Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Lupus nephritis-related chronic kidney disease

Abstract

Lupus nephritis is a common complication of systemic lupus erythematosus (SLE) and a determinant of overall morbidity and mortality, as lupus nephritis-related chronic kidney disease (CKD) drives cardiovascular disease and secondary immunodeficiency. Two lines of action are required to prevent the progression of lupus nephritis-related CKD: suppression of autoimmune SLE activity, which is a risk factor for immunopathology-related irreversible kidney injury, and management of non-immune risk factors that contribute to CKD progression. As each episode or relapse of active lupus nephritis implicates CKD progression, preventing flares of lupus nephritis is a key treatment target. Non-immune risk factors of CKD mostly include causes of nephron hyperfiltration, such as obesity, hypertension, sodium- or protein-rich diets and type 2 diabetes mellitus, as well as pregnancy. Nephrotoxic agents and smoking also drive kidney cell loss. Intrinsic risk factors for CKD progression include poor nephron endowment because of prematurity at birth, nephropathic genetic variants, ageing, male sex and previous or concomitant kidney diseases. Care for lupus nephritis involves the control of all modifiable risk factors of CKD progression. In addition, remnant nephron overload can be reduced using early dual therapy with inhibitors of the renin–angiotensin system and sodium–glucose transporter-2, whereas further renoprotective drug interventions are underway. As patients with lupus nephritis are at risk of CKD progression, they would all benefit from interdisciplinary care to minimize the risk of kidney failure, cardiovascular disease and infections.

Key points

  • All patients with lupus nephritis have chronic kidney disease (CKD), which increases the risk of cardiovascular manifestations and secondary immunodeficiency.

  • To minimize the risk of CKD progression, both immune and non-immune factors should be addressed.

  • Suppressing autoimmune activity of systemic lupus erythematosus reduces repeated episodes of inflammatory kidney injury.

  • Assessment of non-modifiable non-immune risk factors for CKD progression and cardiovascular events, including genetic susceptibilities, poor nephron endowment because of preterm birth, previous kidney injuries or ageing, can help to tailor the monitoring and management of lupus nephritis-associated CKD to patient-specific conditions.

  • Management of modifiable non-immune risk factors, such as obesity or weight gain, type 2 diabetes mellitus, arterial hypertension, sodium- and protein-rich diets, exposure to smoking and nephrotoxic agents, can further help to minimize CKD progression and risk of cardiovascular disease.

  • Therapy with an inhibitor of the renin–angiotensin system at the maximal tolerated dose and potentially combined with an SGLT2 inhibitor might benefit patients with persistent proteinuria and a reduced estimated glomerular filtration rate.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Fundamental concepts about kidney reserve and healthy kidney ageing versus chronic kidney disease.
Fig. 2: Immune mechanisms of lupus nephritis-related chronic kidney disease.
Fig. 3: Non-immune mechanisms of lupus nephritis-related chronic kidney disease.
Fig. 4: Management of lupus nephritis-related chronic kidney disease.

Similar content being viewed by others

References

  1. Anders, H.-J. et al. Lupus nephritis. Nat. Rev. Dis. Prim. 6, 7 (2020).

    Article  PubMed  Google Scholar 

  2. Zoccali, C. et al. Cardiovascular complications in chronic kidney disease: a review from the European Renal and Cardiovascular Medicine Working Group of the European Renal Association. Cardiovasc. Res. 119, 2017–2032 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Barrera-Chimal, J., Jaisser, F. & Anders, H.-J. The mineralocorticoid receptor in chronic kidney disease. Br. J. Pharmacol. 179, 3152–3164 (2022).

    Article  CAS  PubMed  Google Scholar 

  4. Faul, C. et al. FGF23 induces left ventricular hypertrophy. J. Clin. Invest. 121, 4393–4408 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Speer, T. et al. Abnormal high-density lipoprotein induces endothelial dysfunction via activation of Toll-like receptor-2. Immunity 38, 754–768 (2013).

    Article  CAS  PubMed  Google Scholar 

  6. Jankowski, J., Floege, J., Fliser, D., Böhm, M. & Marx, N. Cardiovascular disease in chronic kidney disease: pathophysiological insights and therapeutic options. Circulation 143, 1157–1172 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Jovanovich, A., Isakova, T. & Stubbs, J. Microbiome and cardiovascular disease in CKD. Clin. J. Am. Soc. Nephrol. 13, 1598–1604 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Williams, R. C., Malone, C. C., Miller, R. T. & Silvestris, F. Urinary loss of immunoglobulin G anti-F(ab′)2 and anti-DNA antibody in systemic lupus erythematosus nephritis. J. Lab. Clin. Med. 132, 210–222 (1998).

    Article  CAS  PubMed  Google Scholar 

  9. Steiger, S., Rossaint, J., Zarbock, A. & Anders, H.-J. Secondary immunodeficiency related to kidney disease (SIDKD) — definition, unmet need, and mechanisms. J. Am. Soc. Nephrol. 33, 259–278 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Go, A. S., Chertow, G. M., Fan, D., McCulloch, C. E. & Hsu, C. Chronic kidney disease and the risks of death, cardiovascular events, and hospitalization. N. Engl. J. Med. 351, 1296–1305 (2004).

    Article  CAS  PubMed  Google Scholar 

  11. Fanouriakis, A. et al. EULAR recommendations for the management of systemic lupus erythematosus: 2023 update. Ann. Rheum. Dis. https://doi.org/10.1136/ard-2023-224762 (2023).

    Article  PubMed  Google Scholar 

  12. Anders, H.-J., Fernandez-Juarez, G. M., Vaglio, A., Romagnani, P. & Floege, J. CKD therapy to improve outcomes of immune-mediated glomerular diseases. Nephrol. Dial. Transpl. 38, ii50–ii57 (2023).

    Article  Google Scholar 

  13. Perez-Arias, A. A. et al. The influence of repeated flares in response to therapy and prognosis in lupus nephritis. Nephrol. Dial. Transpl. 38, 884–893 (2023).

    Article  Google Scholar 

  14. Summary of recommendation statements. Kidney Int. Suppl. 3, 5–14 (2013).

  15. Malvar, A. et al. Remission of lupus nephritis: the trajectory of histological response in successfully treated patients. Lupus Sci. Med. 10, e000932 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Malvar, A., Alberton, V., Recalde, C. & Heguilen, R. Repeat kidney biopsy findings of lupus nephritis patients in clinical remission treated with mycophenolate associated with belimumab or mycophenolate plus standard of care therapy. A ‘post-hoc’ analysis of participants in the BLISS-LN and open label extension study belonging to a single center. Lupus 32, 1394–1401 (2023).

    Article  CAS  PubMed  Google Scholar 

  17. Tangren, J. S. et al. Pregnancy outcomes after clinical recovery from AKI. J. Am. Soc. Nephrol. 28, 1566–1574 (2017).

    Article  CAS  PubMed  Google Scholar 

  18. Moroni, G. et al. Maternal outcome in pregnant women with lupus nephritis. A prospective multicenter study. J. Autoimmun. 74, 194–200 (2016).

    Article  PubMed  Google Scholar 

  19. Kaul, A. et al. Systemic lupus erythematosus. Nat. Rev. Dis. Prim. 2, 16039 (2016).

    Article  PubMed  Google Scholar 

  20. Ali, A. Y., Abdelaziz, T. S. & Behiry, M. E. The prevalence and causes of non-adherence to immunosuppressive medications in patients with lupus nephritis flares. Curr. Rheumatol. Rev. 16, 245–248 (2020).

    Article  PubMed  Google Scholar 

  21. Garg, S., Unnithan, R., Hansen, K. E., Costedoat-Chalumeau, N. & Bartels, C. M. Clinical significance of monitoring hydroxychloroquine levels in patients with systemic lupus erythematosus: a systematic review and meta-analysis. Arthritis Care Res. 73, 707–716 (2021).

    Article  CAS  Google Scholar 

  22. Petri, M. et al. Derivation and validation of the Systemic Lupus International Collaborating Clinics classification criteria for systemic lupus erythematosus. Arthritis Rheum. 64, 2677–2686 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Sabino, A. R. P. et al. Detection of podocyturia in patients with lupus nephritis. J. Bras. Nefrol. 35, 252–258 (2013).

    Article  PubMed  Google Scholar 

  24. Kopp, J. B. et al. Podocytopathies. Nat. Rev. Dis. Prim. 6, 68 (2020).

    Article  PubMed  Google Scholar 

  25. Luyckx, V. A. et al. Nephron overload as a therapeutic target to maximize kidney lifespan. Nat. Rev. Nephrol. 18, 171–183 (2022).

    Article  PubMed  Google Scholar 

  26. Conrad, N. et al. Incidence, prevalence, and co-occurrence of autoimmune disorders over time and by age, sex, and socioeconomic status: a population-based cohort study of 22 million individuals in the UK. Lancet 401, 1878–1890 (2023).

    Article  PubMed  Google Scholar 

  27. Ocampo-Piraquive, V., Nieto-Aristizábal, I., Cañas, C. A. & Tobón, G. J. Mortality in systemic lupus erythematosus: causes, predictors and interventions. Expert. Rev. Clin. Immunol. 14, 1043–1053 (2018).

    Article  CAS  PubMed  Google Scholar 

  28. Teh, C. L. et al. Causes and predictors of mortality in biopsy-proven lupus nephritis: the Sarawak experience. Clin. Kidney J. 11, 56–61 (2018).

    Article  PubMed  Google Scholar 

  29. Heerspink, H. J. L. et al. Dapagliflozin in patients with chronic kidney disease. N. Engl. J. Med. 383, 1436–1446 (2020).

    Article  CAS  PubMed  Google Scholar 

  30. Inoue, T. & Kurosaki, T. Memory B cells. Nat. Rev. Immunol. https://doi.org/10.1038/s41577-023-00897-3 (2023).

    Article  PubMed  Google Scholar 

  31. Raphael, I., Joern, R. R. & Forsthuber, T. G. Memory CD4+ T cells in immunity and autoimmune diseases. Cells 9, 531 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Halliley, J. L. et al. Long-lived plasma cells are contained within the CD19CD38hiCD138+ subset in human bone marrow. Immunity 43, 132–145 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Liu, X., Yao, J., Zhao, Y., Wang, J. & Qi, H. Heterogeneous plasma cells and long-lived subsets in response to immunization, autoantigen and microbiota. Nat. Immunol. 23, 1564–1576 (2022).

    Article  CAS  PubMed  Google Scholar 

  34. Fervenza, F. C. et al. Rituximab or cyclosporine in the treatment of membranous nephropathy. N. Engl. J. Med. 381, 36–46 (2019).

    Article  CAS  PubMed  Google Scholar 

  35. Lee, D. S. W., Rojas, O. L. & Gommerman, J. L. B cell depletion therapies in autoimmune disease: advances and mechanistic insights. Nat. Rev. Drug. Discov. 20, 179–199 (2021).

    Article  CAS  PubMed  Google Scholar 

  36. Kansal, R. et al. Sustained B cell depletion by CD19-targeted CAR T cells is a highly effective treatment for murine lupus. Sci. Transl. Med. 11, eaav1648 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Mackensen, A. et al. Anti-CD19 CAR T cell therapy for refractory systemic lupus erythematosus. Nat. Med. 28, 2124–2132 (2022).

    Article  CAS  PubMed  Google Scholar 

  38. Mougiakakos, D. et al. CD19-targeted CAR T cells in refractory systemic lupus erythematosus. N. Engl. J. Med. 385, 567–569 (2021).

    Article  PubMed  Google Scholar 

  39. Furie, R. A. et al. B-cell depletion with obinutuzumab for the treatment of proliferative lupus nephritis: a randomised, double-blind, placebo-controlled trial. Ann. Rheum. Dis. 81, 100–107 (2022).

    Article  CAS  PubMed  Google Scholar 

  40. Rovin, B. H. et al. Efficacy and safety of voclosporin versus placebo for lupus nephritis (AURORA 1): a double-blind, randomised, multicentre, placebo-controlled, phase 3 trial. Lancet 397, 2070–2080 (2021).

    Article  CAS  PubMed  Google Scholar 

  41. Ostendorf, L. et al. Targeting CD38 with daratumumab in refractory systemic lupus erythematosus. N. Engl. J. Med. 383, 1149–1155 (2020).

    Article  CAS  PubMed  Google Scholar 

  42. Alvarado, A. S. et al. The value of repeat kidney biopsy in quiescent Argentinian lupus nephritis patients. Lupus 23, 840–847 (2014).

    Article  CAS  PubMed  Google Scholar 

  43. De Rosa, M. et al. A prospective observational cohort study highlights kidney biopsy findings of lupus nephritis patients in remission who flare following withdrawal of maintenance therapy. Kidney Int. 94, 788–794 (2018).

    Article  PubMed  Google Scholar 

  44. Levey, A. S. et al. Change in albuminuria and GFR as end points for clinical trials in early stages of CKD: a scientific workshop sponsored by the National Kidney Foundation in collaboration with the US Food and Drug Administration and European Medicines Agency. Am. J. Kidney Dis. 75, 84–104 (2020).

    Article  CAS  PubMed  Google Scholar 

  45. Heerspink, H. J. L. et al. Change in albuminuria and GFR slope as joint surrogate end points for kidney failure: implications for phase 2 clinical trials in CKD. J. Am. Soc. Nephrol. 34, 955–968 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Armenta, A., Madero, M. & Rodriguez-Iturbe, B. Functional reserve of the kidney. Clin. J. Am. Soc. Nephrol. 17, 458–466 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Ku, E., Lee, B. J., Wei, J. & Weir, M. R. Hypertension in CKD: core curriculum 2019. Am. J. Kidney Dis. 74, 120–131 (2019).

    Article  PubMed  Google Scholar 

  48. Romagnani, P. et al. Chronic kidney disease. Nat. Rev. Dis. Prim. 3, 17088 (2017).

    Article  PubMed  Google Scholar 

  49. Bomback, A. S. & Markowitz, G. S. Lupus podocytopathy: a distinct entity. Clin. J. Am. Soc. Nephrol. 11, 547–548 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Yuan, X. et al. Genetic variants of the COL4A3, COL4A4, and COL4A5 genes contribute to thinned glomerular basement membrane lesions in sporadic IgA nephropathy patients. J. Am. Soc. Nephrol. 34, 132–144 (2023).

    Article  PubMed  Google Scholar 

  51. Savige, J. & Harraka, P. Pathogenic variants in the genes affected in Alport syndrome (COL4A3–COL4A5) and their association with other kidney conditions: a review. Am. J. Kidney Dis. 78, 857–864 (2021).

    Article  CAS  PubMed  Google Scholar 

  52. Anders, H.-J. et al. The management of lupus nephritis as proposed by EULAR/ERA 2019 versus KDIGO 2021. Nephrol. Dial. Transpl. 38, 551–561 (2023).

    Article  Google Scholar 

  53. Romagnani, P. et al. Next generation sequencing and functional analysis of patient urine renal progenitor-derived podocytes to unravel the diagnosis underlying refractory lupus nephritis. Nephrol. Dial. Transpl. 31, 1541–1545 (2016).

    Article  CAS  Google Scholar 

  54. Carrero, J. J., Hecking, M., Chesnaye, N. C. & Jager, K. J. Sex and gender disparities in the epidemiology and outcomes of chronic kidney disease. Nat. Rev. Nephrol. 14, 151–164 (2018).

    Article  PubMed  Google Scholar 

  55. de Carvalho, J. F., do Nascimento, A. P., Testagrossa, L. A., Barros, R. T. & Bonfá, E. Male gender results in more severe lupus nephritis. Rheumatol. Int. 30, 1311–1315 (2010).

    Article  PubMed  Google Scholar 

  56. Colafella, K. M. M. & Denton, K. M. Sex-specific differences in hypertension and associated cardiovascular disease. Nat. Rev. Nephrol. 14, 185–201 (2018).

    Article  PubMed  Google Scholar 

  57. Luyckx, V. A. et al. Effect of fetal and child health on kidney development and long-term risk of hypertension and kidney disease. Lancet 382, 273–283 (2013).

    Article  PubMed  Google Scholar 

  58. Luyckx, V. A. et al. A developmental approach to the prevention of hypertension and kidney disease: a report from the Low Birth Weight and Nephron Number Working Group. Lancet 390, 424–428 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  59. Keller, G., Zimmer, G., Mall, G., Ritz, E. & Amann, K. Nephron number in patients with primary hypertension. N. Engl. J. Med. 348, 101–108 (2003).

    Article  PubMed  Google Scholar 

  60. Nuffield Department of Population Health Renal Studies Group & SGLT2 inhibitor Meta-Analysis Cardio-Renal Trialists’ Consortium. Impact of diabetes on the effects of sodium glucose co-transporter-2 inhibitors on kidney outcomes: collaborative meta-analysis of large placebo-controlled trials. Lancet 400, 1788–1801 (2022).

    Article  Google Scholar 

  61. Caravaca-Fontán, F. et al. Sodium-glucose cotransporter 2 inhibition in primary and secondary glomerulonephritis. Nephrol. Dial. Transpl. 39, 328–340 (2023).

    Article  Google Scholar 

  62. Zhao, X. et al. SGLT2 inhibitors alleviated podocyte damage in lupus nephritis by decreasing inflammation and enhancing autophagy. Ann. Rheum. Dis. 82, 1328–1340 (2023).

    Article  CAS  PubMed  Google Scholar 

  63. Soler, M. J., Jacobs Cachá, C. & Anders, H.-J. Correspondence on: ‘SGLT2 inhibitors alleviated podocyte damage in lupus nephritis by decreasing inflammation and enhancing autophagy’ by Zhao et al. Ann. Rheum. Dis. https://doi.org/10.1136/ard-2023-225248 (2024).

    Article  PubMed  Google Scholar 

  64. Kellum, J. A. et al. Acute kidney injury. Nat. Rev. Dis. Prim. 7, 52 (2021).

    Article  PubMed  Google Scholar 

  65. Perico, N., Askenazi, D., Cortinovis, M. & Remuzzi, G. Maternal and environmental risk factors for neonatal AKI and its long-term consequences. Nat. Rev. Nephrol. 14, 688–703 (2018).

    Article  CAS  PubMed  Google Scholar 

  66. McCullough, P. A. et al. Diagnosis of acute kidney injury using functional and injury biomarkers: workgroup statements from the tenth acute dialysis quality initiative consensus conference. Contrib. Nephrol. 182, 13–29 (2013).

    Article  PubMed  Google Scholar 

  67. Denic, A. et al. Single-nephron glomerular filtration rate in healthy adults. N. Engl. J. Med. 376, 2349–2357 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  68. Herold, J. M. et al. Population-based reference values for kidney function and kidney function decline in 25- to 95-year-old Germans without and with diabetes. Kidney Int. S0085-S2538(24)00528–3 (2024).

  69. Denic, A. et al. The substantial loss of nephrons in healthy human kidneys with aging. J. Am. Soc. Nephrol. 28, 313–320 (2017).

    Article  PubMed  Google Scholar 

  70. Denic, A. et al. Clinical and pathology findings associate consistently with larger glomerular volume. J. Am. Soc. Nephrol. 29, 1960–1969 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Chen, Y. et al. Obesity management and chronic kidney disease. Semin. Nephrol. 41, 392–402 (2021).

    Article  CAS  PubMed  Google Scholar 

  72. Jastreboff, A. M. et al. Tirzepatide once weekly for the treatment of obesity. N. Engl. J. Med. 387, 205–216 (2022).

    Article  CAS  PubMed  Google Scholar 

  73. Vallon, V. & Thomson, S. C. The tubular hypothesis of nephron filtration and diabetic kidney disease. Nat. Rev. Nephrol. 16, 317–336 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Anders, H.-J., Davis, J. M. & Thurau, K. Nephron protection in diabetic kidney disease. N. Engl. J. Med. 375, 2096–2098 (2016).

    Article  PubMed  Google Scholar 

  75. Hansen, R. B., Falasinnu, T., Faurschou, M., Jacobsen, S. & Simard, J. F. Risk of end-stage renal disease in patients with systemic lupus erythematosus and diabetes mellitus: a Danish nationwide cohort study. Arthritis Care Res. 75, 1871–1877 (2023).

    Article  CAS  Google Scholar 

  76. Carriazo, S., Vanessa Perez-Gomez, M. & Ortiz, A. Hypertensive nephropathy: a major roadblock hindering the advance of precision nephrology. Clin. Kidney J. 13, 504–509 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Carlström, M., Wilcox, C. S. & Arendshorst, W. J. Renal autoregulation in health and disease. Physiol. Rev. 95, 405–511 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  78. Burnier, M. & Damianaki, A. Hypertension as cardiovascular risk factor in chronic kidney disease. Circ. Res. 132, 1050–1063 (2023).

    Article  CAS  PubMed  Google Scholar 

  79. Georgianos, P. I. & Agarwal, R. Hypertension in chronic kidney disease-treatment standard 2023. Nephrol. Dial. Transpl. 38, 2694–2703 (2023).

    Article  CAS  Google Scholar 

  80. Cornelis, T., Odutayo, A., Keunen, J. & Hladunewich, M. The kidney in normal pregnancy and preeclampsia. Semin. Nephrol. 31, 4–14 (2011).

    Article  CAS  PubMed  Google Scholar 

  81. Normand, G. et al. Not only disease activity but also chronic hypertension and overweight are determinants of pregnancy outcomes in patients with systemic lupus erythematosus. Lupus 28, 529–537 (2019).

    Article  CAS  PubMed  Google Scholar 

  82. Steele, S. E., Terry, J. E., Page, L. M. & Girling, J. C. Pregnancy in women known to be living with a single kidney. Obstet. Med. 12, 22–26 (2019).

    Article  PubMed  Google Scholar 

  83. Koratala, A. & Kazory, A. Renal functional reserve and pregnancy outcomes. Kidney Int. 92, 768 (2017).

    Article  PubMed  Google Scholar 

  84. Lightstone, L. & Hladunewich, M. A. Lupus nephritis and pregnancy: concerns and management. Semin. Nephrol. 37, 347–353 (2017).

    Article  PubMed  Google Scholar 

  85. Verma, A. & Popa, C. The interplay between dietary sodium intake and proteinuria in CKD. Kidney Int. Rep. 8, 1133–1136 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  86. Kriz, W. & Lemley, K. V. Potential relevance of shear stress for slit diaphragm and podocyte function. Kidney Int. 91, 1283–1286 (2017).

    Article  PubMed  Google Scholar 

  87. Elsurer Afsar, R., Afsar, B. & Ikizler, T. A. Sodium management in kidney disease: old stories, new tricks. Semin. Nephrol. 43, 151407 (2023).

    Article  PubMed  Google Scholar 

  88. Lambers Heerspink, H. J., de Borst, M. H., Bakker, S. J. L. & Navis, G. J. Improving the efficacy of RAAS blockade in patients with chronic kidney disease. Nat. Rev. Nephrol. 9, 112–121 (2013).

    Article  PubMed  Google Scholar 

  89. Ko, G.-J., Rhee, C. M., Kalantar-Zadeh, K. & Joshi, S. The effects of high-protein diets on kidney health and longevity. J. Am. Soc. Nephrol. 31, 1667–1679 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Kidney Disease: Improving Global Outcomes (KDIGO) CKD Work Group. KDIGO 2024 clinical practice guideline for the evaluation and management of chronic kidney disease. Kidney Int. 105, S117–S314 (2024).

    Article  Google Scholar 

  91. Lee, S. et al. Smoking, smoking cessation, and progression of chronic kidney disease: results from KNOW-CKD Study. Nicotine Tob. Res. 23, 92–98 (2021).

    Article  PubMed  Google Scholar 

  92. Ungprasert, P., Cheungpasitporn, W., Crowson, C. S. & Matteson, E. L. Individual non-steroidal anti-inflammatory drugs and risk of acute kidney injury: a systematic review and meta-analysis of observational studies. Eur. J. Intern. Med. 26, 285–291 (2015).

    Article  CAS  PubMed  Google Scholar 

  93. Lazarus, B. et al. Proton pump inhibitor use and the risk of chronic kidney disease. JAMA Intern. Med. 176, 238–246 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  94. Wan, E. Y. F. et al. Comparative risks of nonsteroidal anti-inflammatory drugs on CKD. Clin. J. Am. Soc. Nephrol. 16, 898–907 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Rovin, B. H. et al. KDIGO 2024 clinical practice guideline for the management of LUPUS NEPHRITIS. Kidney Int. 105, S1–S69 (2024).

    Article  Google Scholar 

  96. Kale, A., Shelke, V., Lei, Y., Gaikwad, A. B. & Anders, H.-J. Voclosporin: unique chemistry, pharmacology and toxicity profile, and possible options for implementation into the management of lupus nephritis. Cells 12, 2440 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Van Schaik, M. et al. Long-term renal and cardiovascular risks of tacrolimus in patients with lupus nephritis. Nephrol. Dial. Transpl. https://doi.org/10.1093/ndt/gfae113 (2024).

  98. Saxena, A., et al. Long-term use of voclosporin in patients with class V lupus nephritis: results from the AURORA 2 continuation study. Abstract number 0355, ACR convergence 2022. Arthritis Rheumatol 74 (2022).

  99. Fanouriakis, A. et al. 2019 update of the Joint European League Against Rheumatism and European Renal Association-European Dialysis and Transplant Association (EULAR/ERA-EDTA) recommendations for the management of lupus nephritis. Ann. Rheum. Dis. 79, 713–723 (2020).

    Article  CAS  PubMed  Google Scholar 

  100. Cortinovis, M., Perico, N., Ruggenenti, P., Remuzzi, A. & Remuzzi, G. Glomerular hyperfiltration. Nat. Rev. Nephrol. 18, 435–451 (2022).

    Article  PubMed  Google Scholar 

  101. Fishel Bartal, M., Lindheimer, M. D. & Sibai, B. M. Proteinuria during pregnancy: definition, pathophysiology, methodology, and clinical significance. Am. J. Obstet. Gynecol. 226, S819–S834 (2022).

    Article  CAS  PubMed  Google Scholar 

  102. Koo, H. S., Kim, S. & Chin, H. J. Remission of proteinuria indicates good prognosis in patients with diffuse proliferative lupus nephritis. Lupus 25, 3–11 (2016).

    Article  CAS  PubMed  Google Scholar 

  103. Weeding, E., Fava, A., Magder, L., Goldman, D. & Petri, M. One-third of patients with lupus nephritis classified as complete responders continue to accrue progressive renal damage despite resolution of proteinuria. Lupus Sci. Med. 9, e000684 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  104. Anders, H.-J., Peired, A. J. & Romagnani, P. SGLT2 inhibition requires reconsideration of fundamental paradigms in chronic kidney disease, ‘diabetic nephropathy’, IgA nephropathy and podocytopathies with FSGS lesions. Nephrol. Dial. Transpl. 37, 1609–1615 (2022).

    Article  CAS  Google Scholar 

  105. Castro, M., Ugolini-Lopes, M., Borba, E. F., Bonfá, E. & Seguro, L. P. C. Effectiveness of renoprotective approaches for persistent proteinuria in lupus nephritis: more than just immunosuppression. Lupus 27, 2215–2219 (2018).

    Article  CAS  PubMed  Google Scholar 

  106. Malvar, A. et al. Kidney biopsy-based management of maintenance immunosuppression is safe and may ameliorate flare rate in lupus nephritis. Kidney Int. 97, 156–162 (2020).

    Article  CAS  PubMed  Google Scholar 

  107. Gatto, M. et al. Clinical and histological findings at second but not at first kidney biopsy predict end-stage kidney disease in a large multicentric cohort of patients with active lupus nephritis. Lupus Sci. Med. 9, e000689 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  108. Anders, H.-J. Re-biopsy in lupus nephritis. Ann. Transl. Med. 6, S41 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  109. Ardoin, S. et al. An approach to validating criteria for proteinuric flare in systemic lupus erythematosus glomerulonephritis. Arthritis Rheum. 63, 2031–2037 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  110. Cowan, A. J. et al. Diagnosis and management of multiple myeloma: a review. J. Am. Med. Assoc. 327, 464–477 (2022).

    Article  CAS  Google Scholar 

  111. Schett, G., Mackensen, A. & Mougiakakos, D. CAR T-cell therapy in autoimmune diseases. Lancet 402, 2034–2044 (2023).

    Article  CAS  PubMed  Google Scholar 

  112. Arazi, A. et al. The immune cell landscape in kidneys of patients with lupus nephritis. Nat. Immunol. 20, 902–914 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Li, N. L., Birmingham, D. J. & Rovin, B. H. Expanding the role of complement therapies: the case for lupus nephritis. J. Clin. Med. 10, 626 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Wang, S. et al. Urine proteomics link complement activation with interstitial fibrosis/tubular atrophy in lupus nephritis patients. Semin. Arthritis Rheum. 63, 152263 (2023).

    Article  CAS  PubMed  Google Scholar 

  115. Mansur, J. B., Sabino, A. R. P., Nishida, S. K. & Kirsztajn, G. M. Is there a role for urinary podocyte excretion assessment in lupus nephritis? Ren. Fail. 38, 643–647 (2016).

    Article  CAS  PubMed  Google Scholar 

  116. Rovin, B. H. et al. Efficacy and safety of rituximab in patients with active proliferative lupus nephritis: the Lupus Nephritis Assessment with Rituximab study. Arthritis Rheum. 64, 1215–1226 (2012).

    Article  CAS  PubMed  Google Scholar 

  117. Agarwal, R. et al. Cardiovascular and kidney outcomes with finerenone in patients with type 2 diabetes and chronic kidney disease: the FIDELITY pooled analysis. Eur. Heart J. 43, 474–484 (2022).

    Article  CAS  PubMed  Google Scholar 

  118. Heerspink, H. J. L. et al. Design and baseline characteristics of the Finerenone, in addition to standard of care, on the progression of kidney disease in patients with Non-Diabetic Chronic Kidney Disease (FIND-CKD) randomized trial. Nephrol. Dial. Transpl. https://doi.org/10.1093/ndt/gfae132 (2024).

  119. Colhoun, H. M. et al. Long-term kidney outcomes of semaglutide in obesity and cardiovascular disease in the SELECT trial. Nat. Med. 30, 2058–2066 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Perkovic, V. et al. Effects of semaglutide on chronic kidney disease in patients with type 2 diabetes. N. Engl. J. Med. 391, 109–121 (2024).

    Article  CAS  PubMed  Google Scholar 

  121. Rovin, B. H. et al. Efficacy and safety of sparsentan versus irbesartan in patients with IgA nephropathy (PROTECT): 2-year results from a randomised, active-controlled, phase 3 trial. Lancet 402, 2077–2090 (2023).

    Article  CAS  PubMed  Google Scholar 

  122. Heerspink, H. J. L. et al. Zibotentan in combination with dapagliflozin compared with dapagliflozin in patients with chronic kidney disease (ZENITH-CKD): a multicentre, randomised, active-controlled, phase 2b, clinical trial. Lancet 402, 2004–2017 (2023).

    Article  CAS  PubMed  Google Scholar 

  123. Smeijer, J. D. et al. Effects of zibotentan alone and in combination with dapagliflozin on fluid retention in patients with CKD. J. Am. Soc. Nephrol. https://doi.org/10.1681/ASN.0000000000000436 (2024).

    Article  PubMed  Google Scholar 

  124. Tektonidou, M. G., Dasgupta, A. & Ward, M. M. Risk of end-stage renal disease in patients with lupus nephritis, 1971–2015: a systematic review and Bayesian meta-analysis. Arthritis Rheumatol. 68, 1432–1441 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

H.-J.A. was supported by the Deutsche Forschungsgemeinschaft AN372/29-1 and 30-1.

Author information

Authors and Affiliations

Authors

Contributions

All authors researched data for the article. All authors contributed substantially to discussion of the content. H.-J.A. wrote the first draft of the article. All authors reviewed and edited the manuscript before submission.

Corresponding author

Correspondence to Hans-Joachim Anders.

Ethics declarations

Competing interests

H.-J.A. has received consultancy and lecture fees from Otsuka, GSK, AstraZeneca, Bayer, Boehringer Ingelheim, Roche, Novartis and SOBI. J.L. declares no competing interests.

Peer review

Peer review information

Nature Reviews Rheumatology thanks Tak-Mao Chan, Mariele Gatto and the other, anonymous, reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lichtnekert, J., Anders, HJ. Lupus nephritis-related chronic kidney disease. Nat Rev Rheumatol (2024). https://doi.org/10.1038/s41584-024-01158-w

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41584-024-01158-w

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing