Abstract
Osteoarthritis (OA) is a highly prevalent joint disease that causes substantial disability, yet effective approaches to disease prevention or to the delay of OA progression are lacking. Emerging evidence has pinpointed ion channels as pivotal mediators in OA pathogenesis and as promising targets for disease-modifying treatments. Preclinical studies have assessed the potential of a variety of ion channel modulators to modify disease pathways involved in cartilage degeneration, synovial inflammation, bone hyperplasia and pain, and to provide symptomatic relief in models of OA. Some of these modulators are currently being evaluated in clinical trials. This review explores the structures and functions of ion channels, including transient receptor potential channels, Piezo channels, voltage-gated sodium channels, voltage-dependent calcium channels, potassium channels, acid-sensing ion channels, chloride channels and the ATP-dependent P2XR channels in the osteoarthritic joint. The discussion spans channel-targeting drug discovery and potential clinical applications, emphasizing opportunities for further research, and underscoring the growing clinical impact of ion channel biology in OA.
Key points
-
Ion channels have key functions in the joints and emerge as important contributors to pathogenic processes in osteoarthritis (OA).
-
Dysregulation of mechanical and biochemical stimuli activates ion channels such as TRPV4 and Piezo channels, leading to Ca2+ and Na+ influx, which contributes to cartilage destruction, inflammation and pain in OA.
-
Some ion channels typically associated with peripheral neurons are also expressed in chondrocytes and immune cells, and have a crucial role in the pathophysiology of OA.
-
Exploration of ion channel expression, interactions, and properties in joints, along with development of specific channel agonists and antagonists, has helped to accelerate research on their potential roles in OA.
-
Several ion channel modulators have been recently tested in animal models and patients with OA, with encouraging results.
-
Targeting of ion channels holds promise for the development of new and more effective OA treatment strategies.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 print issues and online access
$209.00 per year
only $17.42 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
Sharma, L. Osteoarthritis of the knee. N. Engl. J. Med. 384, 51–59 (2021).
Glyn-Jones, S. et al. Osteoarthritis. Lancet 386, 376–387 (2015).
Martel-Pelletier, J. et al. Osteoarthritis. Nat. Rev. Dis. Prim. 2, 16072 (2016).
Liu, C. J. The role of ADAMTS-7 and ADAMTS-12 in the pathogenesis of arthritis. Nat. Clin. Pract. Rheumatol. 5, 38–45 (2009).
Lin, E. A. & Liu, C. J. The role of ADAMTSs in arthritis. Protein Cell 1, 33–47 (2010).
Fu, K., Robbins, S. R. & McDougall, J. J. Osteoarthritis: the genesis of pain. Rheumatology 57, iv43–iv50 (2018).
Huang, G., Jian, J. & Liu, C. J. Progranulinopathy: a diverse realm of disorders linked to progranulin imbalances. Cytokine Growth Factor. Rev. 76, 142–159 (2024).
Williams, A., Wang, E. C., Thurner, L. & Liu, C. J. Review: novel insights into tumor necrosis factor receptor, death receptor 3, and progranulin pathways in arthritis and bone remodeling. Arthritis Rheumatol. 68, 2845–2856 (2016).
Liu-Bryan, R. & Terkeltaub, R. Emerging regulators of the inflammatory process in osteoarthritis. Nat. Rev. Rheumatol. 11, 35–44 (2015).
Tang, W. et al. The growth factor progranulin binds to TNF receptors and is therapeutic against inflammatory arthritis in mice. Science 332, 478–484 (2011).
Burr, D. B. & Gallant, M. A. Bone remodelling in osteoarthritis. Nat. Rev. Rheumatol. 8, 665–673 (2012).
Chen, D. et al. Osteoarthritis: toward a comprehensive understanding of pathological mechanism. Bone Res. 5, 16044 (2017).
Steinecker-Frohnwieser, B. et al. Activation of the mechanosensitive ion channels Piezo1 and TRPV4 in primary human healthy and osteoarthritic chondrocytes exhibits ion channel crosstalk and modulates gene expression. Int. J. Mol. Sci. 24, 7868 (2023).
Zhang, W. et al. OARSI recommendations for the management of hip and knee osteoarthritis: part III: changes in evidence following systematic cumulative update of research published through January 2009. Osteoarthritis Cartilage 18, 476–499 (2010).
Kasianowicz, J. J. Introduction to ion channels and disease. Chem. Rev. 112, 6215–6217 (2012).
Savadipour, A., Nims, R. J., Katz, D. B. & Guilak, F. Regulation of chondrocyte biosynthetic activity by dynamic hydrostatic pressure: the role of TRP channels. Connect. Tissue Res. 63, 69–81 (2022).
Gilchrist, C. L. et al. TRPV4-mediated calcium signaling in mesenchymal stem cells regulates aligned collagen matrix formation and vinculin tension. Proc. Natl Acad. Sci. USA 116, 1992–1997 (2019).
Lewis, R. et al. The role of the membrane potential in chondrocyte volume regulation. J. Cell. Physiol. 226, 2979–2986 (2011).
Willard, V. P. et al. Transient receptor potential vanilloid 4 as a regulator of induced pluripotent stem cell chondrogenesis. Stem Cell 39, 1447–1456 (2021).
Lamande, S. R. et al. Mutations in TRPV4 cause an inherited arthropathy of hands and feet. Nat. Genet. 43, 1142–1146 (2011).
Sorge, R. E. et al. Genetically determined P2X7 receptor pore formation regulates variability in chronic pain sensitivity. Nat. Med. 18, 595–599 (2012).
Kelly, S. et al. Increased function of pronociceptive TRPV1 at the level of the joint in a rat model of osteoarthritis pain. Ann. Rheum. Dis. 74, 252–259 (2015).
Obeidat, A. M. et al. Piezo2 expressing nociceptors mediate mechanical sensitization in experimental osteoarthritis. Nat. Commun. 14, 2479 (2023).
Savadipour, A. et al. Membrane stretch as the mechanism of activation of PIEZO1 ion channels in chondrocytes. Proc. Natl Acad. Sci. USA 120, e2221958120 (2023).
Nakamoto, H. et al. Involvement of transient receptor potential vanilloid channel 2 in the induction of lubricin and suppression of ectopic endochondral ossification in mouse articular cartilage. Arthritis Rheumatol. 73, 1441–1450 (2021).
Fu, W. et al. Nav1.7 as a chondrocyte regulator and therapeutic target for osteoarthritis. Nature 625, 557–565 (2024).
Bertram, K. L., Banderali, U., Tailor, P. & Krawetz, R. J. Ion channel expression and function in normal and osteoarthritic human synovial fluid progenitor cells. Channels 10, 148–157 (2016).
Matta, C. et al. Ion channels involved in inflammation and pain in osteoarthritis and related musculoskeletal disorders. Am. J. Physiol. Cell Physiol. 325, C257–C271 (2023).
Xu, B. et al. Excessive mechanical stress induces chondrocyte apoptosis through TRPV4 in an anterior cruciate ligament-transected rat osteoarthritis model. Life Sci. 228, 158–166 (2019).
Ohtsuki, T. et al. Mechanical strain attenuates cytokine-induced ADAMTS9 expression via transient receptor potential vanilloid type 1. Exp. Cell Res. 383, 111556 (2019).
Brierley, S. M. et al. Selective role for TRPV4 ion channels in visceral sensory pathways. Gastroenterology 134, 2059–2069 (2008).
El Idrissi, I. G. et al. Structure-activity relationships and therapeutic potential of purinergic P2X7 receptor antagonists. Curr. Med. Chem. 31, 1361–1403 (2024).
Lee, W. et al. Inflammatory signaling sensitizes Piezo1 mechanotransduction in articular chondrocytes as a pathogenic feed-forward mechanism in osteoarthritis. Proc. Natl Acad. Sci. USA 118, e2001611118 (2021).
Teixeira, J. M., Bobinski, F., Parada, C. A., Sluka, K. A. & Tambeli, C. H. P2X3 and P2X2/3 receptors play a crucial role in articular hyperalgesia development through inflammatory mechanisms in the knee joint experimental synovitis. Mol. Neurobiol. 54, 6174–6186 (2017).
Nummenmaa, E. et al. Transient receptor potential ankyrin 1 (TRPA1) is involved in upregulating interleukin-6 expression in osteoarthritic chondrocyte models. Int. J. Mol. Sci. 22, 87 (2020).
Hardie, R. C. & Minke, B. Novel Ca2+ channels underlying transduction in Drosophila photoreceptors: implications for phosphoinositide-mediated Ca2+ mobilization. Trends Neurosci. 16, 371–376 (1993).
Zhang, M. et al. TRP (transient receptor potential) ion channel family: structures, biological functions and therapeutic interventions for diseases. Signal. Transduct. Target. Ther. 8, 261 (2023).
Reyes-Garcia, J., Carbajal-Garcia, A. & Montano, L. M. Transient receptor potential cation channel subfamily V (TRPV) and its importance in asthma. Eur. J. Pharmacol. 915, 174692 (2022).
Choi, S. I., Lim, J. Y., Yoo, S., Kim, H. & Hwang, S. W. Emerging role of spinal cord TRPV1 in pain exacerbation. Neural Plast. 2016, 5954890 (2016).
Huang, Y. K. et al. Cytokine activin C ameliorates chronic neuropathic pain in peripheral nerve injury rodents by modulating the TRPV1 channel. Br. J. Pharmacol. 177, 5642–5657 (2020).
Serafini, M. et al. Targeting transient receptor potential vanilloid 1 (TRPV1) channel softly: the discovery of Passerini adducts as a topical treatment for inflammatory skin disorders. J. Med. Chem. 61, 4436–4455 (2018).
Song, T. et al. Regulation of chondrocyte functions by transient receptor potential cation channel V6 in osteoarthritis. J. Cell Physiol. 232, 3170–3181 (2017).
Hdud, I. M., El-Shafei, A. A., Loughna, P., Barrett-Jolley, R. & Mobasheri, A. Expression of transient receptor potential vanilloid (TRPV) channels in different passages of articular chondrocytes. Int. J. Mol. Sci. 13, 4433–4445 (2012).
Lv, Z. et al. Single cell RNA-seq analysis identifies ferroptotic chondrocyte cluster and reveals TRPV1 as an anti-ferroptotic target in osteoarthritis. EBioMedicine 84, 104258 (2022).
Li, W. et al. Near infrared responsive gold nanorods attenuate osteoarthritis progression by targeting TRPV1. Adv. Sci. 11, e2307683 (2024).
Bai, H. et al. TRPV2-induced Ca2+-calcineurin-NFAT signaling regulates differentiation of osteoclast in multiple myeloma. Cell Commun. Signal. 16, 68 (2018).
Lv, Z. et al. TRPV1 alleviates osteoarthritis by inhibiting M1 macrophage polarization via Ca2+/CaMKII/Nrf2 signaling pathway. Cell Death Dis. 12, 504 (2021).
Logashina, Y. A. et al. Anti-inflammatory and analgesic effects of TRPV1 polypeptide modulator APHC3 in models of osteo- and rheumatoid arthritis. Mar. Drugs 19, 39 (2021).
Valdes, A. M. et al. The Ile585Val TRPV1 variant is involved in risk of painful knee osteoarthritis. Ann. Rheum. Dis. 70, 1556–1561 (2011).
Hwang, H. S., Park, I. Y., Hong, J. I., Kim, J. R. & Kim, H. A. Comparison of joint degeneration and pain in male and female mice in DMM model of osteoarthritis. Osteoarthritis Cartilage 29, 728–738 (2021).
Mayorga, A. J. et al. A randomized study to evaluate the analgesic efficacy of a single dose of the TRPV1 antagonist mavatrep in patients with osteoarthritis. Scand. J. Pain. 17, 134–143 (2017).
Manitpisitkul, P. et al. A multiple-dose double-blind randomized study to evaluate the safety, pharmacokinetics, pharmacodynamics and analgesic efficacy of the TRPV1 antagonist JNJ-39439335 (mavatrep). Scand. J. Pain. 18, 151–164 (2018).
Stevens, R. M. et al. Randomized, double-blind, placebo-controlled trial of intraarticular trans-capsaicin for pain associated with osteoarthritis of the knee. Arthritis Rheumatol. 71, 1524–1533 (2019).
Gavva, N. R. et al. The vanilloid receptor TRPV1 is tonically activated in vivo and involved in body temperature regulation. J. Neurosci. 27, 3366–3374 (2007).
Muramatsu, S. et al. Functional gene screening system identified TRPV4 as a regulator of chondrogenic differentiation. J. Biol. Chem. 282, 32158–32167 (2007).
Phan, M. N. et al. Functional characterization of TRPV4 as an osmotically sensitive ion channel in porcine articular chondrocytes. Arthritis Rheum. 60, 3028–3037 (2009).
Hdud, I. M., Mobasheri, A. & Loughna, P. T. Effect of osmotic stress on the expression of TRPV4 and BKCa channels and possible interaction with ERK1/2 and p38 in cultured equine chondrocytes. Am. J. Physiol. Cell Physiol. 306, C1050–1057 (2014).
Du, G. et al. Roles of TRPV4 and Piezo channels in stretch-evoked Ca2+ response in chondrocytes. Exp. Biol. Med. 245, 180–189 (2020).
Servin-Vences, M. R., Moroni, M., Lewin, G. R. & Poole, K. Direct measurement of TRPV4 and PIEZO1 activity reveals multiple mechanotransduction pathways in chondrocytes. eLife 6, e21074 (2017).
O’Conor, C. J., Leddy, H. A., Benefield, H. C., Liedtke, W. B. & Guilak, F. TRPV4-mediated mechanotransduction regulates the metabolic response of chondrocytes to dynamic loading. Proc. Natl Acad. Sci. USA 111, 1316–1321 (2014).
Woods, S. et al. Regulation of TGFβ signalling by TRPV4 in chondrocytes. Cells 10, 726 (2021).
Agarwal, P. et al. A dysfunctional TRPV4-GSK3β pathway prevents osteoarthritic chondrocytes from sensing changes in extracellular matrix viscoelasticity. Nat. Biomed. Eng. 5, 1472–1484 (2021).
Yan, Z. et al. TRPV4-mediated mitochondrial dysfunction induces pyroptosis and cartilage degradation in osteoarthritis via the Drp1-HK2 axis. Int. Immunopharmacol. 123, 110651 (2023).
O’Conor, C. J. et al. Cartilage-specific knockout of the mechanosensory ion channel TRPV4 decreases age-related osteoarthritis. Sci. Rep. 6, 29053 (2016).
Ogawa, Y. et al. Hyaluronan promotes TRPV4-induced chondrogenesis in ATDC5 cells. PLoS One 14, e0219492 (2019).
Hattori, K. et al. Activation of transient receptor potential vanilloid 4 protects articular cartilage against inflammatory responses via CaMKK/AMPK/NF-κB signaling pathway. Sci. Rep. 11, 15508 (2021).
Atobe, M. et al. Discovery of novel transient receptor potential vanilloid 4 (TRPV4) agonists as regulators of chondrogenic differentiation: identification of quinazolin-4(3 H)-ones and in vivo studies on a surgically induced rat model of osteoarthritis. J. Med. Chem. 62, 1468–1483 (2019).
Fu, S. et al. Activation of TRPV4 by mechanical, osmotic or pharmaceutical stimulation is anti-inflammatory blocking IL-1β mediated articular cartilage matrix destruction. Osteoarthritis Cartilage 29, 89–99 (2021).
Clark, A. L., Votta, B. J., Kumar, S., Liedtke, W. & Guilak, F. Chondroprotective role of the osmotically sensitive ion channel transient receptor potential vanilloid 4: age- and sex-dependent progression of osteoarthritis in Trpv4-deficient mice. Arthritis Rheum. 62, 2973–2983 (2010).
O’Conor, C. J., Griffin, T. M., Liedtke, W. & Guilak, F. Increased susceptibility of Trpv4-deficient mice to obesity and obesity-induced osteoarthritis with very high-fat diet. Ann. Rheum. Dis. 72, 300–304 (2013).
Masuyama, R. et al. TRPV4-mediated calcium influx regulates terminal differentiation of osteoclasts. Cell Metab. 8, 257–265 (2008).
Hu, X. et al. A TRPV4-dependent neuroimmune axis in the spinal cord promotes neuropathic pain. J. Clin. Invest. 133, e161507 (2023).
Xing, R. et al. Mechanism of TRPA1 and TRPV4 participating in mechanical hyperalgesia of rat experimental knee osteoarthritis. Arch. Rheumatol. 32, 96–104 (2017).
Soga, M. et al. Suppression of joint pain in transient receptor potential vanilloid 4 knockout rats with monoiodoacetate-induced osteoarthritis. Pain. Rep. 6, e951 (2021).
Hinata, M. et al. Sensitization of transient receptor potential vanilloid 4 and increasing its endogenous ligand 5,6-epoxyeicosatrienoic acid in rats with monoiodoacetate-induced osteoarthritis. Pain 159, 939–947 (2018).
Kochukov, M. Y., McNearney, T. A., Fu, Y. & Westlund, K. N. Thermosensitive TRP ion channels mediate cytosolic calcium response in human synoviocytes. Am. J. Physiol. Cell Physiol. 291, C424–432, (2006).
Kochukov, M. Y. et al. Tumor necrosis factor-alpha (TNF-α) enhances functional thermal and chemical responses of TRP cation channels in human synoviocytes. Mol. Pain 5, 49 (2009).
Sun, H. et al. Blocking TRPV4 ameliorates osteoarthritis by inhibiting M1 macrophage polarization via the ROS/NLRP3 signaling pathway. Antioxidants 11, 2315 (2022).
Zhong, G., Long, H., Chen, F. & Yu, Y. Oxoglaucine mediates Ca2+ influx and activates autophagy to alleviate osteoarthritis through the TRPV5/calmodulin/CAMK-II pathway. Br. J. Pharmacol. 178, 2931–2947 (2021).
Chen, B. et al. Aerobic exercise combined with glucosamine hydrochloride capsules inhibited the apoptosis of chondrocytes in rabbit knee osteoarthritis by affecting TRPV5 expression. Gene 830, 146465 (2022).
van der Eerden, B. C. et al. The epithelial Ca2+ channel TRPV5 is essential for proper osteoclastic bone resorption. Proc. Natl Acad. Sci. USA 102, 17507–17512 (2005).
Chamoux, E., Bisson, M., Payet, M. D. & Roux, S. TRPV-5 mediates a receptor activator of NF-κB (RANK) ligand-induced increase in cytosolic Ca2+ in human osteoclasts and down-regulates bone resorption. J. Biol. Chem. 285, 25354–25362 (2010).
Duncan, L. M. et al. Down-regulation of the novel gene melastatin correlates with potential for melanoma metastasis. Cancer Res. 58, 1515–1520 (1998).
Haraguchi, K. et al. TRPM2 contributes to inflammatory and neuropathic pain through the aggravation of pronociceptive inflammatory responses in mice. J. Neurosci. 32, 3931–3941 (2012).
So, K. et al. Involvement of TRPM2 in a wide range of inflammatory and neuropathic pain mouse models. J. Pharmacol. Sci. 127, 237–243 (2015).
Ciurtin, C. et al. TRPM3 channel stimulated by pregnenolone sulphate in synovial fibroblasts and negatively coupled to hyaluronan. BMC Musculoskelet. Disord. 11, 111 (2010).
Bai, R. et al. Increased Wnt/β-catenin signaling contributes to autophagy inhibition resulting from a dietary magnesium deficiency in injury-induced osteoarthritis. Arthritis Res. Ther. 24, 165 (2022).
Ma, G. et al. Blockade of TRPM7 alleviates chondrocyte apoptosis and articular cartilage damage in the adjuvant arthritis rat model through regulation of the Indian hedgehog signaling pathway. Front. Pharmacol. 12, 655551 (2021).
Zhou, R. et al. TRPM7 channel inhibition attenuates rheumatoid arthritis articular chondrocyte ferroptosis by suppression of the PKCα–NOX4 axis. Redox Biol. 55, 102411 (2022).
Lu, D. et al. Ca2+/Mg2+ homeostasis-related TRPM7 channel mediates chondrocyte hypertrophy via regulation of the PI3K-Akt signaling pathway. Mol. Med. Rep. 16, 5699–5705 (2017).
Halonen, L. et al. Human osteoarthritic chondrocytes express nineteen different TRP-Genes-TRPA1 and TRPM8 as potential drug targets. Int. J. Mol. Sci. 24, 10057 (2023).
Talavera, K. et al. Mammalian transient receptor potential TRPA1 channels: from structure to disease. Physiol. Rev. 100, 725–803 (2020).
Fujita, F., Moriyama, T., Higashi, T., Shima, A. & Tominaga, M. Methyl p-hydroxybenzoate causes pain sensation through activation of TRPA1 channels. Br. J. Pharmacol. 151, 153–160 (2007).
Namer, B., Seifert, F., Handwerker, H. O. & Maihofner, C. TRPA1 and TRPM8 activation in humans: effects of cinnamaldehyde and menthol. Neuroreport 16, 955–959 (2005).
Nummenmaa, E. et al. Transient receptor potential ankyrin 1 (TRPA1) is functionally expressed in primary human osteoarthritic chondrocytes. Arthritis Res. Ther. 18, 185 (2016).
Yin, S. et al. Transient receptor potential ankyrin 1 (trpa1) mediates il-1β-induced apoptosis in rat chondrocytes via calcium overload and mitochondrial dysfunction. J. Inflamm. 15, 27 (2018).
Yin, S. et al. Transient receptor potential ankyrin 1 (TRPA1) mediates lipopolysaccharide (LPS)-induced inflammatory responses in primary human osteoarthritic fibroblast-like synoviocytes. Inflammation 41, 700–709 (2018).
Moilanen, L. J. et al. Monosodium iodoacetate-induced inflammation and joint pain are reduced in TRPA1 deficient mice-potential role of TRPA1 in osteoarthritis. Osteoarthritis Cartilage 23, 2017–2026 (2015).
Horvath, A. et al. Transient receptor potential ankyrin 1 (TRPA1) receptor is involved in chronic arthritis: in vivo study using TRPA1-deficient mice. Arthritis Res. Ther. 18, 6 (2016).
Ramsey, I. S., Delling, M. & Clapham, D. E. An introduction to TRP channels. Annu. Rev. Physiol. 68, 619–647 (2006).
Schaefer, M. et al. Receptor-mediated regulation of the nonselective cation channels TRPC4 and TRPC5. J. Biol. Chem. 275, 17517–17526 (2000).
Gavenis, K. et al. Expression of ion channels of the TRP family in articular chondrocytes from osteoarthritic patients: changes between native and in vitro propagated chondrocytes. Mol. Cell Biochem. 321, 135–143 (2009).
Wuest, S. L. et al. Influence of mechanical unloading on articular chondrocyte dedifferentiation. Int. J. Mol. Sci. 19, 1289 (2018).
Staaf, S., Oerther, S., Lucas, G., Mattsson, J. P. & Ernfors, P. Differential regulation of TRP channels in a rat model of neuropathic pain. Pain 144, 187–199 (2009).
Alawi, K. M. et al. Transient receptor potential canonical 5 (TRPC5) protects against pain and vascular inflammation in arthritis and joint inflammation. Ann. Rheum. Dis. 76, 252–260 (2017).
de Sousa Valente, J. et al. Examining the role of transient receptor potential canonical 5 (TRPC5) in osteoarthritis. Osteoarthr. Cartil. Open 2, 100119 (2020).
Zhao, Q. et al. Structure and mechanogating mechanism of the Piezo1 channel. Nature 554, 487–492 (2018).
Wang, L. et al. Structure and mechanogating of the mammalian tactile channel PIEZO2. Nature 573, 225–229 (2019).
Taberner, F. J. et al. Structure-guided examination of the mechanogating mechanism of PIEZO2. Proc. Natl Acad. Sci. USA 116, 14260–14269 (2019).
Moroni, M., Servin-Vences, M. R., Fleischer, R., Sanchez-Carranza, O. & Lewin, G. R. Voltage gating of mechanosensitive PIEZO channels. Nat. Commun. 9, 1096 (2018).
Coste, B. et al. Piezo1 and Piezo2 are essential components of distinct mechanically activated cation channels. Science 330, 55–60 (2010).
Lewis, A. H., Cui, A. F., McDonald, M. F. & Grandl, J. Transduction of repetitive mechanical stimuli by Piezo1 and Piezo2 ion channels. Cell Rep. 19, 2572–2585 (2017).
Zheng, W., Gracheva, E. O. & Bagriantsev, S. N. A hydrophobic gate in the inner pore helix is the major determinant of inactivation in mechanosensitive Piezo channels. Elife 8, e44003 (2019).
Ren, X. et al. Gsmtx4 alleviated osteoarthritis through Piezo1/calcineurin/NFAT1 signaling axis under excessive mechanical strain. Int. J. Mol. Sci. 24, 4022 (2023).
Ikeda, R., Arimura, D. & Saito, M. Expression of Piezo mRNA is unaffected in a rat model of knee osteoarthritis. Mol. Pain 17, 17448069211014059 (2021).
Lee, W. et al. Synergy between Piezo1 and Piezo2 channels confers high-strain mechanosensitivity to articular cartilage. Proc. Natl Acad. Sci. USA 111, E5114–E5122 (2014).
Wang, S. et al. Mechanical overloading induces GPX4-regulated chondrocyte ferroptosis in osteoarthritis via Piezo1 channel facilitated calcium influx. J. Adv. Res. 41, 63–75 (2022).
Young, C. & Kobayashi, T. Limited roles of Piezo mechanosensing channels in articular cartilage development and osteoarthritis progression. Osteoarthritis Cartilage 31, 775–779 (2023).
Liu, C. S. C. et al. Cutting edge: Piezo1 mechanosensors optimize human T cell activation. J. Immunol. 200, 1255–1260 (2018).
Jairaman, A. et al. Piezo1 channels restrain regulatory T cells but are dispensable for effector CD4+ T cell responses. Sci. Adv. 7, eabg5859 (2021).
Emmi, A. et al. Infrapatellar fat pad-synovial membrane anatomo-functional unit: microscopic basis for Piezo1/2 mechanosensors involvement in osteoarthritis pain. Front. Cell Dev. Biol. 10, 886604 (2022).
Hodgkin, A. L. & Huxley, A. F. The components of membrane conductance in the giant axon of Loligo. J. Physiol. 116, 473–496 (1952).
Catterall, W. A., Goldin, A. L., Waxman, S. G. & International Union of Pharmacology. International Union of Pharmacology. XXXIX. Compendium of voltage-gated ion channels: sodium channels. Pharmacol. Rev. 55, 575–578 (2003).
Stys, P. K., Waxman, S. G. & Ransom, B. R. Ionic mechanisms of anoxic injury in mammalian CNS white matter: role of Na+ channels and Na+–Ca2+ exchanger. J. Neurosci. 12, 430–439 (1992).
Persson, A. K. et al. Sodium channels contribute to degeneration of dorsal root ganglion neurites induced by mitochondrial dysfunction in an in vitro model of axonal injury. J. Neurosci. 33, 19250–19261 (2013).
Craner, M. J. et al. Sodium channels contribute to microglia/macrophage activation and function in EAE and MS. Glia 49, 220–229 (2005).
Black, J. A., Liu, S. & Waxman, S. G. Sodium channel activity modulates multiple functions in microglia. Glia 57, 1072–1081 (2009).
Persson, A. K. et al. Contribution of sodium channels to lamellipodial protrusion and Rac1 and ERK1/2 activation in ATP-stimulated microglia. Glia 62, 2080–2095 (2014).
Pappalardo, L. W., Samad, O. A., Black, J. A. & Waxman, S. G. Voltage-gated sodium channel Nav1.5 contributes to astrogliosis in an in vitro model of glial injury via reverse Na+/Ca2+ exchange. Glia 62, 1162–1175 (2014).
Meisler, M. H., Hill, S. F. & Yu, W. Sodium channelopathies in neurodevelopmental disorders. Nat. Rev. Neurosci. 22, 152–166 (2021).
Mantegazza, M., Curia, G., Biagini, G., Ragsdale, D. S. & Avoli, M. Voltage-gated sodium channels as therapeutic targets in epilepsy and other neurological disorders. Lancet Neurol. 9, 413–424 (2010).
Bennett, D. L., Clark, A. J., Huang, J., Waxman, S. G. & Dib-Hajj, S. D. The role of voltage-gated sodium channels in pain signaling. Physiol. Rev. 99, 1079–1151 (2019).
Dib-Hajj, S. D., Yang, Y., Black, J. A. & Waxman, S. G. The NaV1.7 sodium channel: from molecule to man. Nat. Rev. Neurosci. 14, 49–62 (2013).
Dib-Hajj, S. D., Black, J. A. & Waxman, S. G. NaV1.9: a sodium channel linked to human pain. Nat. Rev. Neurosci. 16, 511–519 (2015).
Waxman, S. G. Targeting a peripheral sodium channel to treat pain. N. Engl. J. Med. 389, 466–469 (2023).
Black, J. A. & Waxman, S. G. Noncanonical roles of voltage-gated sodium channels. Neuron 80, 280–291 (2013).
Drenth, J. P. & Waxman, S. G. Mutations in sodium-channel gene SCN9A cause a spectrum of human genetic pain disorders. J. Clin. Invest. 117, 3603–3609 (2007).
Fertleman, C. R. et al. SCN9A mutations in paroxysmal extreme pain disorder: allelic variants underlie distinct channel defects and phenotypes. Neuron 52, 767–774 (2006).
Dib-Hajj, S. D. et al. Gain-of-function mutation in Nav1.7 in familial erythromelalgia induces bursting of sensory neurons. Brain 128, 1847–1854 (2005).
Cox, J. J. et al. An SCN9A channelopathy causes congenital inability to experience pain. Nature 444, 894–898 (2006).
Goldberg, Y. P. et al. Loss-of-function mutations in the Nav1.7 gene underlie congenital indifference to pain in multiple human populations. Clin. Genet. 71, 311–319 (2007).
Weiss, J. et al. Loss-of-function mutations in sodium channel Nav1.7 cause anosmia. Nature 472, 186–190 (2011).
Reimann, F. et al. Pain perception is altered by a nucleotide polymorphism in SCN9A. Proc. Natl Acad. Sci. USA 107, 5148–5153 (2010).
Nassar, M. A., Levato, A., Stirling, L. C. & Wood, J. N. Neuropathic pain develops normally in mice lacking both Nav1.7 and Nav1.8. Mol. Pain. 1, 24 (2005).
Nassar, M. A. et al. Nociceptor-specific gene deletion reveals a major role for Nav1.7 (PN1) in acute and inflammatory pain. Proc. Natl Acad. Sci. USA 101, 12706–12711 (2004).
Rahman, W. & Dickenson, A. H. Osteoarthritis-dependent changes in antinociceptive action of Nav1.7 and Nav1.8 sodium channel blockers: an in vivo electrophysiological study in the rat. Neuroscience 295, 103–116 (2015).
Cha, M., Bak, H., Lee, B. H. & Jang, J. H. Alleviation of peripheral sensitization by quadriceps insertion of cog polydioxanone filaments in knee osteoarthritis rats. Biochem. Biophys. Res. Commun. 698, 149549 (2024).
Aman, Y. Targeting cartilage sodium channels for osteoarthritis treatment. Nat. Aging 4, 168 (2024).
Kong, X. & Liu, C. J. How do small quantities of cartilage sodium channels play a significant role in osteoarthritis? Clin. Transl. Med. 14, e1634 (2024).
Akopian, A. N., Sivilotti, L. & Wood, J. N. A tetrodotoxin-resistant voltage-gated sodium channel expressed by sensory neurons. Nature 379, 257–262 (1996).
Han, C., Huang, J. & Waxman, S. G. Sodium channel Nav1.8: emerging links to human disease. Neurology 86, 473–483 (2016).
Cummins, T. R. & Waxman, S. G. Downregulation of tetrodotoxin-resistant sodium currents and upregulation of a rapidly repriming tetrodotoxin-sensitive sodium current in small spinal sensory neurons after nerve injury. J. Neurosci. 17, 3503–3514 (1997).
Renganathan, M., Cummins, T. R. & Waxman, S. G. Contribution of Nav1.8 sodium channels to action potential electrogenesis in DRG neurons. J. Neurophysiol. 86, 629–640 (2001).
Jones, J. et al. Selective inhibition of NaV1.8 with VX-548 for acute pain. N. Engl. J. Med. 389, 393–405 (2023).
Zhu, J. et al. Aberrant subchondral osteoblastic metabolism modifies NaV1.8 for osteoarthritis. eLife 9, e57656 (2020).
Miller, R. E. et al. Chemogenetic inhibition of pain neurons in a mouse model of osteoarthritis. Arthritis Rheumatol. 69, 1429–1439 (2017).
Schuelert, N. & McDougall, J. J. Involvement of Nav 1.8 sodium ion channels in the transduction of mechanical pain in a rodent model of osteoarthritis. Arthritis Res. Ther. 14, R5 (2012).
Adler, D. M. T. et al. Evaluation of the in vitro effects of local anesthetics on equine chondrocytes and fibroblast-like synoviocytes. Am. J. Vet. Res. 82, 478–486 (2021).
Jacob, B. et al. Local anesthetics’ toxicity toward human cultured chondrocytes: a comparative study between lidocaine, bupivacaine, and ropivacaine. Cartilage 10, 364–369 (2019).
Miyazaki, T. et al. Lidocaine cytotoxicity to the bovine articular chondrocytes in vitro: changes in cell viability and proteoglycan metabolism. Knee Surg. Sports Traumatol. Arthrosc. 19, 1198–1205 (2011).
Ahuja, S. et al. Structural basis of Nav1.7 inhibition by an isoform-selective small-molecule antagonist. Science 350, eaac5464 (2015).
Shen, H., Liu, D., Wu, K., Lei, J. & Yan, N. Structures of human Nav1.7 channel in complex with auxiliary subunits and animal toxins. Science 363, 1303–1308 (2019).
Xu, H. et al. Structural basis of Nav1.7 inhibition by a gating-modifier spider toxin. Cell 176, 702–715 e714 (2019).
Zamponi, G. W., Striessnig, J., Koschak, A. & Dolphin, A. C. The physiology, pathology, and pharmacology of voltage-gated calcium channels and their future therapeutic potential. Pharmacol. Rev. 67, 821–870 (2015).
Yao, J., Long, H., Zhao, J., Zhong, G. & Li, J. Nifedipine inhibits oxidative stress and ameliorates osteoarthritis by activating the nuclear factor erythroid-2-related factor 2 pathway. Life Sci. 253, 117292 (2020).
Takamatsu, A. et al. Verapamil protects against cartilage degradation in osteoarthritis by inhibiting Wnt/β-catenin signaling. PLoS One 9, e92699 (2014).
Boileau, C. et al. PD-0200347, an ɑ2δ ligand of the voltage gated calcium channel, inhibits in vivo activation of the Erk1/2 pathway in osteoarthritic chondrocytes: a PKCɑ; dependent effect. Ann. Rheum. Dis. 65, 573–580 (2006).
Boileau, C. et al. Oral treatment with PD-0200347, an α2δ ligand, reduces the development of experimental osteoarthritis by inhibiting metalloproteinases and inducible nitric oxide synthase gene expression and synthesis in cartilage chondrocytes. Arthritis Rheum. 52, 488–500 (2005).
Chen, X. et al. Small-molecule CaVα1⋅CaVβ antagonist suppresses neuronal voltage-gated calcium-channel trafficking. Proc. Natl Acad. Sci. USA 115, E10566–E10575 (2018).
Adaes, S. et al. Injury of primary afferent neurons may contribute to osteoarthritis induced pain: an experimental study using the collagenase model in rats. Osteoarthritis Cartilage 23, 914–924 (2015).
Sun, L. et al. Effect and mechanism of the CACNA2D1-CGRP pathway in osteoarthritis-induced ongoing pain. Biomed. Pharmacother. 129, 110374 (2020).
Matta, C., Zakany, R. & Mobasheri, A. Voltage-dependent calcium channels in chondrocytes: roles in health and disease. Curr. Rheumatol. Rep. 17, 43 (2015).
Nguyen, C. et al. Intracellular calcium oscillations in articular chondrocytes induced by basic calcium phosphate crystals lead to cartilage degradation. Osteoarthritis Cartilage 20, 1399–1408 (2012).
Prehm, P. Inhibitors of hyaluronan export prevent proteoglycan loss from osteoarthritic cartilage. J. Rheumatol. 32, 690–696 (2005).
Hara, M. et al. Calcium influx through a possible coupling of cation channels impacts skeletal muscle satellite cell activation in response to mechanical stretch. Am. J. Physiol. Cell Physiol. 302, C1741–1750, (2012).
Zamponi, G. W. Targeting voltage-gated calcium channels in neurological and psychiatric diseases. Nat. Rev. Drug. Discov. 15, 19–34 (2016).
Rahman, W., Patel, R. & Dickenson, A. H. Electrophysiological evidence for voltage-gated calcium channel 2 (Cav2) modulation of mechano- and thermosensitive spinal neuronal responses in a rat model of osteoarthritis. Neuroscience 305, 76–85 (2015).
Shao, Y., Alicknavitch, M. & Farach-Carson, M. C. Expression of voltage sensitive calcium channel (VSCC) L-type Cav1.2 (α1C) and T-type Cav3.2 (α1H) subunits during mouse bone development. Dev. Dyn. 234, 54–62 (2005).
Srinivasan, P. P. et al. Inhibition of T-type voltage sensitive calcium channel reduces load-induced OA in mice and suppresses the catabolic effect of bone mechanical stress on chondrocytes. PLoS One 10, e0127290 (2015).
Gong, X. et al. Altered spontaneous calcium signaling of in situ chondrocytes in human osteoarthritic cartilage. Sci. Rep. 7, 17093 (2017).
Itson-Zoske, B. et al. Selective block of sensory neuronal T-type/Cav3.2 activity mitigates neuropathic pain behavior in a rat model of osteoarthritis pain. Arthritis Res. Ther. 24, 168 (2022).
Hamilton, K. L. & Devor, D. C. Basolateral membrane K+ channels in renal epithelial cells. Am. J. Physiol. Renal Physiol. 302, F1069–F1081 (2012).
Kuang, Q., Purhonen, P. & Hebert, H. Structure of potassium channels. Cell Mol. Life Sci. 72, 3677–3693 (2015).
Grandolfo, M., Martina, M., Ruzzier, F. & Vittur, F. A potassium channel in cultured chondrocytes. Calcif. Tissue Int. 47, 302–307 (1990).
Grandolfo, M., D’Andrea, P., Martina, M., Ruzzier, F. & Vittur, F. Calcium-activated potassium channels in chondrocytes. Biochem. Biophys. Res. Commun. 182, 1429–1434 (1992).
Rufino, A. T. et al. Expression and function of K(ATP) channels in normal and osteoarthritic human chondrocytes: possible role in glucose sensing. J. Cell Biochem. 114, 1879–1889 (2013).
Gu, Y. et al. Diazoxide prevents H2O2-induced chondrocyte apoptosis and cartilage degeneration in a rat model of osteoarthritis by reducing endoplasmic reticulum stress. Biomed. Pharmacother. 95, 1886–1894 (2017).
Mozrzymas, J. W., Martina, M. & Ruzzier, F. A large-conductance voltage-dependent potassium channel in cultured pig articular chondrocytes. Pflugers Arch. 433, 413–427 (1997).
Li, X. et al. Millimeter wave promotes the synthesis of extracellular matrix and the proliferation of chondrocyte by regulating the voltage-gated K+ channel. J. Bone Min. Metab. 32, 367–377 (2014).
Liu, Y., Zhao, D., Wang, X., Dong, Y. & Ding, F. LncRNA KCNQ1OT1 attenuates osteoarthritic chondrocyte dysfunction via the miR-218-5p/PIK3C2A axis. Cell Tissue Res. 385, 115–126 (2021).
Zhang, F. et al. Suppression of KCNQ/M potassium channel in dorsal root ganglia neurons contributes to the development of osteoarthritic pain. Pharmacology 103, 257–262 (2019).
Funabashi, K. et al. Accelerated Ca2+ entry by membrane hyperpolarization due to Ca2+-activated K+ channel activation in response to histamine in chondrocytes. Am. J. Physiol. Cell Physiol. 298, C786–C797 (2010).
Suzuki, Y., Ohya, S., Yamamura, H., Giles, W. R. & Imaizumi, Y. A new splice variant of large conductance Ca2+-activated K+ (BK) channel alpha subunit alters human chondrocyte function. J. Biol. Chem. 291, 24247–24260 (2016).
Lu, R. et al. BKCa channels expressed in sensory neurons modulate inflammatory pain in mice. Pain 155, 556–565 (2014).
Waldmann, R., Champigny, G., Bassilana, F., Heurteaux, C. & Lazdunski, M. A proton-gated cation channel involved in acid-sensing. Nature 386, 173–177 (1997).
Zhou, R. P. et al. Modulators of ASIC1a and its potential as a therapeutic target for age-related diseases. Ageing Res. Rev. 83, 101785 (2023).
Jahr, H., van Driel, M., van Osch, G. J., Weinans, H. & van Leeuwen, J. P. Identification of acid-sensing ion channels in bone. Biochem. Biophys. Res. Commun. 337, 349–354 (2005).
Zhou, R. P. et al. Interleukin-1β and tumor necrosis factor-α augment acidosis-induced rat articular chondrocyte apoptosis via nuclear factor-kappaB-dependent upregulation of ASIC1a channel. Biochim. Biophys. Acta Mol. Basis Dis. 1864, 162–177 (2018).
Xu, Y. & Chen, F. Acid-sensing ion channel-1a in articular chondrocytes and synovial fibroblasts: a novel therapeutic target for rheumatoid arthritis. Front. Immunol. 11, 580936 (2020).
Grunder, S., Geissler, H. S., Bassler, E. L. & Ruppersberg, J. P. A new member of acid-sensing ion channels from pituitary gland. Neuroreport 11, 1607–1611 (2000).
Hesselager, M., Timmermann, D. B. & Ahring, P. K. pH Dependency and desensitization kinetics of heterologously expressed combinations of acid-sensing ion channel subunits. J. Biol. Chem. 279, 11006–11015 (2004).
Delaunay, A. et al. Human ASIC3 channel dynamically adapts its activity to sense the extracellular pH in both acidic and alkaline directions. Proc. Natl Acad. Sci. USA 109, 13124–13129 (2012).
Price, M. P. et al. The DRASIC cation channel contributes to the detection of cutaneous touch and acid stimuli in mice. Neuron 32, 1071–1083 (2001).
Xiong, Z. G. et al. Neuroprotection in ischemia: blocking calcium-permeable acid-sensing ion channels. Cell 118, 687–698 (2004).
Wu, X., Ren, G., Zhou, R., Ge, J. & Chen, F. H. The role of Ca2+ in acid-sensing ion channel 1a-mediated chondrocyte pyroptosis in rat adjuvant arthritis. Lab. Invest. 99, 499–513 (2019).
Ahn, H., Kim, J. M., Lee, K., Kim, H. & Jeong, D. Extracellular acidosis accelerates bone resorption by enhancing osteoclast survival, adhesion, and migration. Biochem. Biophys. Res. Commun. 418, 144–148 (2012).
Conaghan, P. G., Cook, A. D., Hamilton, J. A. & Tak, P. P. Therapeutic options for targeting inflammatory osteoarthritis pain. Nat. Rev. Rheumatol. 15, 355–363 (2019).
Zhou, R., Wu, X., Wang, Z., Ge, J. & Chen, F. Interleukin-6 enhances acid-induced apoptosis via upregulating acid-sensing ion channel 1a expression and function in rat articular chondrocytes. Int. Immunopharmacol. 29, 748–760 (2015).
Yang, Y. et al. Blockade of ASIC1a inhibits acid-induced rat articular chondrocyte senescence through regulation of autophagy. Hum. Cell 35, 665–677 (2022).
Ding, J. et al. Acid-sensitive ion channel 1a mediates osteoarthritis chondrocyte senescence by promoting lamin B1 degradation. Biochem. Pharmacol. 202, 115107 (2022).
Dong, L. et al. ASIC1a-CMPK2-mediated M1 macrophage polarization exacerbates chondrocyte senescence in osteoarthritis through IL-18. Int. Immunopharmacol. 124, 110878 (2023).
Chen, W. N. et al. Roles of ASIC3, TRPV1, and NaV1.8 in the transition from acute to chronic pain in a mouse model of fibromyalgia. Mol. Pain. 10, 40 (2014).
Karczewski, J. et al. Reversal of acid-induced and inflammatory pain by the selective ASIC3 inhibitor, APETx2. Br. J. Pharmacol. 161, 950–960 (2010).
Izumi, M., Ikeuchi, M., Ji, Q. & Tani, T. Local ASIC3 modulates pain and disease progression in a rat model of osteoarthritis. J. Biomed. Sci. 19, 77 (2012).
Kuduk, S. D. et al. Synthesis, structure-activity relationship, and pharmacological profile of analogs of the ASIC-3 inhibitor A-317567. ACS Chem. Neurosci. 1, 19–24 (2010).
Jacquot, F. et al. Lysophosphatidylcholine 16:0 mediates chronic joint pain associated to rheumatic diseases through acid-sensing ion channel 3. Pain 163, 1999–2013 (2022).
Pidoux, L. et al. Single subcutaneous injection of lysophosphatidyl-choline evokes ASIC3-dependent increases of spinal dorsal horn neuron activity. Front. Mol. Neurosci. 15, 880651 (2022).
Niibori, M. et al. Mechanism of aspirin-induced inhibition on the secondary hyperalgesia in osteoarthritis model rats. Heliyon 6, e03963 (2020).
Patil, V. M. & Gupta, S. P. Studies on chloride channels and their modulators. Curr. Top. Med. Chem. 16, 1862–1876 (2016).
Yamamura, H., Suzuki, Y. & Imaizumi, Y. Physiological and pathological functions of Cl− channels in chondrocytes. Biol. Pharm. Bull. 41, 1145–1151 (2018).
Kurita, T., Yamamura, H., Suzuki, Y., Giles, W. R. & Imaizumi, Y. The ClC-7 chloride channel is downregulated by hypoosmotic stress in human chondrocytes. Mol. Pharmacol. 88, 113–120 (2015).
Deng, Z. et al. Interleukin 1 beta-induced chloride currents are important in osteoarthritis onset: an in vitro study. Acta Biochim. Biophys. Sin. 53, 400–409 (2021).
Zhang, Z. et al. Targeting macrophagic PIM-1 alleviates osteoarthritis by inhibiting NLRP3 inflammasome activation via suppressing mitochondrial ROS/Cl− efflux signaling pathway. J. Transl. Med. 21, 452 (2023).
Kittl, M. et al. Low pH attenuates apoptosis by suppressing the volume-sensitive outwardly rectifying (VSOR) chloride current in chondrocytes. Front. Cell Dev. Biol. 9, 804105 (2021).
Liang, H. Y. et al. Calcium-permeable channels cooperation for rheumatoid arthritis: therapeutic opportunities. Biomolecules 12, 1383 (2022).
Deng, R., Zhang, H., Huang, L., Xiong, X. & Fu, X. MicroRNA-186 ameliorates knee osteoarthritis via regulation of P2X7-mediated cathepsin-K/Runx2/ADAMTS5 signalling axis in articular chondrocytes. Saudi J. Biol. Sci. 28, 4270–4275 (2021).
Richards, D., Gever, J. R., Ford, A. P. & Fountain, S. J. Action of MK-7264 (gefapixant) at human P2X3 and P2X2/3 receptors and in vivo efficacy in models of sensitisation. Br. J. Pharmacol. 176, 2279–2291 (2019).
Li, Z., Huang, Z. & Bai, L. The P2X7 receptor in osteoarthritis. Front. Cell Dev. Biol. 9, 628330 (2021).
Surprenant, A., Rassendren, F., Kawashima, E., North, R. A. & Buell, G. The cytolytic P2Z receptor for extracellular ATP identified as a P2X receptor (P2X7). Science 272, 735–738 (1996).
Knight, M. M., McGlashan, S. R., Garcia, M., Jensen, C. G. & Poole, C. A. Articular chondrocytes express connexin 43 hemichannels and P2 receptors — a putative mechanoreceptor complex involving the primary cilium? J. Anat. 214, 275–283 (2009).
Tanigawa, H. et al. P2X7 ionotropic receptor is functionally expressed in rabbit articular chondrocytes and mediates extracellular ATP cytotoxicity. Purinergic Signal. 14, 245–258 (2018).
Li, Z. et al. P2X7 receptor induces pyroptotic inflammation and cartilage degradation in osteoarthritis via NF-κB/NLRP3 crosstalk. Oxid. Med. Cell. Longev. 2021, 8868361 (2021).
Hu, H., Yang, B., Li, Y., Zhang, S. & Li, Z. Blocking of the P2X7 receptor inhibits the activation of the MMP-13 and NF-κB pathways in the cartilage tissue of rats with osteoarthritis. Int. J. Mol. Med. 38, 1922–1932 (2016).
Li, Z. et al. Moderate-intensity exercise alleviates pyroptosis by promoting autophagy in osteoarthritis via the P2X7/AMPK/mTOR axis. Cell Death Discov. 7, 346 (2021).
Zhang, W., Zhong, B., Zhang, C., Luo, C. & Zhan, Y. miR-373 regulates inflammatory cytokine-mediated chondrocyte proliferation in osteoarthritis by targeting the P2X7 receptor. FEBS Open. Bio 8, 325–331 (2018).
Xiao, J., Li, Y., Zhang, J., Xu, G. & Zhang, J. Pannexin 3 activates P2X7 receptor to mediate inflammation and cartilage matrix degradation in temporomandibular joint osteoarthritis. Cell Biol. Int. 47, 1183–1197 (2023).
Perregaux, D. G., McNiff, P., Laliberte, R., Conklyn, M. & Gabel, C. A. ATP acts as an agonist to promote stimulus-induced secretion of IL-1β and IL-18 in human blood. J. Immunol. 165, 4615–4623 (2000).
Li, W. et al. Quercetin as a promising intervention for rat osteoarthritis by decreasing M1-polarized macrophages via blocking the TRPV1-mediated P2X7/NLRP3 signaling pathway. Phytother. Res. 38, 1990–2006 (2024).
Mahfouz, R. et al. L-Carnitine augments probenecid anti-inflammatory effect in monoiodoacetate-induced knee osteoarthritis in rats: involvement of miRNA-373/P2X7/NLRP3/NF-κB milieu. Inflammopharmacology 32, 715–731 (2024).
Mousseau, M. et al. Microglial pannexin-1 channel activation is a spinal determinant of joint pain. Sci. Adv. 4, eaas9846 (2018).
Varani, K. et al. Pharmacological characterization of P2X1 and P2X3 purinergic receptors in bovine chondrocytes. Osteoarthritis Cartilage 16, 1421–1429 (2008).
Krajewski, J. L. P2X3-containing receptors as targets for the treatment of chronic pain. Neurotherapeutics 17, 826–838 (2020).
Seino, D. et al. The role of ERK signaling and the P2X receptor on mechanical pain evoked by movement of inflamed knee joint. Pain 123, 193–203 (2006).
Daniilidis, K., Georges, P., Tibesku, C. O. & Prehm, P. Positive side effects of Ca antagonists for osteoarthritic joints-results of an in vivo pilot study. J. Orthop. Surg. Res. 10, 1 (2015).
Vaiciuleviciute, R., Bironaite, D., Uzieliene, I., Mobasheri, A. & Bernotiene, E. Cardiovascular drugs and osteoarthritis: effects of targeting ion channels. Cells 10, 2572 (2021).
DeJulius, C. R. et al. Engineering approaches for RNA-based and cell-based osteoarthritis therapies. Nat. Rev. Rheumatol. 20, 81–100 (2024).
Miller, F., Björnsson, M., Svensson, O. & Karlsten, R. Experiences with an adaptive design for a dose-finding study in patients with osteoarthritis. Contemp. Clin. Trials 37, 189–199 (2014).
Arsenault, P. et al. NEO6860, modality-selective TRPV1 antagonist: a randomized, controlled, proof-of-concept trial in patients with osteoarthritis knee pain. Pain. Rep. 3, e696 (2018).
Khoury, S. et al. Identification of lipid biomarkers for chronic joint pain associated with different joint diseases. Biomolecules 13, 342 (2023).
Shin, Y. et al. Safety, tolerability and pharmacokinetics/pharmacodynamic evaluation of properties of In1011-N17 after oral administration in healthy volunteers with effect comparison of solubility enhanced formulation. Osteoarthritis Cartilage 30, S65–S66 (2022).
Acknowledgements
We are grateful to our gifted collaborators who made the explorations in our laboratories possible. Studies in our laboratories were supported by US National Institutes of Health research grants R01AR062207, R01AR061484, R01AR076900, R01AR078035 and R01NS103931. S.G.W. was supported by the Bridget Flaherty Endowment to the Yale Department of Neurology. We apologize to the colleagues whose papers were not cited owing to the constraints of word limitations.
Author information
Authors and Affiliations
Contributions
All authors contributed substantially to discussing the content. R.Z. wrote the first draft of the article. All authors reviewed and edited the manuscript before submission.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Peer review
Peer review information
Nature Reviews Rheumatology thanks Ali Mobasheri, Eiva Bernotiene, who co-reviewed with Raminta Vaiciuleviciute, and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Glossary
- All-or-none action potentials
-
Neuronal signalling follows the all-or-none principle, whereby an action potential is generated and propagated along the axon without amplitude decrement when a neuron’s membrane potential reaches a stimulus-induced threshold, and no action potential occurs if the threshold is not reached.
- Designer receptors exclusively activated by designer drugs technology
-
(DREADD technology). A technology in neuroscience that remotely controls specific neurons by genetically engineering receptors unresponsive to endogenous ligands but activated by synthetic, designer drugs.
- Ferroptosis
-
Ferroptosis is an iron-dependent form of cell death characterized by lipid peroxidation and driven by iron accumulation and depletion of antioxidant enzymes.
- Glutathione peroxidase 4
-
(GPX4). An antioxidant enzyme that protects cells from ferroptosis by converting lipid hydroperoxides into non-toxic lipid alcohols; inhibition or depletion of GPX4 results in lipid peroxide accumulation, thereby triggering ferroptosis.
- Purinergic receptors
-
Responsive to purine nucleotides and nucleosides such as ATP and adenosine, these receptors are classified into P1, P2Y and P2X types, with P1 and P2Y functioning as G protein-coupled receptors activated by adenosine and nucleotides such as ATP and adenosine diphosphate, respectively.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Zhou, R., Fu, W., Vasylyev, D. et al. Ion channels in osteoarthritis: emerging roles and potential targets. Nat Rev Rheumatol 20, 545–564 (2024). https://doi.org/10.1038/s41584-024-01146-0
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s41584-024-01146-0
This article is cited by
-
Macrophage membrane-camouflaged biomimetic nanoparticles for rheumatoid arthritis treatment via modulating macrophage polarization
Journal of Nanobiotechnology (2024)