiosis. Nature 334, 364–366 (1988).

    Article  PubMed  CAS  Google Scholar 

  73. Biffi, G., Tannahill, D., McCafferty, J. & Balasubramanian, S. Quantitative visualization of DNA G-quadruplex structures in human cells. Nat. Chem. 5, 182–186 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  74. Mohaghegh, P., Karow, J. K., Brosh, R. M., Bohr, V. A. & Hickson, I. D. The Bloom’s and Werner’s syndrome proteins are DNA structure-specific helicases. Nucleic Acids Res. 29, 2843–2849 (2001).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  75. Fletcher, T. M., Sun, D. K., Salazar, M. & Hurley, L. H. Effect of DNA secondary structure on human telomerase activity. Biochemistry 37, 5536–5541 (1998).

    Article  PubMed  CAS  Google Scholar 

  76. Gunes, C. & Rudolph, K. L. The role of telomeres in stem cells and cancer. Cell 152, 390–393 (2013).

    Article  PubMed  CAS  Google Scholar 

  77. Kan, Z. Y. et al. G-Quadruplex formation in human telomeric (TTAGGG)(4) sequence with complementary strand in close vicinity under molecularly crowded condition. Nucleic Acids Res. 35, 3646–3653 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  78. Sfeir, A. et al. Mammalian telomeres resemble fragile sites and require TRF1 for efficient replication. Cell 138, 90–103 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  79. Tang, J. et al. G-Quadruplex preferentially forms at the very 3 ‘ end of vertebrate telomeric DNA. Nucleic Acids Res. 36, 1200–1208 (2008).

    Article  PubMed  CAS  Google Scholar 

  80. Zhou, W. J. et al. G-Quadruplex ligand SYUIQ-5 induces autophagy by telomere damage and TRF2 delocalization in cancer cells. Mol. Cancer Ther. 8, 3203–3213 (2009).

    Article  PubMed  CAS  Google Scholar 

  81. Zimmermann, M., Kibe, T., Kabir, S. & de Lange, T. TRF1 negotiates TTAGGG repeat-associated replication problems by recruiting the BLM helicase and the TPP1/POT1 repressor of ATR signaling. Gene Dev. 28, 2477–2491 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  82. Chang, M. et al. Telomerase is essential to alleviate pif1-induced replication stress at telomeres. Genetics 183, 779–791 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  83. Ferguson, L. R. et al. Genomic instability in human cancer: molecular insights and opportunities for therapeutic attack and prevention through diet and nutrition. Semin. Cancer Biol. 35(Suppl), S5–S24 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  84. Lavelle, J. et al. Bladder permeability barrier: recovery from selective injury of surface epithelial cells. Am. J. Physiol. Renal Physiol. 283, F242–F253 (2002).

    Article  PubMed  CAS  Google Scholar 

  85. Varley, C. et al. Autocrine regulation of human urothelial cell proliferation and migration during regenerative responses in vitro. Exp. Cell Res. 306, 216–229 (2005).

    Article  PubMed  CAS  Google Scholar 

  86. Wezel, F., Pearson, J. & Southgate, J. Plasticity of in vitro-generated urothelial cells for functional tissue formation. Tissue Eng. Pt. A 20, 1358–1368 (2014).

    Article  CAS  Google Scholar 

  87. Chapman, E. J. et al. Expression of hTERT immortalises normal human urothelial cells without inactivation of the p16/Rb pathway. Oncogene 25, 5037–5045 (2006).

    Article  PubMed  CAS  Google Scholar 

  88. Chapman, E. J., Kelly, G. & Knowles, M. A. Genes involved in differentiation, stem cell renewal, and tumorigenesis are modulated in telomerase-immortalized human urothelial cells. Mol. Cancer Res. 6, 1154–1168 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  89. Chapman, E. J. et al. Integrated genomic and transcriptional analysis of the in vitro evolution of telomerase-immortalized urothelial cells (TERT-NHUC). Genes Chromosomes Cancer 48, 694–710 (2009).

    Article  PubMed  CAS  Google Scholar 

  90. Kyo, S., Kunimi, K., Uchibayashi, T., Namiki, M. & Inoue, M. Telomerase activity in human urothelial tumors. Am. J. Clin. Pathol. 107, 555–560 (1997).

    Article  PubMed  CAS  Google Scholar 

  91. Mayfield, M. P., Shah, T., Flannigan, G. M., Stewart, P. A. H. & Bibby, M. C. Telomerase activity in malignant and benign bladder conditions. Int. J. Mol. Med. 1, 835–840 (1998).

    PubMed  CAS  Google Scholar 

  92. Yoshida, K. et al. Telomerase activity in bladder carcinoma and its implication for noninvasive diagnosis by detection of exfoliated cancer cells in urine. Cancer 79, 362–369 (1997).

    Article  PubMed  CAS  Google Scholar 

  93. Zou, L., Zhang, P., Luo, C. L. & Tu, Z. G. Mad1 suppresses bladder cancer cell proliferation by inhibiting human telomerase reverse transcriptase transcription and telomerase activity. Urology 67, 1335–1340 (2006).

    Article  PubMed  Google Scholar 

  94. Horn, S. et al. TERT promoter mutations in familial and sporadic melanoma. Science 339, 959–961 (2013).

    Article  PubMed  CAS  Google Scholar 

  95. Huang, D. S. et al. Recurrent TERT promoter mutations identified in a large-scale study of multiple tumour types are associated with increased TERT expression and telomerase activation. Eur. J. Cancer 51, 969–976 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  96. Killela, P. J. et al. TERT promoter mutations occur frequently in gliomas and a subset of tumors derived from cells with low rates of self-renewal. Proc. Natl Acad. Sci. USA 110, 6021–6026 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  97. Nault, J. C. et al. High frequency of telomerase reverse-transcriptase promoter somatic mutations in hepatocellular carcinoma and preneoplastic lesions. Nat. Commun 4, 2218 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  98. Vinagre, J. et al. Frequency of TERT promoter mutations in human cancers. Nat. Commun. 4, 2185 (2013).

    Article  PubMed  CAS  Google Scholar 

  99. Vinagre, J. et al. Telomerase promoter mutations in cancer: an emerging molecular biomarker? Virchows Arch. 465, 119–133 (2014).

    Article  PubMed  CAS  Google Scholar 

  100. Allory, Y. et al. Telomerase reverse transcriptase promoter mutations in bladder cancer: high frequency across stages, detection in urine, and lack of association with outcome. Eur. Urol. 65, 360–366 (2014).

    Article  PubMed  CAS  Google Scholar 

  101. Bell, R. J. A. et al. GABP selectively binds and activates the mutant TERT promoter across multiple cancer types [abstract]. Cancer Res. 75 (Suppl.), B12 (2015).

    Article  Google Scholar 

  102. Borah, S. et al. TERT promoter mutations and telomerase reactivation in urothelial cancer. Science 347, 1006–1010 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  103. Zheng, X. Y. et al. High frequency of TERT promoter mutation in small cell carcinoma of bladder, but not in small cell carcinoma of other origins. J. Hematol. Oncol. 7, 47 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  104. Wu, S. et al. Telomerase reverse transcriptase gene promoter mutations help discern the origin of urogenital tumors: a genomic and molecular study. Eur. Urol. 65, 274–277 (2014).

    Article  PubMed  CAS  Google Scholar 

  105. Wu, W. J., Liu, L. T., Huang, C. N., Huang, C. H. & Chang, L. L. The clinical implications of telomerase activity in upper tract urothelial cancer and washings. BJU Int. 86, 213–219 (2000).

    Article  PubMed  CAS  Google Scholar 

  106. Wang, K. et al. TERT promoter mutations are associated with distant metastases in upper tract urothelial carcinomas and serve as urinary biomarkers detected by a sensitive castPCR. Oncotarget 5, 12428–12439 (2014).

    PubMed  PubMed Central  Google Scholar 

  107. Nguyen, D. et al. High prevalence of TERT promoter mutations in micropapillary urothelial carcinoma. Virchows Arch. 469, 427–434 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  108. Melton, C., Reuter, J. A., Spacek, D. V. & Snyder, M. Recurrent somatic mutations in regulatory regions of human cancer genomes. Nat.Genet. 47, 710–716 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  109. Totoki, Y. et al. Trans-ancestry mutational landscape of hepatocellular carcinoma genomes. Nat. Genet. 46, 1267–1273 (2014).

    Article  PubMed  CAS  Google Scholar 

  110. Weinhold, N., Jacobsen, A., Schultz, N., Sander, C. & Lee, W. Genome-wide analysis of noncoding regulatory mutations in cancer. Nat. Genet. 46, 1160–1165 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  111. Weinstein, J. N. et al. The Cancer Genome Atlas Pan-Cancer analysis project. Nat. Genet. 45, 1113–1120 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  112. Stern, J. L., Theodorescu, D., Vogelstein, B., Papadopoulos, N. & Cech, T. R. Mutation of the TERT promoter, switch to active chromatin, and monoallelic TERT expression in multiple cancers. Gene Dev. 29, 2219–2224 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  113. Hurst, C. D., Platt, F. M. & Knowles, M. A. TERT promoter mutations are highly prevalent in bladder cancer and represent a potential new urinary biomarker [abstract]. Cancer Res. 74 (Suppl.), 2240 (2014).

    Article  Google Scholar 

  114. Rachakonda, P. S. et al. TERT promoter mutations in bladder cancer affect patient survival and disease recurrence through modification by a common polymorphism. Proc. Natl Acad. Sci. USA 110, 17426–17431 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  115. Kinde, I. et al. TERT promoter mutations occur early in urothelial neoplasia and are biomarkers of early disease and disease recurrence in urine. Cancer Res. 73, 7162–7167 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  116. Dahmcke, C. M. et al. A prospective blinded evaluation of urine-DNA testing for detection of urothelial bladder carcinoma in patients with gross hematuria. Eur. Urol. 70, 916–919 (2016).

    Article  PubMed  Google Scholar 

  117. Rossi, D. J., Jamieson, C. H. M. & Weissman, I. L. Stems cells and the pathways to aging and cancer. Cell 132, 681–696 (2008).

    Article  PubMed  CAS  Google Scholar 

  118. Tomasetti, C. & Vogelstein, B. Variation in cancer risk among tissues can be explained by the number of stem cell divisions. Science 347, 78–81 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  119. Barker, N. et al. Crypt stem cells as the cells-of-origin of intestinal cancer. Nature 457, 608–611 (2009).

    Article  PubMed  CAS  Google Scholar 

  120. Lynch, M. Rate, molecular spectrum, and consequences of human mutation. Proc. Natl Acad. Sci. USA 107, 961–968 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  121. Chaffer, C. L. & Weinberg, R. A. How does multistep tumorigenesis really proceed? Cancer Discov. 5, 22–24 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  122. Schwitalla, S. et al. Intestinal tumorigenesis initiated by dedifferentiation and acquisition of stem-cell-like properties. Cell 152, 25–38 (2013).

    Article  PubMed  CAS  Google Scholar 

  123. Gandhi, D. et al. Retinoid signaling in progenitors controls specification and regeneration of the urothelium. Dev. Cell 26, 469–482 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  124. Pignon, J. C. et al. p63-expressing cells are the stem cells of developing prostate, bladder, and colorectal epithelia. Proc. Natl Acad. Sci. USA 110, 8105–8110 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  125. Shin, K. et al. Hedgehog/Wnt feedback supports regenerative proliferation of epithelial stem cells in bladder. Nature 472, 110–114 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  126. Van Batavia, J. et al. Bladder cancers arise from distinct urothelial sub-populations. Nat. Cell Biol. 16, 982–991 (2014).

    Article  PubMed  CAS  Google Scholar 

  127. Papafotiou, G. et al. KRT14 marks a subpopulation of bladder basal cells with pivotal role in regeneration and tumorigenesis. Nat. Commun. 7, 11914 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  128. Colopy, S. A., Bjorling, D. E., Mulligan, W. A. & Bushman, W. A. Population of progenitor cells in the basal and intermediate layers of the murine bladder urothelium contributes to urothelial development and regeneration. Dev. Dynam. 243, 988–998 (2014).

    Article  CAS  Google Scholar 

  129. Li, C. et al. The C228T mutation of TERT promoter frequently occurs in bladder cancer stem cells and contributes to tumorigenesis of bladder cancer. Oncotarget 6, 19542–19551 (2015).

    PubMed  PubMed Central  Google Scholar 

  130. Harley, C. B. Telomerase is not an oncogene. Oncogene 21, 494–502 (2002).

    Article  PubMed  CAS  Google Scholar 

  131. Chiba, K. et al. Cancer-associated TERT promoter mutations abrogate telomerase silencing. eLife 4, e07918 (2015).

    Article  PubMed Central  Google Scholar 

  132. Campanella, N. C. et al. Low frequency of TERT promoter mutations in gastrointestinal stromal tumors (GISTs). Eur. J. Hum. Genet. 23, 877–879 (2015).

    Article  PubMed  CAS  Google Scholar 

  133. Epel, E. S. et al. Dynamics of telomerase activity in response to acute psychological stress. Brain Behav. Immun. 24, 531–539 (2010).

    Article  PubMed  CAS  Google Scholar 

  134. Fu, W. M., Lee, J., Guo, Z. H. & Mattson, M. P. Seizures and tissue injury induce telomerase in hippocampal microglial cells. Exp. Neurol. 178, 294–300 (2002).

    Article  PubMed  CAS  Google Scholar 

  135. Igarashi, H. & Sakaguchi, N. Telomerase activity is induced in human peripheral B lymphocytes by the stimulation to antigen receptor. Blood 89, 1299–1307 (1997).

    PubMed  CAS  Google Scholar 

  136. Ueda, M. et al. Evidence for UV-associated activation of telomerase in human skin. Cancer Res. 57, 370–374 (1997).

    PubMed  CAS  Google Scholar 

  137. Fantini, D. et al. A carcinogen-induced mouse model recapitulates the molecular alterations of human muscle invasive bladder cancer. Oncogene https://doi.org/10.1038/s41388-017-0099-6 (2018).

  138. Vail, E. et al. Telomerase reverse transcriptase promoter mutations in glandular lesions of the urinary bladder. Ann. Diagn. Pathol. 19, 301–305 (2015).

    Article  PubMed  Google Scholar 

  139. Di Meo, A., Bartlett, J., Cheng, Y. F., Pasic, M. D. & Yousef, G. M. Liquid biopsy: a step forward towards precision medicine in urologic malignancies. Mol. Cancer 16, 80 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  140. Cavallo, D. et al. Assessment of DNA damage and telomerase activity in exfoliated urinary cells as sensitive and noninvasive biomarkers for early diagnosis of bladder cancer in ex-workers of a rubber tyres industry. Biomed. Res. Int. 2014, 370907 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  141. Hosen, I. et al. TERT promoter mutations in clear cell renal cell carcinoma. Int. J. Cancer 136, 2448–2452 (2015).

    Article  PubMed  CAS  Google Scholar 

  142. Theodorescu, D. & Cech, T. R. Telomerase in bladder cancer: back to a better future? Eur. Urol. 65, 370–371 (2014).

    Article  PubMed  Google Scholar 

  143. Damm, K. et al. A highly selective telomerase inhibitor limiting human cancer cell proliferation. EMBO J. 20, 6958–6968 (2001).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  144. Dikmen, Z. G. et al. In vivo inhibition of lung cancer by GRN163L: a novel human telomerase inhibitor. Cancer Res. 65, 7866–7873 (2005).

    Article  PubMed  CAS  Google Scholar 

  145. Djojosubroto, M. W. et al. Telomerase antagonists GRN163 and GRN163L inhibit tumor growth and increase chemosensitivity of human hepatoma. Hepatology 42, 1127–1136 (2005).

    Article  PubMed  CAS  Google Scholar 

  146. Kumar, M. et al. CEBP factors regulate telomerase reverse transcriptase promoter activity in whey acidic protein-T mice during mammary carcinogenesis. Int. J. Cancer 132, 2032–2043 (2013).

    Article  PubMed  CAS  Google Scholar 

  147. Norton, J. C., Piatyszek, M. A., Wright, W. E., Shay, J. W. & Corey, D. R. Inhibition of human telomerase activity by peptide nucleic acids. Nat. Biotechnol. 14, 615–619 (1996).

    Article  PubMed  CAS  Google Scholar 

  148. Zahler, A. M., Williamson, J. R., Cech, T. R. & Prescott, D. M. Inhibition of telomerase by G-quartet DNA structures. Nature 350, 718–720 (1991).

    Article  PubMed  CAS  Google Scholar 

  149. Baerlocher, G. M. et al. Telomerase inhibitor imetelstat in patients with essential thrombocythemia. N. Engl. J. Med. 373, 920–928 (2015).

    Article  PubMed  CAS  Google Scholar 

  150. Chiappori, A. et al. A randomized phase II study of the telomerase inhibitor imetelstat as maintenance therapy for advanced non-small cell lung cancer [abstract]. Cancer Res. 73, 4460 (2013).

    Article  Google Scholar 

  151. Kozloff, M. et al. Phase I study of imetelstat (GRN163L) in combination with paclitaxel (P) and bevacizumab (B) in patients (pts) with locally recurrent or metastatic breast cancer (MBC). J. Clin. Oncol. 28, 2598–2598 (2010).

    Article  Google Scholar 

  152. Mender, I., Gryaznov, S., Dikmen, Z. G., Wright, W. E. & Shay, J. W. Induction of telomere dysfunction mediated by the telomerase substrate precursor 6-thio-2′-deoxyguanosine. Cancer Discov. 5, 82–95 (2015).

    Article  PubMed  CAS  Google Scholar 

  153. Mender, I., Gryaznov, S. & Shay, J. W. A novel telomerase substrate precursor rapidly induces telomere dysfunction in telomerase positive cancer cells but not telomerase silent normal cells. Oncoscience 22, 693–695 (2015).

    Article  Google Scholar 

  154. de Lange, T. Shelterin: the protein complex that shapes and safeguards human telomeres. Gene Dev. 19, 2100–2110 (2005).

    Article  PubMed  CAS  Google Scholar 

  155. Arnoult, N. & Karlseder, J. Complex interactions between the DNA-damage response and mammalian telomeres. Nat. Struct. Mol. Biol. 22, 859–866 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  156. Muraki, K. & Murnane, J. P. The DNA damage response at dysfunctional telomeres, and at interstitial and subtelomeric DNA double-strand breaks. Genes Genet. Syst. 92, 135–152 (2017).

    Article  PubMed  Google Scholar 

  157. Sfeir, A. & de Lange, T. Removal of shelterin reveals the telomere end-protection problem. Science 336, 593–597 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  158. Karlseder, J., Broccoli, D. & Dai, Y. M., Hardy, S. & de Lange, T. p53- and ATM-dependent apoptosis induced by telomeres lacking TRF2. Science 283, 1321–1325 (1999).

    Article  PubMed  CAS  Google Scholar 

  159. Chang, J., Dinney, C. P., Huang, M. S., Wu, X. F. & Gu, J. Genetic variants in telomere-maintenance genes and bladder cancer risk. PLoS ONE. 7, e30665 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  160. Liu, J. Y. et al. PinX1 suppresses bladder urothelial carcinoma cell proliferation via the inhibition of telomerase activity and p16/cyclin D1 pathway. Mol. Cancer 12, 148 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  161. Zhang, B. et al. Silencing PinX1 compromises telomere length maintenance as well as tumorigenicity in telomerase-positive human cancer cells. Cancer Res. 69, 75–83 (2009).

    Article  PubMed  CAS  Google Scholar 

  162. Yamaguchi, S. et al. Eribulin mesylate targets human telomerase reverse transcriptase in ovarian cancer cells. PLoS ONE 9, e112438 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  163. Hu, J. et al. Antitelomerase therapy provokes ALT and mitochondrial adaptive mechanisms in cancer. Cell 148, 651–663 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors researched data for the article, made substantial contributions to discussion of the article content, wrote, and reviewed and/or edited the manuscript before submission.

Corresponding author

Correspondence to Cagatay Günes.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Günes, C., Wezel, F., Southgate, J. et al. Implications of TERT promoter mutations and telomerase activity in urothelial carcinogenesis. Nat Rev Urol 15, 386–393 (2018). https://doi.org/10.1038/s41585-018-0001-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41585-018-0001-5

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing