Abstract
Pain is one of the most debilitating symptoms of rheumatoid arthritis (RA), and yet remains poorly understood, especially when pain occurs in the absence of synovitis. Without active inflammation, experts most often attribute joint pain to central nervous system dysfunction. However, advances in the past 5 years in both immunology and neuroscience research suggest that chronic pain in RA is also driven by a variety of abnormal interactions between peripheral neurons and mediators produced by resident cells in the local joint environment. In this Review, we discuss these novel insights from an interdisciplinary neuro-immune perspective. We outline a potential working model for the peripheral drivers of pain in RA, which includes autoantibodies, resident immune and mesenchymal cells and their interactions with different subtypes of peripheral sensory neurons. We also offer suggestions for how future collaborative research could be designed to accelerate analgesic drug development.
Key points
-
With the advent of biologic drugs bringing ever-improving disease control, pain is emerging as one of the most important remaining symptoms in rheumatoid arthritis.
-
Pain mechanisms in rheumatoid arthritis are still not fully understood, especially when pain is uncoupled from joint inflammation.
-
Emerging evidence implicates not only immune cells and cytokines but also autoantibodies and mesenchymal cells in arthritis-induced neuronal hyperactivity.
-
Efforts towards large collaborative and interdisciplinary consortia to address specific questions are promising and valuable in accelerating our understanding of pain in rheumatoid arthritis.
-
Recognizing pain as a distinct and essential clinical outcome in addition to disease activity and tissue damage is vital.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 print issues and online access
$209.00 per year
only $17.42 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
Vergne-Salle, P. et al. The burden of pain in rheumatoid arthritis: impact of disease activity and psychological factors. Eur. J. Pain. 24, 1979–1989 (2020).
Svensson, B., Forslind, K. & Andersson, M. Unacceptable pain in the BARFOT inception cohort of patients with rheumatoid arthritis: a long-term study. Scand. J. Rheumatol. 49, 371-378, (2020).
Matcham, F. et al. The impact of rheumatoid arthritis on quality-of-life assessed using the SF-36: a systematic review and meta-analysis. Semin. Arthritis Rheum. 44, 123–130 (2014).
Matcham, F., Rayner, L., Steer, S. & Hotopf, M. The prevalence of depression in rheumatoid arthritis: a systematic review and meta-analysis. Rheumatology 52, 2136–2148 (2013).
Bagnato, G. et al. Pain threshold and intensity in rheumatic patients: correlations with the Hamilton Depression Rating scale. Clin. Rheumatol. 34, 555–561 (2015).
Barrett, E. M., Scott, D. G. I., Wiles, N. J. & Symmons, D. P. M. The impact of rheumatoid arthritis on employment status in the early years of disease: a UK community-based study. Rheumatology 39, 1403–1409 (2000).
Olofsson, T., Söderling, J. K., Gülfe, A., Kristensen, L. E. & Wallman, J. K. Patient-reported outcomes are more important than objective inflammatory markers for sick leave in biologics-treated patients with rheumatoid arthritis. Arthritis Care Res. 70, 1712–1716 (2018).
Smolen, J. S. et al. Rheumatoid arthritis. Nat. Rev. Dis. Prim. 4, 18001–18001 (2018).
Burmester, G. R. & Pope, J. E. Novel treatment strategies in rheumatoid arthritis. Lancet 389, 2338–2348 (2017).
Gullick, N. J. et al. Real world long-term impact of intensive treatment on disease activity, disability and health-related quality of life in rheumatoid arthritis. BMC Rheumatol. 3, 6 (2019).
Lee, Y. C. et al. Pain persists in DAS28 rheumatoid arthritis remission but not in ACR/EULAR remission: a longitudinal observational study. Arthritis Res. Ther. 13, R83–R83 (2011).
McWilliams, D. F. et al. Discrete trajectories of resolving and persistent pain in people with rheumatoid arthritis despite undergoing treatment for inflammation: results from three UK cohorts. J. Pain. 20, 716–727 (2019).
Cunha-Miranda, L., Costa, L. & Ribeiro, J. S. NEAR study: needs and expectations in rheumatoid arthritis — do we know our patients needs? Acta Reumatol. Port. 35, 314–323 (2010).
Borenstein, D. et al. Report of the American College of Rheumatology pain management task force. Arthritis Care Res. 62, 590–599 (2010).
Versus Arthritis. A research roadmap for pain. https://www.versusarthritis.org/media/1672/research-roadmap-pain.pdf (2018).
Sunzini, F., Schrepf, A., Clauw, D. J. & Basu, N. The biology of pain: through the rheumatology lens. Arthritis Rheumatol. 75, 650–660 (2023).
Stack, R. J., Sahni, M., Mallen, C. D. & Raza, K. Symptom complexes at the earliest phases of rheumatoid arthritis: a synthesis of the qualitative literature. Arthritis Care Res. 65, 1916–1926 (2013).
Wagstaff, S., Smith, O. V. & Wood, P. H. Verbal pain descriptors used by patients with arthritis. Ann. Rheum. Dis. 44, 262–265 (1985).
Rutter-Locher, Z. et al. Comparative analysis of centrally mediated and inflammatory pain experiences amongst patients diagnosed with rheumatoid arthritis: a multimethods study. Health Expect. 27, e14090 (2024).
Rutter-Locher, Z. et al. A systematic review and meta-analysis of questionnaires to screen for pain sensitisation and neuropathic like pain in inflammatory arthritis. Semin. Arthritis Rheum. 61, 152207 (2023).
Smolen, J. S., Aletaha, D. & McInnes, I. B. Rheumatoid arthritis. Lancet 388, 2023–2038 (2016).
McInnes, I. B. & Schett, G. Pathogenetic insights from the treatment of rheumatoid arthritis. Lancet 389, 2328–2337 (2017).
Zhang, A. & Lee, Y. C. Mechanisms for joint pain in rheumatoid arthritis (RA): from cytokines to central sensitization. Curr. Osteoporos. Rep. 16, 603–610 (2018).
Cohen, S. B. et al. Rituximab for rheumatoid arthritis refractory to anti-tumor necrosis factor therapy: results of a multicenter, randomized, double-blind, placebo-controlled, phase III trial evaluating primary efficacy and safety at twenty-four weeks. Arthritis Rheum. 54, 2793–2806 (2006).
Maini, R. et al. Infliximab (chimeric anti-tumour necrosis factor α monoclonal antibody) versus placebo in rheumatoid arthritis patients receiving concomitant methotrexate: a randomised phase III trial. Lancet 354, 1932–1939 (1999).
Weinblatt, M. E. et al. Adalimumab, a fully human anti-tumor necrosis factor α monoclonal antibody, for the treatment of rheumatoid arthritis in patients taking concomitant methotrexate: the ARMADA trial. Arthritis Rheum. 48, 35–45 (2003).
Simon, L. S. et al. The Jak/STAT pathway: a focus on pain in rheumatoid arthritis. Semin. Arthritis Rheum. 51, 278–284 (2021).
McInnes, I. B. et al. Secukinumab provides rapid and sustained pain relief in psoriatic arthritis over 2 years: results from the FUTURE 2 study. Arthritis Res. Ther. 20, 113 (2018).
Eberhard, A. et al. Predictors of unacceptable pain with and without low inflammation over 5 years in early rheumatoid arthritis — an inception cohort study. Arthritis Res. Ther. 23, 169–169 (2021).
Chaabo, K. et al. Pain sensitisation and joint inflammation in patients with active rheumatoid arthritis. RMD Open. 10, e003784 (2024).
Walsh, D. A. & McWilliams, D. F. Mechanisms, impact and management of pain in rheumatoid arthritis. Nat. Rev. Rheumatol. 10, 581–592 (2014).
Trouvin, A. P., Attal, N. & Perrot, S. Assessing central sensitization with quantitative sensory testing in inflammatory rheumatic diseases: a systematic review. Jt. Bone Spine 89, 105399–105399 (2022).
Todd, A. J. & Koerber, H. R. in Wall & Melzack’s Textbook of Pain. 6th edn. (eds McMahon, S. B., Koltzenburg, M., Tracey, I., & Turk, D. C.) 77–93 (Elsevier, 2013).
Smith, E. S. J. & Lee, M. C. in Cambridge Textbook of Neuroscience for Psychiatrists. (eds Lynall, M.-E., Jones, P. B., & Stahl, S. M.) 171–176 (Cambridge Univ. Press, 2023).
Basbaum, A. I. & Levine, J. D. The contribution of the nervous system to inflammation and inflammatory disease. Can. J. Physiol. Pharmacol. 69, 647–651 (1991).
Udit, S., Blake, K. & Chiu, I. M. Somatosensory and autonomic neuronal regulation of the immune response. Nat. Rev. Neurosci. 23, 157–171 (2022).
Solandt, D. Y. in Electrical Signs of Nervous Activity. (eds Erlanger, J. and Gasser, H. S.) (Univ. Pennsylvania Press, 1937).
Schaible, H. G. & Grubb, B. D. Afferent and spinal mechanisms of joint pain. Pain 55, 5–54 (1993).
da Silva Serra, I., Husson, Z., Bartlett, J. D. & Smith, E. S. J. Characterization of cutaneous and articular sensory neurons. Mol. Pain. 12, 1744806916636387 (2016).
Nakajima, T. et al. The characteristics of dorsal-root ganglia and sensory innervation of the hip in rats. J. Bone Jt. Surg. Br. 90, 254–257 (2008).
Eitner, A., Pester, J., Nietzsche, S., Hofmann, G. O. & Schaible, H. G. The innervation of synovium of human osteoarthritic joints in comparison with normal rat and sheep synovium. Osteoarthritis Cartilage 21, 1383–1391 (2013).
Obeidat, A. M., Miller, R. E., Miller, R. J. & Malfait, A. M. The nociceptive innervation of the normal and osteoarthritic mouse knee. Osteoarthritis Cartilage 27, 1669–1679 (2019).
Lin, Y., Zhang, K., Li, Q., Li, J. & Xu, B. Innervation of nociceptors in intact human menisci along the longitudinal axis: semi-quantitative histological evaluation and clinical implications. BMC Musculoskelet. Disord. 20, 338 (2019).
Lauria, G. et al. EFNS guidelines on the use of skin biopsy in the diagnosis of peripheral neuropathy. Eur. J. Neurol. 12, 747–758 (2005).
Choi, D. et al. Spontaneous activity in peripheral sensory nerves: a systematic review. Pain 165, 983–996 (2024).
Coggeshall, R. E., Hong, K. A., Langford, L. A., Schaible, H. G. & Schmidt, R. F. Discharge characteristics of fine medial articular afferents at rest and during passive movements of inflamed knee joints. Brain Res. 272, 185–188 (1983).
Chakrabarti, S. et al. Sensitization of knee-innervating sensory neurons by tumor necrosis factor-α-activated fibroblast-like synoviocytes: an in vitro, coculture model of inflammatory pain. Pain 161, 2129–2141 (2020).
Guilbaud, G., Iggo, A. & Tegnér, R. Sensory receptors in ankle joint capsules of normal and arthritic rats. Exp. Brain Res. 58, 29–40 (1985).
Grigg, P., Schaible, H. G. & Schmidt, R. F. Mechanical sensitivity of group III and IV afferents from posterior articular nerve in normal and inflamed cat knee. J. Neurophysiol. 55, 635–643 (1986).
Michaelis, M., Häbler, H.-J. & Jänig, W. Silent afferents: a separate class of primary afferents? Clin. Exp. Pharmacol. Physiol. 23, 99–105 (1996).
Prato, V. et al. Functional and molecular characterization of mechanoinsensitive “Silent” nociceptors. Cell Rep. 21, 3102–3115 (2017).
Tavares-Ferreira, D. et al. Spatial transcriptomics of dorsal root ganglia identifies molecular signatures of human nociceptors. Sci. Transl. Med. 14, eabj8186 (2022).
Farmer, A. D. & Aziz, Q. Mechanisms of visceral pain in health and functional gastrointestinal disorders. Scand. J. Pain. 5, 51–60 (2014).
Brierley, S. M. et al. Innate immune response to bacterial urinary tract infection sensitises high-threshold bladder afferents and recruits silent nociceptors. Pain 161, 202–210 (2020).
Kucharczyk, M. W. et al. The impact of bone cancer on the peripheral encoding of mechanical pressure stimuli. Pain 161, 1894–1905 (2020).
Schaible, H.-G. in Wall & Melzack’s Textbook of Pain. (eds McMahon, S. B., Koltzenburg, M., Tracey, I. & Turk, D. C.) 6th edn, 77–93 (Elsevier, 2013).
Hess, A. et al. Blockade of TNF-α rapidly inhibits pain responses in the central nervous system. Proc. Natl Acad. Sci. USA 108, 3731–3736 (2011).
Boettger, M. K. et al. Antinociceptive effects of tumor necrosis factor α neutralization in a rat model of antigen-induced arthritis: evidence of a neuronal target. Arthritis Rheum. 58, 2368–2378 (2008).
Vazquez, E. et al. Spinal interleukin-6 is an amplifier of arthritic pain in the rat. Arthritis Rheum. 64, 2233–2242 (2012).
Ebbinghaus, M. et al. Interleukin-6-dependent influence of nociceptive sensory neurons on antigen-induced arthritis. Arthritis Res. Ther. 17, 334 (2015).
Krock, E., Jurczak, A. & Svensson, C. I. Pain pathogenesis in rheumatoid arthritis — what have we learned from animal models? Pain 159, https://doi.org/10.1097/j.pain.0000000000001333 (2018).
Jung, M. et al. Cross-species transcriptomic atlas of dorsal root ganglia reveals species-specific programs for sensory function. Nat. Commun. 14, 366 (2023).
Cook, A. D., Christensen, A. D., Tewari, D., McMahon, S. B. & Hamilton, J. A. Immune cytokines and their receptors in inflammatory pain. Trends Immunol. 39, 240–255 (2018).
McMahon, S. B., Russa, F. L. & Bennett, D. L. H. Crosstalk between the nociceptive and immune systems in host defence and disease. Nat. Rev. Neurosci. 16, 389–402 (2015).
Denk, F., Bennett, D. L. & McMahon, S. B. Nerve growth factor and pain mechanisms. Annu. Rev. Neurosci. 40, 307–325 (2017).
Hochberg, M. C. et al. Long-term safety and efficacy of subcutaneous tanezumab versus nonsteroidal antiinflammatory drugs for hip or knee osteoarthritis: a randomized trial. Arthritis Rheumatol. 73, 1167–1177 (2021).
Marchand, F., Perretti, M. & McMahon, S. B. Role of the immune system in chronic pain. Nat. Rev. Neurosci. 6, 521–532 (2005).
Baral, P., Udit, S. & Chiu, I. M. Pain and immunity: implications for host defence. Nat. Rev. Immunol. 19, 433–447 (2019).
Calvo, M., Dawes, J. M. & Bennett, D. L. The role of the immune system in the generation of neuropathic pain. Lancet Neurol. 11, 629–642 (2012).
Roberts, C. A., Dickinson, A. K. & Taams, L. S. The interplay between monocytes/macrophages and CD4+ T cell subsets in rheumatoid arthritis. Front. Immunol. 6, 571 (2015).
Kurowska-Stolarska, M. & Alivernini, S. Synovial tissue macrophages: friend or foe? RMD Open. 3, e000527 (2017).
Massier, J., Eitner, A., Segond von Banchet, G. & Schaible, H.-G. Effects of differently activated rodent macrophages on sensory neurons: implications for arthritis pain. Arthritis Rheumatol. 67, 2263–2272 (2015).
Alivernini, S. et al. Distinct synovial tissue macrophage subsets regulate inflammation and remission in rheumatoid arthritis. Nat. Med. 26, 1295–1306 (2020).
Zhang, F. et al. Deconstruction of rheumatoid arthritis synovium defines inflammatory subtypes. Nature 623, 616–624 (2023).
Aletaha, D. et al. 2010 Rheumatoid arthritis classification criteria: an American College of Rheumatology/European League Against Rheumatism collaborative initiative. Ann. Rheum. Dis. 69, 1580–1588 (2010).
Toes, R. & Pisetsky, D. S. Pathogenic effector functions of ACPA: where do we stand? Ann. Rheum. Dis. 78, 716–721 (2019).
Derksen, V., Huizinga, T. W. J. & van der Woude, D. The role of autoantibodies in the pathophysiology of rheumatoid arthritis. Semin. Immunopathol. 39, 437–446 (2017).
el Bannoudi, H., Ioan-Facsinay, A. & Toes, R. E. M. in Fc Receptors. (eds Daeron, M. & Nimmerjahn, F.) 303–319 (Springer, 2014).
Ji, H. et al. Arthritis critically dependent on innate immune system players. Immunity 16, 157–168 (2002).
Khandpur, R. et al. NETs are a source of citrullinated autoantigens and stimulate inflammatory responses in rheumatoid arthritis. Sci. Transl. Med. 5, 178ra140 (2013).
Wigerblad, G. et al. Autoantibodies to citrullinated proteins induce joint pain independent of inflammation via a chemokine-dependent mechanism. Ann. Rheum. Dis. 75, 730–738 (2016).
Jurczak, A. et al. Antibody-induced pain-like behavior and bone erosion: links to subclinical inflammation, osteoclast activity, and acid-sensing ion channel 3-dependent sensitization. Pain 163, 1542–1559 (2022).
Taylor, P. et al. Patient perceptions concerning pain management in the treatment of rheumatoid arthritis. J. Int. Med. Res. 38, 1213–1224 (2010).
Hafström, I., Ajeganova, S., Forslind, K. & Svensson, B. Anti-citrullinated protein antibodies are associated with osteopenia but not with pain at diagnosis of rheumatoid arthritis: data from the BARFOT cohort. Arthritis Res. Ther. 21, 45 (2019).
Qiu, Y. Y. et al. Anti-cyclic citrullinated peptide antibody and pain sensitisation in patients with rheumatoid arthritis: a cross-sectional analysis. Ann. Rheum. Dis. 82, 1638–1640 (2023).
He, Y. et al. A subset of antibodies targeting citrullinated proteins confers protection from rheumatoid arthritis. Nat. Commun. 14, 691 (2023).
Gomez, A. M. et al. Anti-citrullinated protein antibodies with multiple specificities ameliorate collagen antibody-induced arthritis in a time-dependent manner. Arthritis Rheumatol. 76, 181–191 (2024).
Raposo, B. et al. Divergent and dominant anti-inflammatory effects of patient-derived anticitrullinated protein antibodies (ACPA) in arthritis development. Ann. Rheum. Dis. 82, 724–726 (2023).
Donlin, L. T. et al. Methods for high-dimensional analysis of cells dissociated from cryopreserved synovial tissue. Arthritis Res. Ther. 20, 139 (2018).
Zhang, F. et al. Defining inflammatory cell states in rheumatoid arthritis joint synovial tissues by integrating single-cell transcriptomics and mass cytometry. Nat. Immunol. 20, 928–942 (2019).
Weinand, K. et al. The chromatin landscape of pathogenic transcriptional cell states in rheumatoid arthritis. Nat. Commun. 15, 4650 (2024).
Inamo, J. et al. Deep immunophenotyping reveals circulating activated lymphocytes in individuals at risk for rheumatoid arthritis. Preprint at bioRxiv 2023.2007.2003.547507, https://doi.org/10.1101/2023.07.03.547507 (2023).
Edalat, S. G. et al. Molecular maps of synovial cells in inflammatory arthritis using an optimized synovial tissue dissociation protocol. iScience 27, 109707 (2024).
Nguyen, M. Q., von Buchholtz, L. J., Reker, A. N., Ryba, N. J. P. & Davidson, S. Single-nucleus transcriptomic analysis of human dorsal root ganglion neurons. eLife 10, e71752 (2021).
Ray, P. R. et al. RNA profiling of human dorsal root ganglia reveals sex differences in mechanisms promoting neuropathic pain. Brain 146, 749–766 (2022).
Nees, T. A. et al. Role of TMEM100 in mechanically insensitive nociceptor un-silencing. Nat. Commun. 14, 1889 (2023).
Davidson, S. et al. Fibroblasts as immune regulators in infection, inflammation and cancer. Nat. Rev. Immunol. 21, 704–717 (2021).
Croft, A. P. et al. Distinct fibroblast subsets drive inflammation and damage in arthritis. Nature 570, 246–251 (2019).
Friščić, J. et al. The complement system drives local inflammatory tissue priming by metabolic reprogramming of synovial fibroblasts. Immunity 54, 1002–1021.e10 (2021).
Shinotsuka, N. & Denk, F. Fibroblasts: the neglected cell type in peripheral sensitisation and chronic pain? A review based on a systematic search of the literature. BMJ Open. Sci. 6, e100235 (2022).
Buechler, M. B. et al. Cross-tissue organization of the fibroblast lineage. Nature 593, 575–579 (2021).
Korsunsky, I. et al. Cross-tissue, single-cell stromal atlas identifies shared pathological fibroblast phenotypes in four chronic inflammatory diseases. Med 3, 481–518.e414 (2022).
Singhmar, P. et al. The fibroblast-derived protein PI16 controls neuropathic pain. Proc. Natl Acad. Sci. 117, 5463–5471 (2020).
Garrity, R. et al. Fibroblast-derived PI16 sustains inflammatory pain via regulation of CD206+ myeloid cells. Brain Behav. Immun. 112, 220–234 (2023).
Bai, Z. et al. Synovial fibroblast gene expression is associated with sensory nerve growth and pain in rheumatoid arthritis. Sci. Transl. Med. 16, eadk3506 (2024).
British Society for Rheumatology. Rheumatology workforce: a crisis in numbers. https://rheumatology.org.uk/Portals/0/Documents/Policy/Reports/BSR-workforce-report-crisis-numbers.pdf (2021).
Lindqvist, E., Jonsson, K., Saxne, T. & Eberhardt, K. Course of radiographic damage over 10 years in a cohort with early rheumatoid arthritis. Ann. Rheum. Dis. 62, 611–616 (2003).
Szekanecz, Z. et al. Efficacy and safety of JAK inhibitors in rheumatoid arthritis: update for the practising clinician. Nat. Rev. Rheumatol. 20, 101–115 (2024).
Fitzcharles, M.-A. et al. Nociplastic pain: towards an understanding of prevalent pain conditions. Lancet 397, 2098–2110 (2021).
Holdsworth, E. A. et al. Biologic and targeted synthetic DMARD utilization in the United States: Adelphi real world disease specific programme for rheumatoid arthritis. Rheumatol. Ther. 8, 1637–1649 (2021).
Ytterberg, S. R. et al. Cardiovascular and cancer risk with tofacitinib in rheumatoid arthritis. N. Engl. J. Med. 386, 316–326 (2022).
FDA. Janus Kinase (JAK) Inhibitors: Drug Safety Communication — FDA Requires Warnings about Increased Risk of Serious Heart-related Events, Cancer, Blood Clots, and Death. https://www.fda.gov/safety/medical-product-safety-information/janus-kinase-jak-inhibitors-drug-safety-communication-fda-requires-warnings-about-increased-risk (2021).
European Medicines Agency. Janus Kinase inhibitors (JAKi). Article-20 procedure — EMA confirms measures to minimise risk of serious side effects with Janus kinase inhibitors for chronic inflammatory disorders. EMA/142279/2023 https://europa.eu/!BkjJNH (2023).
Fleischmann, R. et al. Upadacitinib versus placebo or adalimumab in patients with rheumatoid arthritis and an inadequate response to methotrexate: results of a phase III, double-blind, randomized controlled trial. Arthritis Rheumatol. 71, 1788–1800 (2019).
Taylor, P. C. et al. Baricitinib versus placebo or adalimumab in rheumatoid arthritis. N. Engl. J. Med. 376, 652–662 (2017).
Fautrel, B. et al. Effect of baricitinib and adalimumab in reducing pain and improving function in patients with rheumatoid arthritis in low disease activity: exploratory analyses from RA-BEAM. J. Clin. Med. 8, 1394 (2019).
Barragán-Iglesias, P. et al. Type I interferons act directly on nociceptors to produce pain sensitization: implications for viral infection-induced pain. J. Neurosci. 40, 3517–3532 (2020).
Makabe, K. et al. Baricitinib ameliorates inflammatory and neuropathic pain in collagen antibody-induced arthritis mice by modulating the IL-6/JAK/STAT3 pathway and CSF-1 expression in dorsal root ganglion neurons. Arthritis Res. Ther. 26, 121 (2024).
Bannister, K. & Dickenson, A. H. Central nervous system targets: supraspinal mechanisms of analgesia. Neurotherapeutics 17, 839–845 (2020).
Tracey, I. Neuroimaging mechanisms in pain: from discovery to translation. Pain 158, S115–S122 (2017).
Elbers, S. et al. Longitudinal outcome evaluations of Interdisciplinary Multimodal Pain Treatment programmes for patients with chronic primary musculoskeletal pain: a systematic review and meta-analysis. Eur. J. Pain. 26, 310–335 (2022).
Häuser, W., Bernardy, K., Arnold, B., Offenbächer, M. & Schiltenwolf, M. Efficacy of multicomponent treatment in fibromyalgia syndrome: a meta-analysis of randomized controlled clinical trials. Arthritis Rheum. 61, 216–224 (2009).
Fashler, S. R. et al. Systematic review of multidisciplinary chronic pain treatment facilities. Pain. Res. Manag. 2016, 5960987 (2016).
Deslauriers, S. et al. The burden of waiting to access pain clinic services: perceptions and experiences of patients with rheumatic conditions. BMC Health Serv. Res. 21, 160 (2021).
Nøst, T. H. & Steinsbekk, A. ‘A lifebuoy’ and ‘a waste of time’: patients’ varying experiences of multidisciplinary pain centre treatment — a qualitative study. BMC Health Serv. Res. 19, 1015 (2019).
Crofford, L. J. Use of NSAIDs in treating patients with arthritis. Arthritis Res. Ther. 15, S2 (2013).
Osnes-Ringen, H., Kvien, T. K., Henriksen, J. E., Mowinckel, P. & Dagfinrud, H. Orthopaedic surgery in 255 patients with inflammatory arthropathies: longitudinal effects on pain, physical function and health-related quality of life. Ann. Rheum. Dis. 68, 1596–1601 (2009).
Singh, J. A. & Lewallen, D. G. Better functional and similar pain outcomes in osteoarthritis compared to rheumatoid arthritis after primary total knee arthroplasty: a cohort study. Arthritis Care Res. 65, 1936–1941 (2013).
Schrepf, A. et al. Top down or bottom up? An observational investigation of improvement in fibromyalgia symptoms following hip and knee replacement. Rheumatology 59, 594–602 (2019).
Chambers, S. M. et al. Combined small-molecule inhibition accelerates developmental timing and converts human pluripotent stem cells into nociceptors. Nat. Biotechnol. 30, 715–720 (2012).
Perez-Sanchez, J. et al. A humanized chemogenetic system inhibits murine pain-related behavior and hyperactivity in human sensory neurons. Sci. Transl. Med. 15, eadh3839 (2023).
Deng, T. et al. Scalable generation of sensory neurons from human pluripotent stem cells. Stem Cell Rep. 18, 1030–1047 (2023).
Wei, K. et al. Notch signalling drives synovial fibroblast identity and arthritis pathology. Nature 582, 259–264 (2020).
Johnson, P. A. et al. Three-dimensional, in-vitro approaches for modelling soft-tissue joint diseases. Lancet Rheumatol. 5, e553–e563 (2023).
Neto, E. et al. Sensory neurons and osteoblasts: close partners in a microfluidic platform. Integr. Biol. 6, 586–595 (2014).
Molina-Martínez, B. et al. A multimodal 3D neuro-microphysiological system with neurite-trapping microelectrodes. Biofabrication 14, https://doi.org/10.1088/1758-5090/ac463b (2022).
van der Moolen, M. et al. Cancer-mediated axonal guidance of sensory neurons in a microelectrode-based innervation MPS. Biofabrication 16, 025013 (2024).
Chisholm, K. I., Khovanov, N., Lopes, D. M., La Russa, F. & McMahon, S. B. Large scale in vivo recording of sensory neuron activity with GCaMP6. eNeuro 5, https://doi.org/10.1523/ENEURO.0417-17.2018 (2018).
Ingram, S. et al. Assessing spontaneous sensory neuron activity using in vivo calcium imaging. Pain 165, 1131–1141 (2024).
Cowie, A. M., Moehring, F., O’Hara, C. & Stucky, C. L. Optogenetic inhibition of CGRPα sensory neurons reveals their distinct roles in neuropathic and incisional pain. J. Neurosci. 38, 5807–5825 (2018).
Soliman, N. & Denk, F. Practical approaches to improving translatability and reproducibility in preclinical pain research. Brain Behav. Immun. 115, 38–42 (2024).
Sadler, K. E., Mogil, J. S. & Stucky, C. L. Innovations and advances in modelling and measuring pain in animals. Nat. Rev. Neurosci. 23, 70–85 (2022).
Federico, C. A., Mogil, J. S., Ramsay, T., Fergusson, D. A. & Kimmelman, J. A systematic review and meta-analysis of pregabalin preclinical studies. Pain 161, 684–693 (2020).
Currie, G. L. et al. Animal models of chemotherapy-induced peripheral neuropathy: a machine-assisted systematic review and meta-analysis. PLoS Biol. 17, e3000243 (2019).
Vollert, J. et al. The EQIPD framework for rigor in the design, conduct, analysis and documentation of animal experiments. Nat. Methods 19, 1334–1337 (2022).
Percie du Sert, N. et al. Reporting animal research: explanation and elaboration for the ARRIVE guidelines 2.0. PLoS Biol. 18, e3000411 (2020).
Albers, C. & Lakens, D. When power analyses based on pilot data are biased: inaccurate effect size estimators and follow-up bias. J. Exp. Soc. Psychol. 74, 187–195 (2018).
Rolke, R. et al. Quantitative sensory testing in the German Research Network on Neuropathic Pain (DFNS): standardized protocol and reference values. Pain 123, 231–243 (2006).
Lindblom, U. & Verrillo, R. T. Sensory functions in chronic neuralgia. J. Neurol. Neurosurg. Psychiatry 42, 422–435 (1979).
Arendt-Nielsen, L. et al. Assessment and manifestation of central sensitisation across different chronic pain conditions. Eur. J. Pain. 22, 216–241 (2018).
Schmelz, M. Lessons learned — moving on from QST sensory profiles. Scand. J. Pain. 22, 670–672 (2022).
Middleton, S. J. et al. Studying human nociceptors: from fundamentals to clinic. Brain 144, 1312–1335 (2021).
Reimer, M. et al. Sensory bedside testing: a simple stratification approach for sensory phenotyping. Pain. Rep. 5, e820 (2020).
D’Agostino, M. A. et al. Scoring ultrasound synovitis in rheumatoid arthritis: a EULAR-OMERACT ultrasound taskforce — part 1: definition and development of a standardised, consensus-based scoring system. RMD Open. 3, e000428–e000428 (2017).
Naredo, E. et al. Longitudinal power Doppler ultrasonographic assessment of joint inflammatory activity in early rheumatoid arthritis: predictive value in disease activity and radiologic progression. Arthritis Care Res. 57, 116–124 (2007).
Tracey, I., Woolf, C. J. & Andrews, N. A. Composite pain biomarker signatures for objective assessment and effective treatment. Neuron 101, 783–800 (2019).
Rutter-Locher, Z. et al. A randomised controlled trial of the effect of intra-articular lidocaine on pain scores in inflammatory arthritis. Pain https://doi.org/10.1097/j.pain.0000000000003291 (2024).
Anderson, J. et al. Rheumatoid arthritis disease activity measures: American College of Rheumatology recommendations for use in clinical practice. Arthritis Care Res. 64, 640–647 (2012).
Taylor, P. C. et al. Impact of filgotinib on pain control in the phase 3 FINCH studies. RMD Open. 10, e003839 (2024).
Taylor, P. C. et al. AB0290 effect of filgotinib on pain in patients with rheumatoid arthritis in the phase 3 FINCH 1, 2 and 3 studies. Ann. Rheum. Dis. 82, 1326–1327 (2023).
Chiarotto, A. et al. Pain measurement in rheumatic and musculoskeletal diseases: where to go from here? Report from a special interest group at OMERACT 2018. J. Rheumatol. 46, 1355–1359 (2019).
Weyand, C. M. & Goronzy, J. J. The immunology of rheumatoid arthritis. Nat. Immunol. 22, 10–10 (2021).
Raja, S. N. et al. The revised International Association for the Study of Pain definition of pain: concepts, challenges, and compromises. Pain 161, 1976–1982 (2020).
Perrot, S. et al. The IASP classification of chronic pain for ICD-11: chronic secondary musculoskeletal pain. Pain 160, 28–37 (2019).
Cohen, S. P., Vase, L. & Hooten, W. M. Chronic pain: an update on burden, best practices, and new advances. Lancet 397, 2082–2097 (2021).
IASP. Terminology. https://www.iasp-pain.org/resources/terminology/ (2011).
Kosek, E. et al. Do we need a third mechanistic descriptor for chronic pain states? Pain 157, 1382–1386 (2016).
Murphy, A. E., Minhas, D., Clauw, D. J. & Lee, Y. C. Identifying and managing nociplastic pain in individuals with rheumatic diseases: a narrative review. Arthritis Care Res. 75, 2215–2222 (2023).
Hoegh, M., Schmid, A. B., Hansson, P. & Finnerup, N. B. Not being able to measure what is important, does not make things we can measure important. Pain 163, e963 (2022).
Woolf, C. J. Evidence for a central component of post-injury pain hypersensitivity. Nature 306, 686–688 (1983).
Woolf, C. J. Central sensitization: implications for the diagnosis and treatment of pain. Pain 152, S2–S15 (2011).
Nijs, J. et al. Central sensitisation in chronic pain conditions: latest discoveries and their potential for precision medicine. Lancet Rheumatol. 3, e383–e392 (2021).
Acknowledgements
The authors acknowledge the following funding support: a National Institute for Health Research (NIHR) Doctoral Fellowship (NIHR301674 to Z.R.-L.) and a Wellcome Trust Collaborative Award (224257/Z/21/Z to B.W.K., D.L.B., C.D.B., F.D. and L.S.T.).
Author information
Authors and Affiliations
Contributions
All authors reviewed and/or edited the manuscript before submission and contributed substantially to discussion of the content, L.S.T., Z.R.-L., B.W.K. and F.D. researched data for the article, and L.S.T., Z.R.-L. and F.D. wrote the article.
Corresponding authors
Ethics declarations
Competing interests
D.L.B. has received research grant funding from Eli Lilly and AstraZeneca. B.W.K. has been an adviser or speaker for AbbVie, Eli-Lilly, Galapagos, Janssen, Novartis, Pfizer and UCB. F.D. receives funding from Ono Pharmaceuticals, is a Scientific Advisor for Cellectricon and is consulting for GSK. L.S.T. has received research funding, speaker or consultancy fees from Sanofi, CESAS Medical, UCB, GSK and AbbVie. C.D.B. has received research grant funding from Janssen, Roche and is an adviser for GSK and AbbVie. He is a founder of Mestag Therapeutics. None of the other authors declares any competing interests relevant to this Review.
Peer review
Peer review information
Nature Reviews Rheumatology thanks Neil Basu, who co-reviewed with Flavia Sunzini; Dana Orange; and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Rutter-Locher, Z., Kirkham, B.W., Bannister, K. et al. An interdisciplinary perspective on peripheral drivers of pain in rheumatoid arthritis. Nat Rev Rheumatol (2024). https://doi.org/10.1038/s41584-024-01155-z
Accepted:
Published:
DOI: https://doi.org/10.1038/s41584-024-01155-z