Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

An interdisciplinary perspective on peripheral drivers of pain in rheumatoid arthritis

Abstract

Pain is one of the most debilitating symptoms of rheumatoid arthritis (RA), and yet remains poorly understood, especially when pain occurs in the absence of synovitis. Without active inflammation, experts most often attribute joint pain to central nervous system dysfunction. However, advances in the past 5 years in both immunology and neuroscience research suggest that chronic pain in RA is also driven by a variety of abnormal interactions between peripheral neurons and mediators produced by resident cells in the local joint environment. In this Review, we discuss these novel insights from an interdisciplinary neuro-immune perspective. We outline a potential working model for the peripheral drivers of pain in RA, which includes autoantibodies, resident immune and mesenchymal cells and their interactions with different subtypes of peripheral sensory neurons. We also offer suggestions for how future collaborative research could be designed to accelerate analgesic drug development.

Key points

  • With the advent of biologic drugs bringing ever-improving disease control, pain is emerging as one of the most important remaining symptoms in rheumatoid arthritis.

  • Pain mechanisms in rheumatoid arthritis are still not fully understood, especially when pain is uncoupled from joint inflammation.

  • Emerging evidence implicates not only immune cells and cytokines but also autoantibodies and mesenchymal cells in arthritis-induced neuronal hyperactivity.

  • Efforts towards large collaborative and interdisciplinary consortia to address specific questions are promising and valuable in accelerating our understanding of pain in rheumatoid arthritis.

  • Recognizing pain as a distinct and essential clinical outcome in addition to disease activity and tissue damage is vital.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Peripheral innervation of joints.
Fig. 2: Examples of prototypical diagrams of reviews on peripheral neuron sensitization.
Fig. 3: Emerging mechanistic model of rheumatoid arthritis pain.

Similar content being viewed by others

References

  1. Vergne-Salle, P. et al. The burden of pain in rheumatoid arthritis: impact of disease activity and psychological factors. Eur. J. Pain. 24, 1979–1989 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Svensson, B., Forslind, K. & Andersson, M. Unacceptable pain in the BARFOT inception cohort of patients with rheumatoid arthritis: a long-term study. Scand. J. Rheumatol. 49, 371-378, (2020).

    Article  CAS  PubMed  Google Scholar 

  3. Matcham, F. et al. The impact of rheumatoid arthritis on quality-of-life assessed using the SF-36: a systematic review and meta-analysis. Semin. Arthritis Rheum. 44, 123–130 (2014).

    Article  PubMed  Google Scholar 

  4. Matcham, F., Rayner, L., Steer, S. & Hotopf, M. The prevalence of depression in rheumatoid arthritis: a systematic review and meta-analysis. Rheumatology 52, 2136–2148 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Bagnato, G. et al. Pain threshold and intensity in rheumatic patients: correlations with the Hamilton Depression Rating scale. Clin. Rheumatol. 34, 555–561 (2015).

    Article  PubMed  Google Scholar 

  6. Barrett, E. M., Scott, D. G. I., Wiles, N. J. & Symmons, D. P. M. The impact of rheumatoid arthritis on employment status in the early years of disease: a UK community-based study. Rheumatology 39, 1403–1409 (2000).

    Article  CAS  PubMed  Google Scholar 

  7. Olofsson, T., Söderling, J. K., Gülfe, A., Kristensen, L. E. & Wallman, J. K. Patient-reported outcomes are more important than objective inflammatory markers for sick leave in biologics-treated patients with rheumatoid arthritis. Arthritis Care Res. 70, 1712–1716 (2018).

    Article  CAS  Google Scholar 

  8. Smolen, J. S. et al. Rheumatoid arthritis. Nat. Rev. Dis. Prim. 4, 18001–18001 (2018).

    Article  PubMed  Google Scholar 

  9. Burmester, G. R. & Pope, J. E. Novel treatment strategies in rheumatoid arthritis. Lancet 389, 2338–2348 (2017).

    Article  PubMed  Google Scholar 

  10. Gullick, N. J. et al. Real world long-term impact of intensive treatment on disease activity, disability and health-related quality of life in rheumatoid arthritis. BMC Rheumatol. 3, 6 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Lee, Y. C. et al. Pain persists in DAS28 rheumatoid arthritis remission but not in ACR/EULAR remission: a longitudinal observational study. Arthritis Res. Ther. 13, R83–R83 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  12. McWilliams, D. F. et al. Discrete trajectories of resolving and persistent pain in people with rheumatoid arthritis despite undergoing treatment for inflammation: results from three UK cohorts. J. Pain. 20, 716–727 (2019).

    Article  PubMed  Google Scholar 

  13. Cunha-Miranda, L., Costa, L. & Ribeiro, J. S. NEAR study: needs and expectations in rheumatoid arthritis — do we know our patients needs? Acta Reumatol. Port. 35, 314–323 (2010).

    PubMed  Google Scholar 

  14. Borenstein, D. et al. Report of the American College of Rheumatology pain management task force. Arthritis Care Res. 62, 590–599 (2010).

    Article  Google Scholar 

  15. Versus Arthritis. A research roadmap for pain. https://www.versusarthritis.org/media/1672/research-roadmap-pain.pdf (2018).

  16. Sunzini, F., Schrepf, A., Clauw, D. J. & Basu, N. The biology of pain: through the rheumatology lens. Arthritis Rheumatol. 75, 650–660 (2023).

    Article  PubMed  Google Scholar 

  17. Stack, R. J., Sahni, M., Mallen, C. D. & Raza, K. Symptom complexes at the earliest phases of rheumatoid arthritis: a synthesis of the qualitative literature. Arthritis Care Res. 65, 1916–1926 (2013).

    Article  Google Scholar 

  18. Wagstaff, S., Smith, O. V. & Wood, P. H. Verbal pain descriptors used by patients with arthritis. Ann. Rheum. Dis. 44, 262–265 (1985).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Rutter-Locher, Z. et al. Comparative analysis of centrally mediated and inflammatory pain experiences amongst patients diagnosed with rheumatoid arthritis: a multimethods study. Health Expect. 27, e14090 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Rutter-Locher, Z. et al. A systematic review and meta-analysis of questionnaires to screen for pain sensitisation and neuropathic like pain in inflammatory arthritis. Semin. Arthritis Rheum. 61, 152207 (2023).

    Article  PubMed  Google Scholar 

  21. Smolen, J. S., Aletaha, D. & McInnes, I. B. Rheumatoid arthritis. Lancet 388, 2023–2038 (2016).

    Article  CAS  PubMed  Google Scholar 

  22. McInnes, I. B. & Schett, G. Pathogenetic insights from the treatment of rheumatoid arthritis. Lancet 389, 2328–2337 (2017).

    Article  CAS  PubMed  Google Scholar 

  23. Zhang, A. & Lee, Y. C. Mechanisms for joint pain in rheumatoid arthritis (RA): from cytokines to central sensitization. Curr. Osteoporos. Rep. 16, 603–610 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Cohen, S. B. et al. Rituximab for rheumatoid arthritis refractory to anti-tumor necrosis factor therapy: results of a multicenter, randomized, double-blind, placebo-controlled, phase III trial evaluating primary efficacy and safety at twenty-four weeks. Arthritis Rheum. 54, 2793–2806 (2006).

    Article  CAS  PubMed  Google Scholar 

  25. Maini, R. et al. Infliximab (chimeric anti-tumour necrosis factor α monoclonal antibody) versus placebo in rheumatoid arthritis patients receiving concomitant methotrexate: a randomised phase III trial. Lancet 354, 1932–1939 (1999).

    Article  CAS  PubMed  Google Scholar 

  26. Weinblatt, M. E. et al. Adalimumab, a fully human anti-tumor necrosis factor α monoclonal antibody, for the treatment of rheumatoid arthritis in patients taking concomitant methotrexate: the ARMADA trial. Arthritis Rheum. 48, 35–45 (2003).

    Article  CAS  PubMed  Google Scholar 

  27. Simon, L. S. et al. The Jak/STAT pathway: a focus on pain in rheumatoid arthritis. Semin. Arthritis Rheum. 51, 278–284 (2021).

    Article  CAS  PubMed  Google Scholar 

  28. McInnes, I. B. et al. Secukinumab provides rapid and sustained pain relief in psoriatic arthritis over 2 years: results from the FUTURE 2 study. Arthritis Res. Ther. 20, 113 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Eberhard, A. et al. Predictors of unacceptable pain with and without low inflammation over 5 years in early rheumatoid arthritis — an inception cohort study. Arthritis Res. Ther. 23, 169–169 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Chaabo, K. et al. Pain sensitisation and joint inflammation in patients with active rheumatoid arthritis. RMD Open. 10, e003784 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Walsh, D. A. & McWilliams, D. F. Mechanisms, impact and management of pain in rheumatoid arthritis. Nat. Rev. Rheumatol. 10, 581–592 (2014).

    Article  CAS  PubMed  Google Scholar 

  32. Trouvin, A. P., Attal, N. & Perrot, S. Assessing central sensitization with quantitative sensory testing in inflammatory rheumatic diseases: a systematic review. Jt. Bone Spine 89, 105399–105399 (2022).

    Article  Google Scholar 

  33. Todd, A. J. & Koerber, H. R. in Wall & Melzack’s Textbook of Pain. 6th edn. (eds McMahon, S. B., Koltzenburg, M., Tracey, I., & Turk, D. C.) 77–93 (Elsevier, 2013).

  34. Smith, E. S. J. & Lee, M. C. in Cambridge Textbook of Neuroscience for Psychiatrists. (eds Lynall, M.-E., Jones, P. B., & Stahl, S. M.) 171–176 (Cambridge Univ. Press, 2023).

  35. Basbaum, A. I. & Levine, J. D. The contribution of the nervous system to inflammation and inflammatory disease. Can. J. Physiol. Pharmacol. 69, 647–651 (1991).

    Article  CAS  PubMed  Google Scholar 

  36. Udit, S., Blake, K. & Chiu, I. M. Somatosensory and autonomic neuronal regulation of the immune response. Nat. Rev. Neurosci. 23, 157–171 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Solandt, D. Y. in Electrical Signs of Nervous Activity. (eds Erlanger, J. and Gasser, H. S.) (Univ. Pennsylvania Press, 1937).

  38. Schaible, H. G. & Grubb, B. D. Afferent and spinal mechanisms of joint pain. Pain 55, 5–54 (1993).

    Article  CAS  PubMed  Google Scholar 

  39. da Silva Serra, I., Husson, Z., Bartlett, J. D. & Smith, E. S. J. Characterization of cutaneous and articular sensory neurons. Mol. Pain. 12, 1744806916636387 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Nakajima, T. et al. The characteristics of dorsal-root ganglia and sensory innervation of the hip in rats. J. Bone Jt. Surg. Br. 90, 254–257 (2008).

    Article  CAS  Google Scholar 

  41. Eitner, A., Pester, J., Nietzsche, S., Hofmann, G. O. & Schaible, H. G. The innervation of synovium of human osteoarthritic joints in comparison with normal rat and sheep synovium. Osteoarthritis Cartilage 21, 1383–1391 (2013).

    Article  CAS  PubMed  Google Scholar 

  42. Obeidat, A. M., Miller, R. E., Miller, R. J. & Malfait, A. M. The nociceptive innervation of the normal and osteoarthritic mouse knee. Osteoarthritis Cartilage 27, 1669–1679 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Lin, Y., Zhang, K., Li, Q., Li, J. & Xu, B. Innervation of nociceptors in intact human menisci along the longitudinal axis: semi-quantitative histological evaluation and clinical implications. BMC Musculoskelet. Disord. 20, 338 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Lauria, G. et al. EFNS guidelines on the use of skin biopsy in the diagnosis of peripheral neuropathy. Eur. J. Neurol. 12, 747–758 (2005).

    Article  CAS  PubMed  Google Scholar 

  45. Choi, D. et al. Spontaneous activity in peripheral sensory nerves: a systematic review. Pain 165, 983–996 (2024).

    PubMed  Google Scholar 

  46. Coggeshall, R. E., Hong, K. A., Langford, L. A., Schaible, H. G. & Schmidt, R. F. Discharge characteristics of fine medial articular afferents at rest and during passive movements of inflamed knee joints. Brain Res. 272, 185–188 (1983).

    Article  CAS  PubMed  Google Scholar 

  47. Chakrabarti, S. et al. Sensitization of knee-innervating sensory neurons by tumor necrosis factor-α-activated fibroblast-like synoviocytes: an in vitro, coculture model of inflammatory pain. Pain 161, 2129–2141 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Guilbaud, G., Iggo, A. & Tegnér, R. Sensory receptors in ankle joint capsules of normal and arthritic rats. Exp. Brain Res. 58, 29–40 (1985).

    Article  CAS  PubMed  Google Scholar 

  49. Grigg, P., Schaible, H. G. & Schmidt, R. F. Mechanical sensitivity of group III and IV afferents from posterior articular nerve in normal and inflamed cat knee. J. Neurophysiol. 55, 635–643 (1986).

    Article  CAS  PubMed  Google Scholar 

  50. Michaelis, M., Häbler, H.-J. & Jänig, W. Silent afferents: a separate class of primary afferents? Clin. Exp. Pharmacol. Physiol. 23, 99–105 (1996).

    Article  CAS  PubMed  Google Scholar 

  51. Prato, V. et al. Functional and molecular characterization of mechanoinsensitive “Silent” nociceptors. Cell Rep. 21, 3102–3115 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Tavares-Ferreira, D. et al. Spatial transcriptomics of dorsal root ganglia identifies molecular signatures of human nociceptors. Sci. Transl. Med. 14, eabj8186 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Farmer, A. D. & Aziz, Q. Mechanisms of visceral pain in health and functional gastrointestinal disorders. Scand. J. Pain. 5, 51–60 (2014).

    Article  PubMed  Google Scholar 

  54. Brierley, S. M. et al. Innate immune response to bacterial urinary tract infection sensitises high-threshold bladder afferents and recruits silent nociceptors. Pain 161, 202–210 (2020).

    Article  CAS  PubMed  Google Scholar 

  55. Kucharczyk, M. W. et al. The impact of bone cancer on the peripheral encoding of mechanical pressure stimuli. Pain 161, 1894–1905 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Schaible, H.-G. in Wall & Melzack’s Textbook of Pain. (eds McMahon, S. B., Koltzenburg, M., Tracey, I. & Turk, D. C.) 6th edn, 77–93 (Elsevier, 2013).

  57. Hess, A. et al. Blockade of TNF-α rapidly inhibits pain responses in the central nervous system. Proc. Natl Acad. Sci. USA 108, 3731–3736 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Boettger, M. K. et al. Antinociceptive effects of tumor necrosis factor α neutralization in a rat model of antigen-induced arthritis: evidence of a neuronal target. Arthritis Rheum. 58, 2368–2378 (2008).

    Article  CAS  PubMed  Google Scholar 

  59. Vazquez, E. et al. Spinal interleukin-6 is an amplifier of arthritic pain in the rat. Arthritis Rheum. 64, 2233–2242 (2012).

    Article  CAS  PubMed  Google Scholar 

  60. Ebbinghaus, M. et al. Interleukin-6-dependent influence of nociceptive sensory neurons on antigen-induced arthritis. Arthritis Res. Ther. 17, 334 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  61. Krock, E., Jurczak, A. & Svensson, C. I. Pain pathogenesis in rheumatoid arthritis — what have we learned from animal models? Pain 159, https://doi.org/10.1097/j.pain.0000000000001333 (2018).

  62. Jung, M. et al. Cross-species transcriptomic atlas of dorsal root ganglia reveals species-specific programs for sensory function. Nat. Commun. 14, 366 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Cook, A. D., Christensen, A. D., Tewari, D., McMahon, S. B. & Hamilton, J. A. Immune cytokines and their receptors in inflammatory pain. Trends Immunol. 39, 240–255 (2018).

    Article  CAS  PubMed  Google Scholar 

  64. McMahon, S. B., Russa, F. L. & Bennett, D. L. H. Crosstalk between the nociceptive and immune systems in host defence and disease. Nat. Rev. Neurosci. 16, 389–402 (2015).

    Article  CAS  PubMed  Google Scholar 

  65. Denk, F., Bennett, D. L. & McMahon, S. B. Nerve growth factor and pain mechanisms. Annu. Rev. Neurosci. 40, 307–325 (2017).

    Article  CAS  PubMed  Google Scholar 

  66. Hochberg, M. C. et al. Long-term safety and efficacy of subcutaneous tanezumab versus nonsteroidal antiinflammatory drugs for hip or knee osteoarthritis: a randomized trial. Arthritis Rheumatol. 73, 1167–1177 (2021).

    Article  CAS  PubMed  Google Scholar 

  67. Marchand, F., Perretti, M. & McMahon, S. B. Role of the immune system in chronic pain. Nat. Rev. Neurosci. 6, 521–532 (2005).

    Article  CAS  PubMed  Google Scholar 

  68. Baral, P., Udit, S. & Chiu, I. M. Pain and immunity: implications for host defence. Nat. Rev. Immunol. 19, 433–447 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Calvo, M., Dawes, J. M. & Bennett, D. L. The role of the immune system in the generation of neuropathic pain. Lancet Neurol. 11, 629–642 (2012).

    Article  CAS  PubMed  Google Scholar 

  70. Roberts, C. A., Dickinson, A. K. & Taams, L. S. The interplay between monocytes/macrophages and CD4+ T cell subsets in rheumatoid arthritis. Front. Immunol. 6, 571 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  71. Kurowska-Stolarska, M. & Alivernini, S. Synovial tissue macrophages: friend or foe? RMD Open. 3, e000527 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  72. Massier, J., Eitner, A., Segond von Banchet, G. & Schaible, H.-G. Effects of differently activated rodent macrophages on sensory neurons: implications for arthritis pain. Arthritis Rheumatol. 67, 2263–2272 (2015).

    Article  CAS  PubMed  Google Scholar 

  73. Alivernini, S. et al. Distinct synovial tissue macrophage subsets regulate inflammation and remission in rheumatoid arthritis. Nat. Med. 26, 1295–1306 (2020).

    Article  CAS  PubMed  Google Scholar 

  74. Zhang, F. et al. Deconstruction of rheumatoid arthritis synovium defines inflammatory subtypes. Nature 623, 616–624 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Aletaha, D. et al. 2010 Rheumatoid arthritis classification criteria: an American College of Rheumatology/European League Against Rheumatism collaborative initiative. Ann. Rheum. Dis. 69, 1580–1588 (2010).

    Article  PubMed  Google Scholar 

  76. Toes, R. & Pisetsky, D. S. Pathogenic effector functions of ACPA: where do we stand? Ann. Rheum. Dis. 78, 716–721 (2019).

    Article  PubMed  Google Scholar 

  77. Derksen, V., Huizinga, T. W. J. & van der Woude, D. The role of autoantibodies in the pathophysiology of rheumatoid arthritis. Semin. Immunopathol. 39, 437–446 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. el Bannoudi, H., Ioan-Facsinay, A. & Toes, R. E. M. in Fc Receptors. (eds Daeron, M. & Nimmerjahn, F.) 303–319 (Springer, 2014).

  79. Ji, H. et al. Arthritis critically dependent on innate immune system players. Immunity 16, 157–168 (2002).

    Article  CAS  PubMed  Google Scholar 

  80. Khandpur, R. et al. NETs are a source of citrullinated autoantigens and stimulate inflammatory responses in rheumatoid arthritis. Sci. Transl. Med. 5, 178ra140 (2013).

    Article  Google Scholar 

  81. Wigerblad, G. et al. Autoantibodies to citrullinated proteins induce joint pain independent of inflammation via a chemokine-dependent mechanism. Ann. Rheum. Dis. 75, 730–738 (2016).

    Article  CAS  PubMed  Google Scholar 

  82. Jurczak, A. et al. Antibody-induced pain-like behavior and bone erosion: links to subclinical inflammation, osteoclast activity, and acid-sensing ion channel 3-dependent sensitization. Pain 163, 1542–1559 (2022).

    Article  CAS  PubMed  Google Scholar 

  83. Taylor, P. et al. Patient perceptions concerning pain management in the treatment of rheumatoid arthritis. J. Int. Med. Res. 38, 1213–1224 (2010).

    Article  CAS  PubMed  Google Scholar 

  84. Hafström, I., Ajeganova, S., Forslind, K. & Svensson, B. Anti-citrullinated protein antibodies are associated with osteopenia but not with pain at diagnosis of rheumatoid arthritis: data from the BARFOT cohort. Arthritis Res. Ther. 21, 45 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  85. Qiu, Y. Y. et al. Anti-cyclic citrullinated peptide antibody and pain sensitisation in patients with rheumatoid arthritis: a cross-sectional analysis. Ann. Rheum. Dis. 82, 1638–1640 (2023).

    Article  PubMed  Google Scholar 

  86. He, Y. et al. A subset of antibodies targeting citrullinated proteins confers protection from rheumatoid arthritis. Nat. Commun. 14, 691 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Gomez, A. M. et al. Anti-citrullinated protein antibodies with multiple specificities ameliorate collagen antibody-induced arthritis in a time-dependent manner. Arthritis Rheumatol. 76, 181–191 (2024).

    Article  CAS  PubMed  Google Scholar 

  88. Raposo, B. et al. Divergent and dominant anti-inflammatory effects of patient-derived anticitrullinated protein antibodies (ACPA) in arthritis development. Ann. Rheum. Dis. 82, 724–726 (2023).

    Article  CAS  PubMed  Google Scholar 

  89. Donlin, L. T. et al. Methods for high-dimensional analysis of cells dissociated from cryopreserved synovial tissue. Arthritis Res. Ther. 20, 139 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  90. Zhang, F. et al. Defining inflammatory cell states in rheumatoid arthritis joint synovial tissues by integrating single-cell transcriptomics and mass cytometry. Nat. Immunol. 20, 928–942 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  91. Weinand, K. et al. The chromatin landscape of pathogenic transcriptional cell states in rheumatoid arthritis. Nat. Commun. 15, 4650 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Inamo, J. et al. Deep immunophenotyping reveals circulating activated lymphocytes in individuals at risk for rheumatoid arthritis. Preprint at bioRxiv 2023.2007.2003.547507, https://doi.org/10.1101/2023.07.03.547507 (2023).

  93. Edalat, S. G. et al. Molecular maps of synovial cells in inflammatory arthritis using an optimized synovial tissue dissociation protocol. iScience 27, 109707 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Nguyen, M. Q., von Buchholtz, L. J., Reker, A. N., Ryba, N. J. P. & Davidson, S. Single-nucleus transcriptomic analysis of human dorsal root ganglion neurons. eLife 10, e71752 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Ray, P. R. et al. RNA profiling of human dorsal root ganglia reveals sex differences in mechanisms promoting neuropathic pain. Brain 146, 749–766 (2022).

    Article  PubMed Central  Google Scholar 

  96. Nees, T. A. et al. Role of TMEM100 in mechanically insensitive nociceptor un-silencing. Nat. Commun. 14, 1889 (2023).

    Article  Google Scholar 

  97. Davidson, S. et al. Fibroblasts as immune regulators in infection, inflammation and cancer. Nat. Rev. Immunol. 21, 704–717 (2021).

    Article  CAS  PubMed  Google Scholar 

  98. Croft, A. P. et al. Distinct fibroblast subsets drive inflammation and damage in arthritis. Nature 570, 246–251 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Friščić, J. et al. The complement system drives local inflammatory tissue priming by metabolic reprogramming of synovial fibroblasts. Immunity 54, 1002–1021.e10 (2021).

    Article  PubMed  Google Scholar 

  100. Shinotsuka, N. & Denk, F. Fibroblasts: the neglected cell type in peripheral sensitisation and chronic pain? A review based on a systematic search of the literature. BMJ Open. Sci. 6, e100235 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  101. Buechler, M. B. et al. Cross-tissue organization of the fibroblast lineage. Nature 593, 575–579 (2021).

    Article  CAS  PubMed  Google Scholar 

  102. Korsunsky, I. et al. Cross-tissue, single-cell stromal atlas identifies shared pathological fibroblast phenotypes in four chronic inflammatory diseases. Med 3, 481–518.e414 (2022).

    Article  CAS  PubMed  Google Scholar 

  103. Singhmar, P. et al. The fibroblast-derived protein PI16 controls neuropathic pain. Proc. Natl Acad. Sci. 117, 5463–5471 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Garrity, R. et al. Fibroblast-derived PI16 sustains inflammatory pain via regulation of CD206+ myeloid cells. Brain Behav. Immun. 112, 220–234 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Bai, Z. et al. Synovial fibroblast gene expression is associated with sensory nerve growth and pain in rheumatoid arthritis. Sci. Transl. Med. 16, eadk3506 (2024).

    Article  CAS  PubMed  Google Scholar 

  106. British Society for Rheumatology. Rheumatology workforce: a crisis in numbers. https://rheumatology.org.uk/Portals/0/Documents/Policy/Reports/BSR-workforce-report-crisis-numbers.pdf (2021).

  107. Lindqvist, E., Jonsson, K., Saxne, T. & Eberhardt, K. Course of radiographic damage over 10 years in a cohort with early rheumatoid arthritis. Ann. Rheum. Dis. 62, 611–616 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Szekanecz, Z. et al. Efficacy and safety of JAK inhibitors in rheumatoid arthritis: update for the practising clinician. Nat. Rev. Rheumatol. 20, 101–115 (2024).

    Article  PubMed  Google Scholar 

  109. Fitzcharles, M.-A. et al. Nociplastic pain: towards an understanding of prevalent pain conditions. Lancet 397, 2098–2110 (2021).

    Article  PubMed  Google Scholar 

  110. Holdsworth, E. A. et al. Biologic and targeted synthetic DMARD utilization in the United States: Adelphi real world disease specific programme for rheumatoid arthritis. Rheumatol. Ther. 8, 1637–1649 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  111. Ytterberg, S. R. et al. Cardiovascular and cancer risk with tofacitinib in rheumatoid arthritis. N. Engl. J. Med. 386, 316–326 (2022).

    Article  CAS  PubMed  Google Scholar 

  112. FDA. Janus Kinase (JAK) Inhibitors: Drug Safety Communication — FDA Requires Warnings about Increased Risk of Serious Heart-related Events, Cancer, Blood Clots, and Death. https://www.fda.gov/safety/medical-product-safety-information/janus-kinase-jak-inhibitors-drug-safety-communication-fda-requires-warnings-about-increased-risk (2021).

  113. European Medicines Agency. Janus Kinase inhibitors (JAKi). Article-20 procedure — EMA confirms measures to minimise risk of serious side effects with Janus kinase inhibitors for chronic inflammatory disorders. EMA/142279/2023 https://europa.eu/!BkjJNH (2023).

  114. Fleischmann, R. et al. Upadacitinib versus placebo or adalimumab in patients with rheumatoid arthritis and an inadequate response to methotrexate: results of a phase III, double-blind, randomized controlled trial. Arthritis Rheumatol. 71, 1788–1800 (2019).

    Article  CAS  PubMed  Google Scholar 

  115. Taylor, P. C. et al. Baricitinib versus placebo or adalimumab in rheumatoid arthritis. N. Engl. J. Med. 376, 652–662 (2017).

    Article  CAS  PubMed  Google Scholar 

  116. Fautrel, B. et al. Effect of baricitinib and adalimumab in reducing pain and improving function in patients with rheumatoid arthritis in low disease activity: exploratory analyses from RA-BEAM. J. Clin. Med. 8, 1394 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Barragán-Iglesias, P. et al. Type I interferons act directly on nociceptors to produce pain sensitization: implications for viral infection-induced pain. J. Neurosci. 40, 3517–3532 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  118. Makabe, K. et al. Baricitinib ameliorates inflammatory and neuropathic pain in collagen antibody-induced arthritis mice by modulating the IL-6/JAK/STAT3 pathway and CSF-1 expression in dorsal root ganglion neurons. Arthritis Res. Ther. 26, 121 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Bannister, K. & Dickenson, A. H. Central nervous system targets: supraspinal mechanisms of analgesia. Neurotherapeutics 17, 839–845 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Tracey, I. Neuroimaging mechanisms in pain: from discovery to translation. Pain 158, S115–S122 (2017).

    Article  PubMed  Google Scholar 

  121. Elbers, S. et al. Longitudinal outcome evaluations of Interdisciplinary Multimodal Pain Treatment programmes for patients with chronic primary musculoskeletal pain: a systematic review and meta-analysis. Eur. J. Pain. 26, 310–335 (2022).

    Article  PubMed  Google Scholar 

  122. Häuser, W., Bernardy, K., Arnold, B., Offenbächer, M. & Schiltenwolf, M. Efficacy of multicomponent treatment in fibromyalgia syndrome: a meta-analysis of randomized controlled clinical trials. Arthritis Rheum. 61, 216–224 (2009).

    Article  PubMed  Google Scholar 

  123. Fashler, S. R. et al. Systematic review of multidisciplinary chronic pain treatment facilities. Pain. Res. Manag. 2016, 5960987 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  124. Deslauriers, S. et al. The burden of waiting to access pain clinic services: perceptions and experiences of patients with rheumatic conditions. BMC Health Serv. Res. 21, 160 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  125. Nøst, T. H. & Steinsbekk, A. ‘A lifebuoy’ and ‘a waste of time’: patients’ varying experiences of multidisciplinary pain centre treatment — a qualitative study. BMC Health Serv. Res. 19, 1015 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  126. Crofford, L. J. Use of NSAIDs in treating patients with arthritis. Arthritis Res. Ther. 15, S2 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  127. Osnes-Ringen, H., Kvien, T. K., Henriksen, J. E., Mowinckel, P. & Dagfinrud, H. Orthopaedic surgery in 255 patients with inflammatory arthropathies: longitudinal effects on pain, physical function and health-related quality of life. Ann. Rheum. Dis. 68, 1596–1601 (2009).

    Article  CAS  PubMed  Google Scholar 

  128. Singh, J. A. & Lewallen, D. G. Better functional and similar pain outcomes in osteoarthritis compared to rheumatoid arthritis after primary total knee arthroplasty: a cohort study. Arthritis Care Res. 65, 1936–1941 (2013).

    Article  Google Scholar 

  129. Schrepf, A. et al. Top down or bottom up? An observational investigation of improvement in fibromyalgia symptoms following hip and knee replacement. Rheumatology 59, 594–602 (2019).

    Article  PubMed Central  Google Scholar 

  130. Chambers, S. M. et al. Combined small-molecule inhibition accelerates developmental timing and converts human pluripotent stem cells into nociceptors. Nat. Biotechnol. 30, 715–720 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Perez-Sanchez, J. et al. A humanized chemogenetic system inhibits murine pain-related behavior and hyperactivity in human sensory neurons. Sci. Transl. Med. 15, eadh3839 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Deng, T. et al. Scalable generation of sensory neurons from human pluripotent stem cells. Stem Cell Rep. 18, 1030–1047 (2023).

    Article  CAS  Google Scholar 

  133. Wei, K. et al. Notch signalling drives synovial fibroblast identity and arthritis pathology. Nature 582, 259–264 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Johnson, P. A. et al. Three-dimensional, in-vitro approaches for modelling soft-tissue joint diseases. Lancet Rheumatol. 5, e553–e563 (2023).

    Article  CAS  PubMed  Google Scholar 

  135. Neto, E. et al. Sensory neurons and osteoblasts: close partners in a microfluidic platform. Integr. Biol. 6, 586–595 (2014).

    Article  CAS  Google Scholar 

  136. Molina-Martínez, B. et al. A multimodal 3D neuro-microphysiological system with neurite-trapping microelectrodes. Biofabrication 14, https://doi.org/10.1088/1758-5090/ac463b (2022).

  137. van der Moolen, M. et al. Cancer-mediated axonal guidance of sensory neurons in a microelectrode-based innervation MPS. Biofabrication 16, 025013 (2024).

    Article  Google Scholar 

  138. Chisholm, K. I., Khovanov, N., Lopes, D. M., La Russa, F. & McMahon, S. B. Large scale in vivo recording of sensory neuron activity with GCaMP6. eNeuro 5, https://doi.org/10.1523/ENEURO.0417-17.2018 (2018).

  139. Ingram, S. et al. Assessing spontaneous sensory neuron activity using in vivo calcium imaging. Pain 165, 1131–1141 (2024).

    PubMed  Google Scholar 

  140. Cowie, A. M., Moehring, F., O’Hara, C. & Stucky, C. L. Optogenetic inhibition of CGRPα sensory neurons reveals their distinct roles in neuropathic and incisional pain. J. Neurosci. 38, 5807–5825 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Soliman, N. & Denk, F. Practical approaches to improving translatability and reproducibility in preclinical pain research. Brain Behav. Immun. 115, 38–42 (2024).

    Article  PubMed  Google Scholar 

  142. Sadler, K. E., Mogil, J. S. & Stucky, C. L. Innovations and advances in modelling and measuring pain in animals. Nat. Rev. Neurosci. 23, 70–85 (2022).

    Article  CAS  PubMed  Google Scholar 

  143. Federico, C. A., Mogil, J. S., Ramsay, T., Fergusson, D. A. & Kimmelman, J. A systematic review and meta-analysis of pregabalin preclinical studies. Pain 161, 684–693 (2020).

    Article  PubMed  Google Scholar 

  144. Currie, G. L. et al. Animal models of chemotherapy-induced peripheral neuropathy: a machine-assisted systematic review and meta-analysis. PLoS Biol. 17, e3000243 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Vollert, J. et al. The EQIPD framework for rigor in the design, conduct, analysis and documentation of animal experiments. Nat. Methods 19, 1334–1337 (2022).

    Article  CAS  PubMed  Google Scholar 

  146. Percie du Sert, N. et al. Reporting animal research: explanation and elaboration for the ARRIVE guidelines 2.0. PLoS Biol. 18, e3000411 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Albers, C. & Lakens, D. When power analyses based on pilot data are biased: inaccurate effect size estimators and follow-up bias. J. Exp. Soc. Psychol. 74, 187–195 (2018).

    Article  Google Scholar 

  148. Rolke, R. et al. Quantitative sensory testing in the German Research Network on Neuropathic Pain (DFNS): standardized protocol and reference values. Pain 123, 231–243 (2006).

    Article  CAS  PubMed  Google Scholar 

  149. Lindblom, U. & Verrillo, R. T. Sensory functions in chronic neuralgia. J. Neurol. Neurosurg. Psychiatry 42, 422–435 (1979).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Arendt-Nielsen, L. et al. Assessment and manifestation of central sensitisation across different chronic pain conditions. Eur. J. Pain. 22, 216–241 (2018).

    Article  CAS  PubMed  Google Scholar 

  151. Schmelz, M. Lessons learned — moving on from QST sensory profiles. Scand. J. Pain. 22, 670–672 (2022).

    Article  PubMed  Google Scholar 

  152. Middleton, S. J. et al. Studying human nociceptors: from fundamentals to clinic. Brain 144, 1312–1335 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  153. Reimer, M. et al. Sensory bedside testing: a simple stratification approach for sensory phenotyping. Pain. Rep. 5, e820 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  154. D’Agostino, M. A. et al. Scoring ultrasound synovitis in rheumatoid arthritis: a EULAR-OMERACT ultrasound taskforce — part 1: definition and development of a standardised, consensus-based scoring system. RMD Open. 3, e000428–e000428 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  155. Naredo, E. et al. Longitudinal power Doppler ultrasonographic assessment of joint inflammatory activity in early rheumatoid arthritis: predictive value in disease activity and radiologic progression. Arthritis Care Res. 57, 116–124 (2007).

    Article  Google Scholar 

  156. Tracey, I., Woolf, C. J. & Andrews, N. A. Composite pain biomarker signatures for objective assessment and effective treatment. Neuron 101, 783–800 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Rutter-Locher, Z. et al. A randomised controlled trial of the effect of intra-articular lidocaine on pain scores in inflammatory arthritis. Pain https://doi.org/10.1097/j.pain.0000000000003291 (2024).

  158. Anderson, J. et al. Rheumatoid arthritis disease activity measures: American College of Rheumatology recommendations for use in clinical practice. Arthritis Care Res. 64, 640–647 (2012).

    Article  Google Scholar 

  159. Taylor, P. C. et al. Impact of filgotinib on pain control in the phase 3 FINCH studies. RMD Open. 10, e003839 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  160. Taylor, P. C. et al. AB0290 effect of filgotinib on pain in patients with rheumatoid arthritis in the phase 3 FINCH 1, 2 and 3 studies. Ann. Rheum. Dis. 82, 1326–1327 (2023).

    Google Scholar 

  161. Chiarotto, A. et al. Pain measurement in rheumatic and musculoskeletal diseases: where to go from here? Report from a special interest group at OMERACT 2018. J. Rheumatol. 46, 1355–1359 (2019).

    Article  PubMed  Google Scholar 

  162. Weyand, C. M. & Goronzy, J. J. The immunology of rheumatoid arthritis. Nat. Immunol. 22, 10–10 (2021).

    Article  CAS  PubMed  Google Scholar 

  163. Raja, S. N. et al. The revised International Association for the Study of Pain definition of pain: concepts, challenges, and compromises. Pain 161, 1976–1982 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  164. Perrot, S. et al. The IASP classification of chronic pain for ICD-11: chronic secondary musculoskeletal pain. Pain 160, 28–37 (2019).

    Article  PubMed  Google Scholar 

  165. Cohen, S. P., Vase, L. & Hooten, W. M. Chronic pain: an update on burden, best practices, and new advances. Lancet 397, 2082–2097 (2021).

    Article  PubMed  Google Scholar 

  166. IASP. Terminology. https://www.iasp-pain.org/resources/terminology/ (2011).

  167. Kosek, E. et al. Do we need a third mechanistic descriptor for chronic pain states? Pain 157, 1382–1386 (2016).

    Article  PubMed  Google Scholar 

  168. Murphy, A. E., Minhas, D., Clauw, D. J. & Lee, Y. C. Identifying and managing nociplastic pain in individuals with rheumatic diseases: a narrative review. Arthritis Care Res. 75, 2215–2222 (2023).

    Article  Google Scholar 

  169. Hoegh, M., Schmid, A. B., Hansson, P. & Finnerup, N. B. Not being able to measure what is important, does not make things we can measure important. Pain 163, e963 (2022).

    Article  PubMed  Google Scholar 

  170. Woolf, C. J. Evidence for a central component of post-injury pain hypersensitivity. Nature 306, 686–688 (1983).

    Article  CAS  PubMed  Google Scholar 

  171. Woolf, C. J. Central sensitization: implications for the diagnosis and treatment of pain. Pain 152, S2–S15 (2011).

    Article  PubMed  Google Scholar 

  172. Nijs, J. et al. Central sensitisation in chronic pain conditions: latest discoveries and their potential for precision medicine. Lancet Rheumatol. 3, e383–e392 (2021).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the following funding support: a National Institute for Health Research (NIHR) Doctoral Fellowship (NIHR301674 to Z.R.-L.) and a Wellcome Trust Collaborative Award (224257/Z/21/Z to B.W.K., D.L.B., C.D.B., F.D. and L.S.T.).

Author information

Authors and Affiliations

Authors

Contributions

All authors reviewed and/or edited the manuscript before submission and contributed substantially to discussion of the content, L.S.T., Z.R.-L., B.W.K. and F.D. researched data for the article, and L.S.T., Z.R.-L. and F.D. wrote the article.

Corresponding authors

Correspondence to Leonie S. Taams or Franziska Denk.

Ethics declarations

Competing interests

D.L.B. has received research grant funding from Eli Lilly and AstraZeneca. B.W.K. has been an adviser or speaker for AbbVie, Eli-Lilly, Galapagos, Janssen, Novartis, Pfizer and UCB. F.D. receives funding from Ono Pharmaceuticals, is a Scientific Advisor for Cellectricon and is consulting for GSK. L.S.T. has received research funding, speaker or consultancy fees from Sanofi, CESAS Medical, UCB, GSK and AbbVie. C.D.B. has received research grant funding from Janssen, Roche and is an adviser for GSK and AbbVie. He is a founder of Mestag Therapeutics. None of the other authors declares any competing interests relevant to this Review.

Peer review

Peer review information

Nature Reviews Rheumatology thanks Neil Basu, who co-reviewed with Flavia Sunzini; Dana Orange; and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rutter-Locher, Z., Kirkham, B.W., Bannister, K. et al. An interdisciplinary perspective on peripheral drivers of pain in rheumatoid arthritis. Nat Rev Rheumatol (2024). https://doi.org/10.1038/s41584-024-01155-z

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41584-024-01155-z

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing