Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Ion channels in osteoarthritis: emerging roles and potential targets

Abstract

Osteoarthritis (OA) is a highly prevalent joint disease that causes substantial disability, yet effective approaches to disease prevention or to the delay of OA progression are lacking. Emerging evidence has pinpointed ion channels as pivotal mediators in OA pathogenesis and as promising targets for disease-modifying treatments. Preclinical studies have assessed the potential of a variety of ion channel modulators to modify disease pathways involved in cartilage degeneration, synovial inflammation, bone hyperplasia and pain, and to provide symptomatic relief in models of OA. Some of these modulators are currently being evaluated in clinical trials. This review explores the structures and functions of ion channels, including transient receptor potential channels, Piezo channels, voltage-gated sodium channels, voltage-dependent calcium channels, potassium channels, acid-sensing ion channels, chloride channels and the ATP-dependent P2XR channels in the osteoarthritic joint. The discussion spans channel-targeting drug discovery and potential clinical applications, emphasizing opportunities for further research, and underscoring the growing clinical impact of ion channel biology in OA.

Key points

  • Ion channels have key functions in the joints and emerge as important contributors to pathogenic processes in osteoarthritis (OA).

  • Dysregulation of mechanical and biochemical stimuli activates ion channels such as TRPV4 and Piezo channels, leading to Ca2+ and Na+ influx, which contributes to cartilage destruction, inflammation and pain in OA.

  • Some ion channels typically associated with peripheral neurons are also expressed in chondrocytes and immune cells, and have a crucial role in the pathophysiology of OA.

  • Exploration of ion channel expression, interactions, and properties in joints, along with development of specific channel agonists and antagonists, has helped to accelerate research on their potential roles in OA.

  • Several ion channel modulators have been recently tested in animal models and patients with OA, with encouraging results.

  • Targeting of ion channels holds promise for the development of new and more effective OA treatment strategies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Overview of the roles of ion channels in the pathophysiology of osteoarthritis.
Fig. 2: Ion channels mediate pain transduction in osteoarthritis.
Fig. 3: Mechanisms of action of TRP channels in osteoarthritis.
Fig. 4: Involvement of Piezo, Nav, Cav and K+ channels in the pathophysiology of osteoarthritis.
Fig. 5: Roles of acid-sensing ion channels, purinergic ion channels and chloride channels in osteoarthritis progression.

Similar content being viewed by others

References

  1. Sharma, L. Osteoarthritis of the knee. N. Engl. J. Med. 384, 51–59 (2021).

    Article  CAS  PubMed  Google Scholar 

  2. Glyn-Jones, S. et al. Osteoarthritis. Lancet 386, 376–387 (2015).

    Article  CAS  PubMed  Google Scholar 

  3. Martel-Pelletier, J. et al. Osteoarthritis. Nat. Rev. Dis. Prim. 2, 16072 (2016).

    Article  PubMed  Google Scholar 

  4. Liu, C. J. The role of ADAMTS-7 and ADAMTS-12 in the pathogenesis of arthritis. Nat. Clin. Pract. Rheumatol. 5, 38–45 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Lin, E. A. & Liu, C. J. The role of ADAMTSs in arthritis. Protein Cell 1, 33–47 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Fu, K., Robbins, S. R. & McDougall, J. J. Osteoarthritis: the genesis of pain. Rheumatology 57, iv43–iv50 (2018).

    Article  CAS  PubMed  Google Scholar 

  7. Huang, G., Jian, J. & Liu, C. J. Progranulinopathy: a diverse realm of disorders linked to progranulin imbalances. Cytokine Growth Factor. Rev. 76, 142–159 (2024).

    Article  CAS  PubMed  Google Scholar 

  8. Williams, A., Wang, E. C., Thurner, L. & Liu, C. J. Review: novel insights into tumor necrosis factor receptor, death receptor 3, and progranulin pathways in arthritis and bone remodeling. Arthritis Rheumatol. 68, 2845–2856 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Liu-Bryan, R. & Terkeltaub, R. Emerging regulators of the inflammatory process in osteoarthritis. Nat. Rev. Rheumatol. 11, 35–44 (2015).

    Article  CAS  PubMed  Google Scholar 

  10. Tang, W. et al. The growth factor progranulin binds to TNF receptors and is therapeutic against inflammatory arthritis in mice. Science 332, 478–484 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Burr, D. B. & Gallant, M. A. Bone remodelling in osteoarthritis. Nat. Rev. Rheumatol. 8, 665–673 (2012).

    Article  CAS  PubMed  Google Scholar 

  12. Chen, D. et al. Osteoarthritis: toward a comprehensive understanding of pathological mechanism. Bone Res. 5, 16044 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Steinecker-Frohnwieser, B. et al. Activation of the mechanosensitive ion channels Piezo1 and TRPV4 in primary human healthy and osteoarthritic chondrocytes exhibits ion channel crosstalk and modulates gene expression. Int. J. Mol. Sci. 24, 7868 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Zhang, W. et al. OARSI recommendations for the management of hip and knee osteoarthritis: part III: changes in evidence following systematic cumulative update of research published through January 2009. Osteoarthritis Cartilage 18, 476–499 (2010).

    Article  CAS  PubMed  Google Scholar 

  15. Kasianowicz, J. J. Introduction to ion channels and disease. Chem. Rev. 112, 6215–6217 (2012).

    Article  CAS  PubMed  Google Scholar 

  16. Savadipour, A., Nims, R. J., Katz, D. B. & Guilak, F. Regulation of chondrocyte biosynthetic activity by dynamic hydrostatic pressure: the role of TRP channels. Connect. Tissue Res. 63, 69–81 (2022).

    Article  CAS  PubMed  Google Scholar 

  17. Gilchrist, C. L. et al. TRPV4-mediated calcium signaling in mesenchymal stem cells regulates aligned collagen matrix formation and vinculin tension. Proc. Natl Acad. Sci. USA 116, 1992–1997 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Lewis, R. et al. The role of the membrane potential in chondrocyte volume regulation. J. Cell. Physiol. 226, 2979–2986 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Willard, V. P. et al. Transient receptor potential vanilloid 4 as a regulator of induced pluripotent stem cell chondrogenesis. Stem Cell 39, 1447–1456 (2021).

    Article  CAS  Google Scholar 

  20. Lamande, S. R. et al. Mutations in TRPV4 cause an inherited arthropathy of hands and feet. Nat. Genet. 43, 1142–1146 (2011).

    Article  CAS  PubMed  Google Scholar 

  21. Sorge, R. E. et al. Genetically determined P2X7 receptor pore formation regulates variability in chronic pain sensitivity. Nat. Med. 18, 595–599 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kelly, S. et al. Increased function of pronociceptive TRPV1 at the level of the joint in a rat model of osteoarthritis pain. Ann. Rheum. Dis. 74, 252–259 (2015).

    Article  CAS  PubMed  Google Scholar 

  23. Obeidat, A. M. et al. Piezo2 expressing nociceptors mediate mechanical sensitization in experimental osteoarthritis. Nat. Commun. 14, 2479 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Savadipour, A. et al. Membrane stretch as the mechanism of activation of PIEZO1 ion channels in chondrocytes. Proc. Natl Acad. Sci. USA 120, e2221958120 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Nakamoto, H. et al. Involvement of transient receptor potential vanilloid channel 2 in the induction of lubricin and suppression of ectopic endochondral ossification in mouse articular cartilage. Arthritis Rheumatol. 73, 1441–1450 (2021).

    Article  CAS  PubMed  Google Scholar 

  26. Fu, W. et al. Nav1.7 as a chondrocyte regulator and therapeutic target for osteoarthritis. Nature 625, 557–565 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Bertram, K. L., Banderali, U., Tailor, P. & Krawetz, R. J. Ion channel expression and function in normal and osteoarthritic human synovial fluid progenitor cells. Channels 10, 148–157 (2016).

    Article  PubMed  Google Scholar 

  28. Matta, C. et al. Ion channels involved in inflammation and pain in osteoarthritis and related musculoskeletal disorders. Am. J. Physiol. Cell Physiol. 325, C257–C271 (2023).

    Article  CAS  PubMed  Google Scholar 

  29. Xu, B. et al. Excessive mechanical stress induces chondrocyte apoptosis through TRPV4 in an anterior cruciate ligament-transected rat osteoarthritis model. Life Sci. 228, 158–166 (2019).

    Article  CAS  PubMed  Google Scholar 

  30. Ohtsuki, T. et al. Mechanical strain attenuates cytokine-induced ADAMTS9 expression via transient receptor potential vanilloid type 1. Exp. Cell Res. 383, 111556 (2019).

    Article  CAS  PubMed  Google Scholar 

  31. Brierley, S. M. et al. Selective role for TRPV4 ion channels in visceral sensory pathways. Gastroenterology 134, 2059–2069 (2008).

    Article  CAS  PubMed  Google Scholar 

  32. El Idrissi, I. G. et al. Structure-activity relationships and therapeutic potential of purinergic P2X7 receptor antagonists. Curr. Med. Chem. 31, 1361–1403 (2024).

    Article  PubMed  Google Scholar 

  33. Lee, W. et al. Inflammatory signaling sensitizes Piezo1 mechanotransduction in articular chondrocytes as a pathogenic feed-forward mechanism in osteoarthritis. Proc. Natl Acad. Sci. USA 118, e2001611118 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Teixeira, J. M., Bobinski, F., Parada, C. A., Sluka, K. A. & Tambeli, C. H. P2X3 and P2X2/3 receptors play a crucial role in articular hyperalgesia development through inflammatory mechanisms in the knee joint experimental synovitis. Mol. Neurobiol. 54, 6174–6186 (2017).

    Article  CAS  PubMed  Google Scholar 

  35. Nummenmaa, E. et al. Transient receptor potential ankyrin 1 (TRPA1) is involved in upregulating interleukin-6 expression in osteoarthritic chondrocyte models. Int. J. Mol. Sci. 22, 87 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Hardie, R. C. & Minke, B. Novel Ca2+ channels underlying transduction in Drosophila photoreceptors: implications for phosphoinositide-mediated Ca2+ mobilization. Trends Neurosci. 16, 371–376 (1993).

    Article  CAS  PubMed  Google Scholar 

  37. Zhang, M. et al. TRP (transient receptor potential) ion channel family: structures, biological functions and therapeutic interventions for diseases. Signal. Transduct. Target. Ther. 8, 261 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Reyes-Garcia, J., Carbajal-Garcia, A. & Montano, L. M. Transient receptor potential cation channel subfamily V (TRPV) and its importance in asthma. Eur. J. Pharmacol. 915, 174692 (2022).

    Article  CAS  PubMed  Google Scholar 

  39. Choi, S. I., Lim, J. Y., Yoo, S., Kim, H. & Hwang, S. W. Emerging role of spinal cord TRPV1 in pain exacerbation. Neural Plast. 2016, 5954890 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Huang, Y. K. et al. Cytokine activin C ameliorates chronic neuropathic pain in peripheral nerve injury rodents by modulating the TRPV1 channel. Br. J. Pharmacol. 177, 5642–5657 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Serafini, M. et al. Targeting transient receptor potential vanilloid 1 (TRPV1) channel softly: the discovery of Passerini adducts as a topical treatment for inflammatory skin disorders. J. Med. Chem. 61, 4436–4455 (2018).

    Article  CAS  PubMed  Google Scholar 

  42. Song, T. et al. Regulation of chondrocyte functions by transient receptor potential cation channel V6 in osteoarthritis. J. Cell Physiol. 232, 3170–3181 (2017).

    Article  CAS  PubMed  Google Scholar 

  43. Hdud, I. M., El-Shafei, A. A., Loughna, P., Barrett-Jolley, R. & Mobasheri, A. Expression of transient receptor potential vanilloid (TRPV) channels in different passages of articular chondrocytes. Int. J. Mol. Sci. 13, 4433–4445 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Lv, Z. et al. Single cell RNA-seq analysis identifies ferroptotic chondrocyte cluster and reveals TRPV1 as an anti-ferroptotic target in osteoarthritis. EBioMedicine 84, 104258 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Li, W. et al. Near infrared responsive gold nanorods attenuate osteoarthritis progression by targeting TRPV1. Adv. Sci. 11, e2307683 (2024).

    Article  Google Scholar 

  46. Bai, H. et al. TRPV2-induced Ca2+-calcineurin-NFAT signaling regulates differentiation of osteoclast in multiple myeloma. Cell Commun. Signal. 16, 68 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Lv, Z. et al. TRPV1 alleviates osteoarthritis by inhibiting M1 macrophage polarization via Ca2+/CaMKII/Nrf2 signaling pathway. Cell Death Dis. 12, 504 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Logashina, Y. A. et al. Anti-inflammatory and analgesic effects of TRPV1 polypeptide modulator APHC3 in models of osteo- and rheumatoid arthritis. Mar. Drugs 19, 39 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Valdes, A. M. et al. The Ile585Val TRPV1 variant is involved in risk of painful knee osteoarthritis. Ann. Rheum. Dis. 70, 1556–1561 (2011).

    Article  PubMed  Google Scholar 

  50. Hwang, H. S., Park, I. Y., Hong, J. I., Kim, J. R. & Kim, H. A. Comparison of joint degeneration and pain in male and female mice in DMM model of osteoarthritis. Osteoarthritis Cartilage 29, 728–738 (2021).

    Article  CAS  PubMed  Google Scholar 

  51. Mayorga, A. J. et al. A randomized study to evaluate the analgesic efficacy of a single dose of the TRPV1 antagonist mavatrep in patients with osteoarthritis. Scand. J. Pain. 17, 134–143 (2017).

    Article  PubMed  Google Scholar 

  52. Manitpisitkul, P. et al. A multiple-dose double-blind randomized study to evaluate the safety, pharmacokinetics, pharmacodynamics and analgesic efficacy of the TRPV1 antagonist JNJ-39439335 (mavatrep). Scand. J. Pain. 18, 151–164 (2018).

    Article  PubMed  Google Scholar 

  53. Stevens, R. M. et al. Randomized, double-blind, placebo-controlled trial of intraarticular trans-capsaicin for pain associated with osteoarthritis of the knee. Arthritis Rheumatol. 71, 1524–1533 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Gavva, N. R. et al. The vanilloid receptor TRPV1 is tonically activated in vivo and involved in body temperature regulation. J. Neurosci. 27, 3366–3374 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Muramatsu, S. et al. Functional gene screening system identified TRPV4 as a regulator of chondrogenic differentiation. J. Biol. Chem. 282, 32158–32167 (2007).

    Article  CAS  PubMed  Google Scholar 

  56. Phan, M. N. et al. Functional characterization of TRPV4 as an osmotically sensitive ion channel in porcine articular chondrocytes. Arthritis Rheum. 60, 3028–3037 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Hdud, I. M., Mobasheri, A. & Loughna, P. T. Effect of osmotic stress on the expression of TRPV4 and BKCa channels and possible interaction with ERK1/2 and p38 in cultured equine chondrocytes. Am. J. Physiol. Cell Physiol. 306, C1050–1057 (2014).

    Article  CAS  PubMed  Google Scholar 

  58. Du, G. et al. Roles of TRPV4 and Piezo channels in stretch-evoked Ca2+ response in chondrocytes. Exp. Biol. Med. 245, 180–189 (2020).

    Article  CAS  Google Scholar 

  59. Servin-Vences, M. R., Moroni, M., Lewin, G. R. & Poole, K. Direct measurement of TRPV4 and PIEZO1 activity reveals multiple mechanotransduction pathways in chondrocytes. eLife 6, e21074 (2017).

    Article  PubMed  Google Scholar 

  60. O’Conor, C. J., Leddy, H. A., Benefield, H. C., Liedtke, W. B. & Guilak, F. TRPV4-mediated mechanotransduction regulates the metabolic response of chondrocytes to dynamic loading. Proc. Natl Acad. Sci. USA 111, 1316–1321 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  61. Woods, S. et al. Regulation of TGFβ signalling by TRPV4 in chondrocytes. Cells 10, 726 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Agarwal, P. et al. A dysfunctional TRPV4-GSK3β pathway prevents osteoarthritic chondrocytes from sensing changes in extracellular matrix viscoelasticity. Nat. Biomed. Eng. 5, 1472–1484 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Yan, Z. et al. TRPV4-mediated mitochondrial dysfunction induces pyroptosis and cartilage degradation in osteoarthritis via the Drp1-HK2 axis. Int. Immunopharmacol. 123, 110651 (2023).

    Article  CAS  PubMed  Google Scholar 

  64. O’Conor, C. J. et al. Cartilage-specific knockout of the mechanosensory ion channel TRPV4 decreases age-related osteoarthritis. Sci. Rep. 6, 29053 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  65. Ogawa, Y. et al. Hyaluronan promotes TRPV4-induced chondrogenesis in ATDC5 cells. PLoS One 14, e0219492 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Hattori, K. et al. Activation of transient receptor potential vanilloid 4 protects articular cartilage against inflammatory responses via CaMKK/AMPK/NF-κB signaling pathway. Sci. Rep. 11, 15508 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Atobe, M. et al. Discovery of novel transient receptor potential vanilloid 4 (TRPV4) agonists as regulators of chondrogenic differentiation: identification of quinazolin-4(3 H)-ones and in vivo studies on a surgically induced rat model of osteoarthritis. J. Med. Chem. 62, 1468–1483 (2019).

    Article  CAS  PubMed  Google Scholar 

  68. Fu, S. et al. Activation of TRPV4 by mechanical, osmotic or pharmaceutical stimulation is anti-inflammatory blocking IL-1β mediated articular cartilage matrix destruction. Osteoarthritis Cartilage 29, 89–99 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Clark, A. L., Votta, B. J., Kumar, S., Liedtke, W. & Guilak, F. Chondroprotective role of the osmotically sensitive ion channel transient receptor potential vanilloid 4: age- and sex-dependent progression of osteoarthritis in Trpv4-deficient mice. Arthritis Rheum. 62, 2973–2983 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. O’Conor, C. J., Griffin, T. M., Liedtke, W. & Guilak, F. Increased susceptibility of Trpv4-deficient mice to obesity and obesity-induced osteoarthritis with very high-fat diet. Ann. Rheum. Dis. 72, 300–304 (2013).

    Article  PubMed  Google Scholar 

  71. Masuyama, R. et al. TRPV4-mediated calcium influx regulates terminal differentiation of osteoclasts. Cell Metab. 8, 257–265 (2008).

    Article  CAS  PubMed  Google Scholar 

  72. Hu, X. et al. A TRPV4-dependent neuroimmune axis in the spinal cord promotes neuropathic pain. J. Clin. Invest. 133, e161507 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Xing, R. et al. Mechanism of TRPA1 and TRPV4 participating in mechanical hyperalgesia of rat experimental knee osteoarthritis. Arch. Rheumatol. 32, 96–104 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  74. Soga, M. et al. Suppression of joint pain in transient receptor potential vanilloid 4 knockout rats with monoiodoacetate-induced osteoarthritis. Pain. Rep. 6, e951 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  75. Hinata, M. et al. Sensitization of transient receptor potential vanilloid 4 and increasing its endogenous ligand 5,6-epoxyeicosatrienoic acid in rats with monoiodoacetate-induced osteoarthritis. Pain 159, 939–947 (2018).

    Article  CAS  PubMed  Google Scholar 

  76. Kochukov, M. Y., McNearney, T. A., Fu, Y. & Westlund, K. N. Thermosensitive TRP ion channels mediate cytosolic calcium response in human synoviocytes. Am. J. Physiol. Cell Physiol. 291, C424–432, (2006).

    Article  CAS  PubMed  Google Scholar 

  77. Kochukov, M. Y. et al. Tumor necrosis factor-alpha (TNF-α) enhances functional thermal and chemical responses of TRP cation channels in human synoviocytes. Mol. Pain 5, 49 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  78. Sun, H. et al. Blocking TRPV4 ameliorates osteoarthritis by inhibiting M1 macrophage polarization via the ROS/NLRP3 signaling pathway. Antioxidants 11, 2315 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Zhong, G., Long, H., Chen, F. & Yu, Y. Oxoglaucine mediates Ca2+ influx and activates autophagy to alleviate osteoarthritis through the TRPV5/calmodulin/CAMK-II pathway. Br. J. Pharmacol. 178, 2931–2947 (2021).

    Article  CAS  PubMed  Google Scholar 

  80. Chen, B. et al. Aerobic exercise combined with glucosamine hydrochloride capsules inhibited the apoptosis of chondrocytes in rabbit knee osteoarthritis by affecting TRPV5 expression. Gene 830, 146465 (2022).

    Article  CAS  PubMed  Google Scholar 

  81. van der Eerden, B. C. et al. The epithelial Ca2+ channel TRPV5 is essential for proper osteoclastic bone resorption. Proc. Natl Acad. Sci. USA 102, 17507–17512 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  82. Chamoux, E., Bisson, M., Payet, M. D. & Roux, S. TRPV-5 mediates a receptor activator of NF-κB (RANK) ligand-induced increase in cytosolic Ca2+ in human osteoclasts and down-regulates bone resorption. J. Biol. Chem. 285, 25354–25362 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Duncan, L. M. et al. Down-regulation of the novel gene melastatin correlates with potential for melanoma metastasis. Cancer Res. 58, 1515–1520 (1998).

    CAS  PubMed  Google Scholar 

  84. Haraguchi, K. et al. TRPM2 contributes to inflammatory and neuropathic pain through the aggravation of pronociceptive inflammatory responses in mice. J. Neurosci. 32, 3931–3941 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. So, K. et al. Involvement of TRPM2 in a wide range of inflammatory and neuropathic pain mouse models. J. Pharmacol. Sci. 127, 237–243 (2015).

    Article  CAS  PubMed  Google Scholar 

  86. Ciurtin, C. et al. TRPM3 channel stimulated by pregnenolone sulphate in synovial fibroblasts and negatively coupled to hyaluronan. BMC Musculoskelet. Disord. 11, 111 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  87. Bai, R. et al. Increased Wnt/β-catenin signaling contributes to autophagy inhibition resulting from a dietary magnesium deficiency in injury-induced osteoarthritis. Arthritis Res. Ther. 24, 165 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Ma, G. et al. Blockade of TRPM7 alleviates chondrocyte apoptosis and articular cartilage damage in the adjuvant arthritis rat model through regulation of the Indian hedgehog signaling pathway. Front. Pharmacol. 12, 655551 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Zhou, R. et al. TRPM7 channel inhibition attenuates rheumatoid arthritis articular chondrocyte ferroptosis by suppression of the PKCα–NOX4 axis. Redox Biol. 55, 102411 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Lu, D. et al. Ca2+/Mg2+ homeostasis-related TRPM7 channel mediates chondrocyte hypertrophy via regulation of the PI3K-Akt signaling pathway. Mol. Med. Rep. 16, 5699–5705 (2017).

    Article  CAS  PubMed  Google Scholar 

  91. Halonen, L. et al. Human osteoarthritic chondrocytes express nineteen different TRP-Genes-TRPA1 and TRPM8 as potential drug targets. Int. J. Mol. Sci. 24, 10057 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Talavera, K. et al. Mammalian transient receptor potential TRPA1 channels: from structure to disease. Physiol. Rev. 100, 725–803 (2020).

    Article  CAS  PubMed  Google Scholar 

  93. Fujita, F., Moriyama, T., Higashi, T., Shima, A. & Tominaga, M. Methyl p-hydroxybenzoate causes pain sensation through activation of TRPA1 channels. Br. J. Pharmacol. 151, 153–160 (2007).

    Article  CAS  PubMed  Google Scholar 

  94. Namer, B., Seifert, F., Handwerker, H. O. & Maihofner, C. TRPA1 and TRPM8 activation in humans: effects of cinnamaldehyde and menthol. Neuroreport 16, 955–959 (2005).

    Article  CAS  PubMed  Google Scholar 

  95. Nummenmaa, E. et al. Transient receptor potential ankyrin 1 (TRPA1) is functionally expressed in primary human osteoarthritic chondrocytes. Arthritis Res. Ther. 18, 185 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  96. Yin, S. et al. Transient receptor potential ankyrin 1 (trpa1) mediates il-1β-induced apoptosis in rat chondrocytes via calcium overload and mitochondrial dysfunction. J. Inflamm. 15, 27 (2018).

    Article  CAS  Google Scholar 

  97. Yin, S. et al. Transient receptor potential ankyrin 1 (TRPA1) mediates lipopolysaccharide (LPS)-induced inflammatory responses in primary human osteoarthritic fibroblast-like synoviocytes. Inflammation 41, 700–709 (2018).

    Article  CAS  PubMed  Google Scholar 

  98. Moilanen, L. J. et al. Monosodium iodoacetate-induced inflammation and joint pain are reduced in TRPA1 deficient mice-potential role of TRPA1 in osteoarthritis. Osteoarthritis Cartilage 23, 2017–2026 (2015).

    Article  CAS  PubMed  Google Scholar 

  99. Horvath, A. et al. Transient receptor potential ankyrin 1 (TRPA1) receptor is involved in chronic arthritis: in vivo study using TRPA1-deficient mice. Arthritis Res. Ther. 18, 6 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  100. Ramsey, I. S., Delling, M. & Clapham, D. E. An introduction to TRP channels. Annu. Rev. Physiol. 68, 619–647 (2006).

    Article  CAS  PubMed  Google Scholar 

  101. Schaefer, M. et al. Receptor-mediated regulation of the nonselective cation channels TRPC4 and TRPC5. J. Biol. Chem. 275, 17517–17526 (2000).

    Article  CAS  PubMed  Google Scholar 

  102. Gavenis, K. et al. Expression of ion channels of the TRP family in articular chondrocytes from osteoarthritic patients: changes between native and in vitro propagated chondrocytes. Mol. Cell Biochem. 321, 135–143 (2009).

    Article  CAS  PubMed  Google Scholar 

  103. Wuest, S. L. et al. Influence of mechanical unloading on articular chondrocyte dedifferentiation. Int. J. Mol. Sci. 19, 1289 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  104. Staaf, S., Oerther, S., Lucas, G., Mattsson, J. P. & Ernfors, P. Differential regulation of TRP channels in a rat model of neuropathic pain. Pain 144, 187–199 (2009).

    Article  CAS  PubMed  Google Scholar 

  105. Alawi, K. M. et al. Transient receptor potential canonical 5 (TRPC5) protects against pain and vascular inflammation in arthritis and joint inflammation. Ann. Rheum. Dis. 76, 252–260 (2017).

    Article  CAS  PubMed  Google Scholar 

  106. de Sousa Valente, J. et al. Examining the role of transient receptor potential canonical 5 (TRPC5) in osteoarthritis. Osteoarthr. Cartil. Open 2, 100119 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  107. Zhao, Q. et al. Structure and mechanogating mechanism of the Piezo1 channel. Nature 554, 487–492 (2018).

    Article  CAS  PubMed  Google Scholar 

  108. Wang, L. et al. Structure and mechanogating of the mammalian tactile channel PIEZO2. Nature 573, 225–229 (2019).

    Article  CAS  PubMed  Google Scholar 

  109. Taberner, F. J. et al. Structure-guided examination of the mechanogating mechanism of PIEZO2. Proc. Natl Acad. Sci. USA 116, 14260–14269 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Moroni, M., Servin-Vences, M. R., Fleischer, R., Sanchez-Carranza, O. & Lewin, G. R. Voltage gating of mechanosensitive PIEZO channels. Nat. Commun. 9, 1096 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  111. Coste, B. et al. Piezo1 and Piezo2 are essential components of distinct mechanically activated cation channels. Science 330, 55–60 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Lewis, A. H., Cui, A. F., McDonald, M. F. & Grandl, J. Transduction of repetitive mechanical stimuli by Piezo1 and Piezo2 ion channels. Cell Rep. 19, 2572–2585 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Zheng, W., Gracheva, E. O. & Bagriantsev, S. N. A hydrophobic gate in the inner pore helix is the major determinant of inactivation in mechanosensitive Piezo channels. Elife 8, e44003 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  114. Ren, X. et al. Gsmtx4 alleviated osteoarthritis through Piezo1/calcineurin/NFAT1 signaling axis under excessive mechanical strain. Int. J. Mol. Sci. 24, 4022 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Ikeda, R., Arimura, D. & Saito, M. Expression of Piezo mRNA is unaffected in a rat model of knee osteoarthritis. Mol. Pain 17, 17448069211014059 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Lee, W. et al. Synergy between Piezo1 and Piezo2 channels confers high-strain mechanosensitivity to articular cartilage. Proc. Natl Acad. Sci. USA 111, E5114–E5122 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Wang, S. et al. Mechanical overloading induces GPX4-regulated chondrocyte ferroptosis in osteoarthritis via Piezo1 channel facilitated calcium influx. J. Adv. Res. 41, 63–75 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Young, C. & Kobayashi, T. Limited roles of Piezo mechanosensing channels in articular cartilage development and osteoarthritis progression. Osteoarthritis Cartilage 31, 775–779 (2023).

    Article  CAS  PubMed  Google Scholar 

  119. Liu, C. S. C. et al. Cutting edge: Piezo1 mechanosensors optimize human T cell activation. J. Immunol. 200, 1255–1260 (2018).

    Article  CAS  PubMed  Google Scholar 

  120. Jairaman, A. et al. Piezo1 channels restrain regulatory T cells but are dispensable for effector CD4+ T cell responses. Sci. Adv. 7, eabg5859 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Emmi, A. et al. Infrapatellar fat pad-synovial membrane anatomo-functional unit: microscopic basis for Piezo1/2 mechanosensors involvement in osteoarthritis pain. Front. Cell Dev. Biol. 10, 886604 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  122. Hodgkin, A. L. & Huxley, A. F. The components of membrane conductance in the giant axon of Loligo. J. Physiol. 116, 473–496 (1952).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Catterall, W. A., Goldin, A. L., Waxman, S. G. & International Union of Pharmacology. International Union of Pharmacology. XXXIX. Compendium of voltage-gated ion channels: sodium channels. Pharmacol. Rev. 55, 575–578 (2003).

    Article  CAS  PubMed  Google Scholar 

  124. Stys, P. K., Waxman, S. G. & Ransom, B. R. Ionic mechanisms of anoxic injury in mammalian CNS white matter: role of Na+ channels and Na+–Ca2+ exchanger. J. Neurosci. 12, 430–439 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Persson, A. K. et al. Sodium channels contribute to degeneration of dorsal root ganglion neurites induced by mitochondrial dysfunction in an in vitro model of axonal injury. J. Neurosci. 33, 19250–19261 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Craner, M. J. et al. Sodium channels contribute to microglia/macrophage activation and function in EAE and MS. Glia 49, 220–229 (2005).

    Article  PubMed  Google Scholar 

  127. Black, J. A., Liu, S. & Waxman, S. G. Sodium channel activity modulates multiple functions in microglia. Glia 57, 1072–1081 (2009).

    Article  PubMed  Google Scholar 

  128. Persson, A. K. et al. Contribution of sodium channels to lamellipodial protrusion and Rac1 and ERK1/2 activation in ATP-stimulated microglia. Glia 62, 2080–2095 (2014).

    Article  PubMed  Google Scholar 

  129. Pappalardo, L. W., Samad, O. A., Black, J. A. & Waxman, S. G. Voltage-gated sodium channel Nav1.5 contributes to astrogliosis in an in vitro model of glial injury via reverse Na+/Ca2+ exchange. Glia 62, 1162–1175 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  130. Meisler, M. H., Hill, S. F. & Yu, W. Sodium channelopathies in neurodevelopmental disorders. Nat. Rev. Neurosci. 22, 152–166 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Mantegazza, M., Curia, G., Biagini, G., Ragsdale, D. S. & Avoli, M. Voltage-gated sodium channels as therapeutic targets in epilepsy and other neurological disorders. Lancet Neurol. 9, 413–424 (2010).

    Article  CAS  PubMed  Google Scholar 

  132. Bennett, D. L., Clark, A. J., Huang, J., Waxman, S. G. & Dib-Hajj, S. D. The role of voltage-gated sodium channels in pain signaling. Physiol. Rev. 99, 1079–1151 (2019).

    Article  CAS  PubMed  Google Scholar 

  133. Dib-Hajj, S. D., Yang, Y., Black, J. A. & Waxman, S. G. The NaV1.7 sodium channel: from molecule to man. Nat. Rev. Neurosci. 14, 49–62 (2013).

    Article  CAS  PubMed  Google Scholar 

  134. Dib-Hajj, S. D., Black, J. A. & Waxman, S. G. NaV1.9: a sodium channel linked to human pain. Nat. Rev. Neurosci. 16, 511–519 (2015).

    Article  CAS  PubMed  Google Scholar 

  135. Waxman, S. G. Targeting a peripheral sodium channel to treat pain. N. Engl. J. Med. 389, 466–469 (2023).

    Article  CAS  PubMed  Google Scholar 

  136. Black, J. A. & Waxman, S. G. Noncanonical roles of voltage-gated sodium channels. Neuron 80, 280–291 (2013).

    Article  CAS  PubMed  Google Scholar 

  137. Drenth, J. P. & Waxman, S. G. Mutations in sodium-channel gene SCN9A cause a spectrum of human genetic pain disorders. J. Clin. Invest. 117, 3603–3609 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Fertleman, C. R. et al. SCN9A mutations in paroxysmal extreme pain disorder: allelic variants underlie distinct channel defects and phenotypes. Neuron 52, 767–774 (2006).

    Article  CAS  PubMed  Google Scholar 

  139. Dib-Hajj, S. D. et al. Gain-of-function mutation in Nav1.7 in familial erythromelalgia induces bursting of sensory neurons. Brain 128, 1847–1854 (2005).

    Article  CAS  PubMed  Google Scholar 

  140. Cox, J. J. et al. An SCN9A channelopathy causes congenital inability to experience pain. Nature 444, 894–898 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Goldberg, Y. P. et al. Loss-of-function mutations in the Nav1.7 gene underlie congenital indifference to pain in multiple human populations. Clin. Genet. 71, 311–319 (2007).

    Article  CAS  PubMed  Google Scholar 

  142. Weiss, J. et al. Loss-of-function mutations in sodium channel Nav1.7 cause anosmia. Nature 472, 186–190 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Reimann, F. et al. Pain perception is altered by a nucleotide polymorphism in SCN9A. Proc. Natl Acad. Sci. USA 107, 5148–5153 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Nassar, M. A., Levato, A., Stirling, L. C. & Wood, J. N. Neuropathic pain develops normally in mice lacking both Nav1.7 and Nav1.8. Mol. Pain. 1, 24 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  145. Nassar, M. A. et al. Nociceptor-specific gene deletion reveals a major role for Nav1.7 (PN1) in acute and inflammatory pain. Proc. Natl Acad. Sci. USA 101, 12706–12711 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Rahman, W. & Dickenson, A. H. Osteoarthritis-dependent changes in antinociceptive action of Nav1.7 and Nav1.8 sodium channel blockers: an in vivo electrophysiological study in the rat. Neuroscience 295, 103–116 (2015).

    Article  CAS  PubMed  Google Scholar 

  147. Cha, M., Bak, H., Lee, B. H. & Jang, J. H. Alleviation of peripheral sensitization by quadriceps insertion of cog polydioxanone filaments in knee osteoarthritis rats. Biochem. Biophys. Res. Commun. 698, 149549 (2024).

    Article  CAS  PubMed  Google Scholar 

  148. Aman, Y. Targeting cartilage sodium channels for osteoarthritis treatment. Nat. Aging 4, 168 (2024).

    Article  PubMed  Google Scholar 

  149. Kong, X. & Liu, C. J. How do small quantities of cartilage sodium channels play a significant role in osteoarthritis? Clin. Transl. Med. 14, e1634 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  150. Akopian, A. N., Sivilotti, L. & Wood, J. N. A tetrodotoxin-resistant voltage-gated sodium channel expressed by sensory neurons. Nature 379, 257–262 (1996).

    Article  CAS  PubMed  Google Scholar 

  151. Han, C., Huang, J. & Waxman, S. G. Sodium channel Nav1.8: emerging links to human disease. Neurology 86, 473–483 (2016).

    Article  CAS  PubMed  Google Scholar 

  152. Cummins, T. R. & Waxman, S. G. Downregulation of tetrodotoxin-resistant sodium currents and upregulation of a rapidly repriming tetrodotoxin-sensitive sodium current in small spinal sensory neurons after nerve injury. J. Neurosci. 17, 3503–3514 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Renganathan, M., Cummins, T. R. & Waxman, S. G. Contribution of Nav1.8 sodium channels to action potential electrogenesis in DRG neurons. J. Neurophysiol. 86, 629–640 (2001).

    Article  CAS  PubMed  Google Scholar 

  154. Jones, J. et al. Selective inhibition of NaV1.8 with VX-548 for acute pain. N. Engl. J. Med. 389, 393–405 (2023).

    Article  CAS  PubMed  Google Scholar 

  155. Zhu, J. et al. Aberrant subchondral osteoblastic metabolism modifies NaV1.8 for osteoarthritis. eLife 9, e57656 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Miller, R. E. et al. Chemogenetic inhibition of pain neurons in a mouse model of osteoarthritis. Arthritis Rheumatol. 69, 1429–1439 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Schuelert, N. & McDougall, J. J. Involvement of Nav 1.8 sodium ion channels in the transduction of mechanical pain in a rodent model of osteoarthritis. Arthritis Res. Ther. 14, R5 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Adler, D. M. T. et al. Evaluation of the in vitro effects of local anesthetics on equine chondrocytes and fibroblast-like synoviocytes. Am. J. Vet. Res. 82, 478–486 (2021).

    Article  CAS  PubMed  Google Scholar 

  159. Jacob, B. et al. Local anesthetics’ toxicity toward human cultured chondrocytes: a comparative study between lidocaine, bupivacaine, and ropivacaine. Cartilage 10, 364–369 (2019).

    Article  CAS  PubMed  Google Scholar 

  160. Miyazaki, T. et al. Lidocaine cytotoxicity to the bovine articular chondrocytes in vitro: changes in cell viability and proteoglycan metabolism. Knee Surg. Sports Traumatol. Arthrosc. 19, 1198–1205 (2011).

    Article  PubMed  Google Scholar 

  161. Ahuja, S. et al. Structural basis of Nav1.7 inhibition by an isoform-selective small-molecule antagonist. Science 350, eaac5464 (2015).

    Article  Google Scholar 

  162. Shen, H., Liu, D., Wu, K., Lei, J. & Yan, N. Structures of human Nav1.7 channel in complex with auxiliary subunits and animal toxins. Science 363, 1303–1308 (2019).

    Article  CAS  PubMed  Google Scholar 

  163. Xu, H. et al. Structural basis of Nav1.7 inhibition by a gating-modifier spider toxin. Cell 176, 702–715 e714 (2019).

    Article  CAS  PubMed  Google Scholar 

  164. Zamponi, G. W., Striessnig, J., Koschak, A. & Dolphin, A. C. The physiology, pathology, and pharmacology of voltage-gated calcium channels and their future therapeutic potential. Pharmacol. Rev. 67, 821–870 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Yao, J., Long, H., Zhao, J., Zhong, G. & Li, J. Nifedipine inhibits oxidative stress and ameliorates osteoarthritis by activating the nuclear factor erythroid-2-related factor 2 pathway. Life Sci. 253, 117292 (2020).

    Article  CAS  PubMed  Google Scholar 

  166. Takamatsu, A. et al. Verapamil protects against cartilage degradation in osteoarthritis by inhibiting Wnt/β-catenin signaling. PLoS One 9, e92699 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  167. Boileau, C. et al. PD-0200347, an ɑ2δ ligand of the voltage gated calcium channel, inhibits in vivo activation of the Erk1/2 pathway in osteoarthritic chondrocytes: a PKCɑ; dependent effect. Ann. Rheum. Dis. 65, 573–580 (2006).

    Article  CAS  PubMed  Google Scholar 

  168. Boileau, C. et al. Oral treatment with PD-0200347, an α2δ ligand, reduces the development of experimental osteoarthritis by inhibiting metalloproteinases and inducible nitric oxide synthase gene expression and synthesis in cartilage chondrocytes. Arthritis Rheum. 52, 488–500 (2005).

    Article  CAS  PubMed  Google Scholar 

  169. Chen, X. et al. Small-molecule CaVα1CaVβ antagonist suppresses neuronal voltage-gated calcium-channel trafficking. Proc. Natl Acad. Sci. USA 115, E10566–E10575 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Adaes, S. et al. Injury of primary afferent neurons may contribute to osteoarthritis induced pain: an experimental study using the collagenase model in rats. Osteoarthritis Cartilage 23, 914–924 (2015).

    Article  CAS  PubMed  Google Scholar 

  171. Sun, L. et al. Effect and mechanism of the CACNA2D1-CGRP pathway in osteoarthritis-induced ongoing pain. Biomed. Pharmacother. 129, 110374 (2020).

    Article  CAS  PubMed  Google Scholar 

  172. Matta, C., Zakany, R. & Mobasheri, A. Voltage-dependent calcium channels in chondrocytes: roles in health and disease. Curr. Rheumatol. Rep. 17, 43 (2015).

    Article  PubMed  Google Scholar 

  173. Nguyen, C. et al. Intracellular calcium oscillations in articular chondrocytes induced by basic calcium phosphate crystals lead to cartilage degradation. Osteoarthritis Cartilage 20, 1399–1408 (2012).

    Article  CAS  PubMed  Google Scholar 

  174. Prehm, P. Inhibitors of hyaluronan export prevent proteoglycan loss from osteoarthritic cartilage. J. Rheumatol. 32, 690–696 (2005).

    CAS  PubMed  Google Scholar 

  175. Hara, M. et al. Calcium influx through a possible coupling of cation channels impacts skeletal muscle satellite cell activation in response to mechanical stretch. Am. J. Physiol. Cell Physiol. 302, C1741–1750, (2012).

    Article  CAS  PubMed  Google Scholar 

  176. Zamponi, G. W. Targeting voltage-gated calcium channels in neurological and psychiatric diseases. Nat. Rev. Drug. Discov. 15, 19–34 (2016).

    Article  CAS  PubMed  Google Scholar 

  177. Rahman, W., Patel, R. & Dickenson, A. H. Electrophysiological evidence for voltage-gated calcium channel 2 (Cav2) modulation of mechano- and thermosensitive spinal neuronal responses in a rat model of osteoarthritis. Neuroscience 305, 76–85 (2015).

    Article  CAS  PubMed  Google Scholar 

  178. Shao, Y., Alicknavitch, M. & Farach-Carson, M. C. Expression of voltage sensitive calcium channel (VSCC) L-type Cav1.2 (α1C) and T-type Cav3.2 (α1H) subunits during mouse bone development. Dev. Dyn. 234, 54–62 (2005).

    Article  CAS  PubMed  Google Scholar 

  179. Srinivasan, P. P. et al. Inhibition of T-type voltage sensitive calcium channel reduces load-induced OA in mice and suppresses the catabolic effect of bone mechanical stress on chondrocytes. PLoS One 10, e0127290 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  180. Gong, X. et al. Altered spontaneous calcium signaling of in situ chondrocytes in human osteoarthritic cartilage. Sci. Rep. 7, 17093 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  181. Itson-Zoske, B. et al. Selective block of sensory neuronal T-type/Cav3.2 activity mitigates neuropathic pain behavior in a rat model of osteoarthritis pain. Arthritis Res. Ther. 24, 168 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Hamilton, K. L. & Devor, D. C. Basolateral membrane K+ channels in renal epithelial cells. Am. J. Physiol. Renal Physiol. 302, F1069–F1081 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Kuang, Q., Purhonen, P. & Hebert, H. Structure of potassium channels. Cell Mol. Life Sci. 72, 3677–3693 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Grandolfo, M., Martina, M., Ruzzier, F. & Vittur, F. A potassium channel in cultured chondrocytes. Calcif. Tissue Int. 47, 302–307 (1990).

    Article  CAS  PubMed  Google Scholar 

  185. Grandolfo, M., D’Andrea, P., Martina, M., Ruzzier, F. & Vittur, F. Calcium-activated potassium channels in chondrocytes. Biochem. Biophys. Res. Commun. 182, 1429–1434 (1992).

    Article  CAS  PubMed  Google Scholar 

  186. Rufino, A. T. et al. Expression and function of K(ATP) channels in normal and osteoarthritic human chondrocytes: possible role in glucose sensing. J. Cell Biochem. 114, 1879–1889 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Gu, Y. et al. Diazoxide prevents H2O2-induced chondrocyte apoptosis and cartilage degeneration in a rat model of osteoarthritis by reducing endoplasmic reticulum stress. Biomed. Pharmacother. 95, 1886–1894 (2017).

    Article  CAS  PubMed  Google Scholar 

  188. Mozrzymas, J. W., Martina, M. & Ruzzier, F. A large-conductance voltage-dependent potassium channel in cultured pig articular chondrocytes. Pflugers Arch. 433, 413–427 (1997).

    Article  CAS  PubMed  Google Scholar 

  189. Li, X. et al. Millimeter wave promotes the synthesis of extracellular matrix and the proliferation of chondrocyte by regulating the voltage-gated K+ channel. J. Bone Min. Metab. 32, 367–377 (2014).

    Article  CAS  Google Scholar 

  190. Liu, Y., Zhao, D., Wang, X., Dong, Y. & Ding, F. LncRNA KCNQ1OT1 attenuates osteoarthritic chondrocyte dysfunction via the miR-218-5p/PIK3C2A axis. Cell Tissue Res. 385, 115–126 (2021).

    Article  CAS  PubMed  Google Scholar 

  191. Zhang, F. et al. Suppression of KCNQ/M potassium channel in dorsal root ganglia neurons contributes to the development of osteoarthritic pain. Pharmacology 103, 257–262 (2019).

    Article  CAS  PubMed  Google Scholar 

  192. Funabashi, K. et al. Accelerated Ca2+ entry by membrane hyperpolarization due to Ca2+-activated K+ channel activation in response to histamine in chondrocytes. Am. J. Physiol. Cell Physiol. 298, C786–C797 (2010).

    Article  CAS  PubMed  Google Scholar 

  193. Suzuki, Y., Ohya, S., Yamamura, H., Giles, W. R. & Imaizumi, Y. A new splice variant of large conductance Ca2+-activated K+ (BK) channel alpha subunit alters human chondrocyte function. J. Biol. Chem. 291, 24247–24260 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Lu, R. et al. BKCa channels expressed in sensory neurons modulate inflammatory pain in mice. Pain 155, 556–565 (2014).

    Article  CAS  PubMed  Google Scholar 

  195. Waldmann, R., Champigny, G., Bassilana, F., Heurteaux, C. & Lazdunski, M. A proton-gated cation channel involved in acid-sensing. Nature 386, 173–177 (1997).

    Article  CAS  PubMed  Google Scholar 

  196. Zhou, R. P. et al. Modulators of ASIC1a and its potential as a therapeutic target for age-related diseases. Ageing Res. Rev. 83, 101785 (2023).

    Article  CAS  PubMed  Google Scholar 

  197. Jahr, H., van Driel, M., van Osch, G. J., Weinans, H. & van Leeuwen, J. P. Identification of acid-sensing ion channels in bone. Biochem. Biophys. Res. Commun. 337, 349–354 (2005).

    Article  CAS  PubMed  Google Scholar 

  198. Zhou, R. P. et al. Interleukin-1β and tumor necrosis factor-α augment acidosis-induced rat articular chondrocyte apoptosis via nuclear factor-kappaB-dependent upregulation of ASIC1a channel. Biochim. Biophys. Acta Mol. Basis Dis. 1864, 162–177 (2018).

    Article  CAS  PubMed  Google Scholar 

  199. Xu, Y. & Chen, F. Acid-sensing ion channel-1a in articular chondrocytes and synovial fibroblasts: a novel therapeutic target for rheumatoid arthritis. Front. Immunol. 11, 580936 (2020).

    Article  CAS  PubMed  Google Scholar 

  200. Grunder, S., Geissler, H. S., Bassler, E. L. & Ruppersberg, J. P. A new member of acid-sensing ion channels from pituitary gland. Neuroreport 11, 1607–1611 (2000).

    Article  CAS  PubMed  Google Scholar 

  201. Hesselager, M., Timmermann, D. B. & Ahring, P. K. pH Dependency and desensitization kinetics of heterologously expressed combinations of acid-sensing ion channel subunits. J. Biol. Chem. 279, 11006–11015 (2004).

    Article  CAS  PubMed  Google Scholar 

  202. Delaunay, A. et al. Human ASIC3 channel dynamically adapts its activity to sense the extracellular pH in both acidic and alkaline directions. Proc. Natl Acad. Sci. USA 109, 13124–13129 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Price, M. P. et al. The DRASIC cation channel contributes to the detection of cutaneous touch and acid stimuli in mice. Neuron 32, 1071–1083 (2001).

    Article  CAS  PubMed  Google Scholar 

  204. Xiong, Z. G. et al. Neuroprotection in ischemia: blocking calcium-permeable acid-sensing ion channels. Cell 118, 687–698 (2004).

    Article  CAS  PubMed  Google Scholar 

  205. Wu, X., Ren, G., Zhou, R., Ge, J. & Chen, F. H. The role of Ca2+ in acid-sensing ion channel 1a-mediated chondrocyte pyroptosis in rat adjuvant arthritis. Lab. Invest. 99, 499–513 (2019).

    Article  CAS  PubMed  Google Scholar 

  206. Ahn, H., Kim, J. M., Lee, K., Kim, H. & Jeong, D. Extracellular acidosis accelerates bone resorption by enhancing osteoclast survival, adhesion, and migration. Biochem. Biophys. Res. Commun. 418, 144–148 (2012).

    Article  CAS  PubMed  Google Scholar 

  207. Conaghan, P. G., Cook, A. D., Hamilton, J. A. & Tak, P. P. Therapeutic options for targeting inflammatory osteoarthritis pain. Nat. Rev. Rheumatol. 15, 355–363 (2019).

    Article  PubMed  Google Scholar 

  208. Zhou, R., Wu, X., Wang, Z., Ge, J. & Chen, F. Interleukin-6 enhances acid-induced apoptosis via upregulating acid-sensing ion channel 1a expression and function in rat articular chondrocytes. Int. Immunopharmacol. 29, 748–760 (2015).

    Article  CAS  PubMed  Google Scholar 

  209. Yang, Y. et al. Blockade of ASIC1a inhibits acid-induced rat articular chondrocyte senescence through regulation of autophagy. Hum. Cell 35, 665–677 (2022).

    Article  CAS  PubMed  Google Scholar 

  210. Ding, J. et al. Acid-sensitive ion channel 1a mediates osteoarthritis chondrocyte senescence by promoting lamin B1 degradation. Biochem. Pharmacol. 202, 115107 (2022).

    Article  CAS  PubMed  Google Scholar 

  211. Dong, L. et al. ASIC1a-CMPK2-mediated M1 macrophage polarization exacerbates chondrocyte senescence in osteoarthritis through IL-18. Int. Immunopharmacol. 124, 110878 (2023).

    Article  CAS  PubMed  Google Scholar 

  212. Chen, W. N. et al. Roles of ASIC3, TRPV1, and NaV1.8 in the transition from acute to chronic pain in a mouse model of fibromyalgia. Mol. Pain. 10, 40 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  213. Karczewski, J. et al. Reversal of acid-induced and inflammatory pain by the selective ASIC3 inhibitor, APETx2. Br. J. Pharmacol. 161, 950–960 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  214. Izumi, M., Ikeuchi, M., Ji, Q. & Tani, T. Local ASIC3 modulates pain and disease progression in a rat model of osteoarthritis. J. Biomed. Sci. 19, 77 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  215. Kuduk, S. D. et al. Synthesis, structure-activity relationship, and pharmacological profile of analogs of the ASIC-3 inhibitor A-317567. ACS Chem. Neurosci. 1, 19–24 (2010).

    Article  CAS  PubMed  Google Scholar 

  216. Jacquot, F. et al. Lysophosphatidylcholine 16:0 mediates chronic joint pain associated to rheumatic diseases through acid-sensing ion channel 3. Pain 163, 1999–2013 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  217. Pidoux, L. et al. Single subcutaneous injection of lysophosphatidyl-choline evokes ASIC3-dependent increases of spinal dorsal horn neuron activity. Front. Mol. Neurosci. 15, 880651 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  218. Niibori, M. et al. Mechanism of aspirin-induced inhibition on the secondary hyperalgesia in osteoarthritis model rats. Heliyon 6, e03963 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  219. Patil, V. M. & Gupta, S. P. Studies on chloride channels and their modulators. Curr. Top. Med. Chem. 16, 1862–1876 (2016).

    Article  CAS  PubMed  Google Scholar 

  220. Yamamura, H., Suzuki, Y. & Imaizumi, Y. Physiological and pathological functions of Cl channels in chondrocytes. Biol. Pharm. Bull. 41, 1145–1151 (2018).

    Article  CAS  PubMed  Google Scholar 

  221. Kurita, T., Yamamura, H., Suzuki, Y., Giles, W. R. & Imaizumi, Y. The ClC-7 chloride channel is downregulated by hypoosmotic stress in human chondrocytes. Mol. Pharmacol. 88, 113–120 (2015).

    Article  CAS  PubMed  Google Scholar 

  222. Deng, Z. et al. Interleukin 1 beta-induced chloride currents are important in osteoarthritis onset: an in vitro study. Acta Biochim. Biophys. Sin. 53, 400–409 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  223. Zhang, Z. et al. Targeting macrophagic PIM-1 alleviates osteoarthritis by inhibiting NLRP3 inflammasome activation via suppressing mitochondrial ROS/Cl efflux signaling pathway. J. Transl. Med. 21, 452 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  224. Kittl, M. et al. Low pH attenuates apoptosis by suppressing the volume-sensitive outwardly rectifying (VSOR) chloride current in chondrocytes. Front. Cell Dev. Biol. 9, 804105 (2021).

    Article  PubMed  Google Scholar 

  225. Liang, H. Y. et al. Calcium-permeable channels cooperation for rheumatoid arthritis: therapeutic opportunities. Biomolecules 12, 1383 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  226. Deng, R., Zhang, H., Huang, L., Xiong, X. & Fu, X. MicroRNA-186 ameliorates knee osteoarthritis via regulation of P2X7-mediated cathepsin-K/Runx2/ADAMTS5 signalling axis in articular chondrocytes. Saudi J. Biol. Sci. 28, 4270–4275 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  227. Richards, D., Gever, J. R., Ford, A. P. & Fountain, S. J. Action of MK-7264 (gefapixant) at human P2X3 and P2X2/3 receptors and in vivo efficacy in models of sensitisation. Br. J. Pharmacol. 176, 2279–2291 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  228. Li, Z., Huang, Z. & Bai, L. The P2X7 receptor in osteoarthritis. Front. Cell Dev. Biol. 9, 628330 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  229. Surprenant, A., Rassendren, F., Kawashima, E., North, R. A. & Buell, G. The cytolytic P2Z receptor for extracellular ATP identified as a P2X receptor (P2X7). Science 272, 735–738 (1996).

    Article  CAS  PubMed  Google Scholar 

  230. Knight, M. M., McGlashan, S. R., Garcia, M., Jensen, C. G. & Poole, C. A. Articular chondrocytes express connexin 43 hemichannels and P2 receptors — a putative mechanoreceptor complex involving the primary cilium? J. Anat. 214, 275–283 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  231. Tanigawa, H. et al. P2X7 ionotropic receptor is functionally expressed in rabbit articular chondrocytes and mediates extracellular ATP cytotoxicity. Purinergic Signal. 14, 245–258 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  232. Li, Z. et al. P2X7 receptor induces pyroptotic inflammation and cartilage degradation in osteoarthritis via NF-κB/NLRP3 crosstalk. Oxid. Med. Cell. Longev. 2021, 8868361 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  233. Hu, H., Yang, B., Li, Y., Zhang, S. & Li, Z. Blocking of the P2X7 receptor inhibits the activation of the MMP-13 and NF-κB pathways in the cartilage tissue of rats with osteoarthritis. Int. J. Mol. Med. 38, 1922–1932 (2016).

    Article  CAS  PubMed  Google Scholar 

  234. Li, Z. et al. Moderate-intensity exercise alleviates pyroptosis by promoting autophagy in osteoarthritis via the P2X7/AMPK/mTOR axis. Cell Death Discov. 7, 346 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  235. Zhang, W., Zhong, B., Zhang, C., Luo, C. & Zhan, Y. miR-373 regulates inflammatory cytokine-mediated chondrocyte proliferation in osteoarthritis by targeting the P2X7 receptor. FEBS Open. Bio 8, 325–331 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  236. Xiao, J., Li, Y., Zhang, J., Xu, G. & Zhang, J. Pannexin 3 activates P2X7 receptor to mediate inflammation and cartilage matrix degradation in temporomandibular joint osteoarthritis. Cell Biol. Int. 47, 1183–1197 (2023).

    Article  CAS  PubMed  Google Scholar 

  237. Perregaux, D. G., McNiff, P., Laliberte, R., Conklyn, M. & Gabel, C. A. ATP acts as an agonist to promote stimulus-induced secretion of IL-1β and IL-18 in human blood. J. Immunol. 165, 4615–4623 (2000).

    Article  CAS  PubMed  Google Scholar 

  238. Li, W. et al. Quercetin as a promising intervention for rat osteoarthritis by decreasing M1-polarized macrophages via blocking the TRPV1-mediated P2X7/NLRP3 signaling pathway. Phytother. Res. 38, 1990–2006 (2024).

    Article  CAS  PubMed  Google Scholar 

  239. Mahfouz, R. et al. L-Carnitine augments probenecid anti-inflammatory effect in monoiodoacetate-induced knee osteoarthritis in rats: involvement of miRNA-373/P2X7/NLRP3/NF-κB milieu. Inflammopharmacology 32, 715–731 (2024).

    Article  CAS  PubMed  Google Scholar 

  240. Mousseau, M. et al. Microglial pannexin-1 channel activation is a spinal determinant of joint pain. Sci. Adv. 4, eaas9846 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  241. Varani, K. et al. Pharmacological characterization of P2X1 and P2X3 purinergic receptors in bovine chondrocytes. Osteoarthritis Cartilage 16, 1421–1429 (2008).

    Article  CAS  PubMed  Google Scholar 

  242. Krajewski, J. L. P2X3-containing receptors as targets for the treatment of chronic pain. Neurotherapeutics 17, 826–838 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  243. Seino, D. et al. The role of ERK signaling and the P2X receptor on mechanical pain evoked by movement of inflamed knee joint. Pain 123, 193–203 (2006).

    Article  CAS  PubMed  Google Scholar 

  244. Daniilidis, K., Georges, P., Tibesku, C. O. & Prehm, P. Positive side effects of Ca antagonists for osteoarthritic joints-results of an in vivo pilot study. J. Orthop. Surg. Res. 10, 1 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  245. Vaiciuleviciute, R., Bironaite, D., Uzieliene, I., Mobasheri, A. & Bernotiene, E. Cardiovascular drugs and osteoarthritis: effects of targeting ion channels. Cells 10, 2572 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  246. DeJulius, C. R. et al. Engineering approaches for RNA-based and cell-based osteoarthritis therapies. Nat. Rev. Rheumatol. 20, 81–100 (2024).

    Article  PubMed  Google Scholar 

  247. Miller, F., Björnsson, M., Svensson, O. & Karlsten, R. Experiences with an adaptive design for a dose-finding study in patients with osteoarthritis. Contemp. Clin. Trials 37, 189–199 (2014).

    Article  PubMed  Google Scholar 

  248. Arsenault, P. et al. NEO6860, modality-selective TRPV1 antagonist: a randomized, controlled, proof-of-concept trial in patients with osteoarthritis knee pain. Pain. Rep. 3, e696 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  249. Khoury, S. et al. Identification of lipid biomarkers for chronic joint pain associated with different joint diseases. Biomolecules 13, 342 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  250. Shin, Y. et al. Safety, tolerability and pharmacokinetics/pharmacodynamic evaluation of properties of In1011-N17 after oral administration in healthy volunteers with effect comparison of solubility enhanced formulation. Osteoarthritis Cartilage 30, S65–S66 (2022).

    Article  Google Scholar 

Download references

Acknowledgements

We are grateful to our gifted collaborators who made the explorations in our laboratories possible. Studies in our laboratories were supported by US National Institutes of Health research grants R01AR062207, R01AR061484, R01AR076900, R01AR078035 and R01NS103931. S.G.W. was supported by the Bridget Flaherty Endowment to the Yale Department of Neurology. We apologize to the colleagues whose papers were not cited owing to the constraints of word limitations.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed substantially to discussing the content. R.Z. wrote the first draft of the article. All authors reviewed and edited the manuscript before submission.

Corresponding author

Correspondence to Chuan-ju Liu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Rheumatology thanks Ali Mobasheri, Eiva Bernotiene, who co-reviewed with Raminta Vaiciuleviciute, and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

All-or-none action potentials

Neuronal signalling follows the all-or-none principle, whereby an action potential is generated and propagated along the axon without amplitude decrement when a neuron’s membrane potential reaches a stimulus-induced threshold, and no action potential occurs if the threshold is not reached.

Designer receptors exclusively activated by designer drugs technology

(DREADD technology). A technology in neuroscience that remotely controls specific neurons by genetically engineering receptors unresponsive to endogenous ligands but activated by synthetic, designer drugs.

Ferroptosis

Ferroptosis is an iron-dependent form of cell death characterized by lipid peroxidation and driven by iron accumulation and depletion of antioxidant enzymes.

Glutathione peroxidase 4

(GPX4). An antioxidant enzyme that protects cells from ferroptosis by converting lipid hydroperoxides into non-toxic lipid alcohols; inhibition or depletion of GPX4 results in lipid peroxide accumulation, thereby triggering ferroptosis.

Purinergic receptors

Responsive to purine nucleotides and nucleosides such as ATP and adenosine, these receptors are classified into P1, P2Y and P2X types, with P1 and P2Y functioning as G protein-coupled receptors activated by adenosine and nucleotides such as ATP and adenosine diphosphate, respectively.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, R., Fu, W., Vasylyev, D. et al. Ion channels in osteoarthritis: emerging roles and potential targets. Nat Rev Rheumatol 20, 545–564 (2024). https://doi.org/10.1038/s41584-024-01146-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41584-024-01146-0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing