Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

The past 25 years in paediatric rheumatology: insights from monogenic diseases

Abstract

The past 25 years have seen major novel developments in the field of paediatric rheumatology. The concept of autoinflammation was introduced to this field, and medicine more broadly, with studies of familial Mediterranean fever, the most common autoinflammatory disease globally. New data on the positive evolutionary selection of familial Mediterranean fever-associated genetic variants might be pertinent to mild gain-of-function variants reported in other disease-associated genes. Genetic studies have unveiled the complexity of human heritability to inflammation and flourishing data from rare monogenic disorders have contributed to a better understanding of general disease mechanisms in paediatric rheumatic conditions. Beyond genomics, the application of other ‘omics’ technologies, including transcriptomics, proteomics and metabolomics, has generated an enormous dataset that can be applied to the development of new therapies and in the practice of precision medicine. Novel biomarkers for monitoring disease activity and progression have also emerged. A surge in the development of targeted biologic therapies has led to durable remission and improved prognosis for many diseases that in the past caused major complications. Last but not least, the COVID-19 pandemic has affected paediatric rheumatology practice and has sparked new investigations into the link between viral infections and unregulated inflammatory responses in children.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Immunological homeostasis, immunodeficiency and autoinflammation.
Fig. 2: Genomics and other omics will contribute to personalized medicine.
Fig. 3: Timeline summarizing the introduction of biologics in paediatric rheumatology.

Similar content being viewed by others

References

  1. Rowczenio, D. & Aksentijevich, I. Genetic approaches to study rheumatic diseases and its implications in clinical practice. Arthritis Rheumatol. https://doi.org/10.1002/art.42841 (2024).

  2. The International FMF Consortium. Ancient missense mutations in a new member of the RoRet gene family are likely to cause familial Mediterranean fever. Cell 90, 797-807 (1997).

    Article  Google Scholar 

  3. French, F. M. F. C. A candidate gene for familial Mediterranean fever. Nat. Genet. 17, 25–31 (1997).

    Article  Google Scholar 

  4. McDermott, M. F. et al. Germline mutations in the extracellular domains of the 55 kDa TNF receptor, TNFR1, define a family of dominantly inherited autoinflammatory syndromes. Cell 97, 133–144 (1999).

    Article  CAS  PubMed  Google Scholar 

  5. Harapas, C. R. et al. Organellar homeostasis and innate immune sensing. Nat. Rev. Immunol. 22, 535–549 (2022).

    Article  CAS  PubMed  Google Scholar 

  6. Zhang, Y., Yang, W., Li, W. & Zhao, Y. NLRP3 inflammasome: checkpoint connecting innate and adaptive immunity in autoimmune diseases. Front. Immunol. 12, 732933 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Pathak, S. et al. Exploratory study of MYD88 L265P, rare NLRP3 variants, and clonal hematopoiesis prevalence in patients with Schnitzler syndrome. Arthritis Rheumatol. 71, 2121–2125 (2019).

    Article  CAS  PubMed  Google Scholar 

  8. Wang, L. et al. Gain-of-function variants in SYK cause immune dysregulation and systemic inflammation in humans and mice. Nat. Genet. 53, 500–510 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Aksentijevich, I. & Schnappauf, O. Molecular mechanisms of phenotypic variability in monogenic autoinflammatory diseases. Nat. Rev. Rheumatol. 17, 405–425 (2021).

    Article  CAS  PubMed  Google Scholar 

  10. Zhang, J., Lee, P. Y., Aksentijevich, I. & Zhou, Q. How to build a fire: the genetics of autoinflammatory diseases. Annu. Rev. Genet. 57, 245–274 (2023).

    Article  CAS  PubMed  Google Scholar 

  11. Romano, M. et al. The 2021 EULAR/American College of Rheumatology points to consider for diagnosis, management and monitoring of the interleukin-1 mediated autoinflammatory diseases: cryopyrin-associated periodic syndromes, tumour necrosis factor receptor-associated periodic syndrome, mevalonate kinase deficiency, and deficiency of the interleukin-1 receptor antagonist. Ann. Rheum. Dis. 81, 907–921 (2022).

    Article  CAS  PubMed  Google Scholar 

  12. Sanchez, G. A. M. et al. JAK1/2 inhibition with baricitinib in the treatment of autoinflammatory interferonopathies. J. Clin. Invest. 128, 3041–3052 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Schnappauf, O., Chae, J. J., Kastner, D. L. & Aksentijevich, I. The pyrin inflammasome in health and disease. Front. Immunol. 10, 1745 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Martinon, F., Burns, K. & Tschopp, J. The inflammasome: a molecular platform triggering activation of inflammatory caspases and processing of proIL-β. Mol. Cell 10, 417–426 (2002).

    Article  CAS  PubMed  Google Scholar 

  15. Shi, J. et al. Cleavage of GSDMD by inflammatory caspases determines pyroptotic cell death. Nature 526, 660–665 (2015).

    Article  CAS  PubMed  Google Scholar 

  16. Ozen, S. et al. EULAR recommendations for the management of familial Mediterranean fever. Ann. Rheum. Dis. 75, 644–651 (2016).

    Article  CAS  PubMed  Google Scholar 

  17. Crow, Y. J. & Stetson, D. B. The type I interferonopathies: 10 years on. Nat. Rev. Immunol. 22, 471–483 (2022).

    Article  CAS  PubMed  Google Scholar 

  18. Beck, D. B., Werner, A., Kastner, D. L. & Aksentijevich, I. Disorders of ubiquitylation: unchained inflammation. Nat. Rev. Rheumatol. 18, 435–447 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. An, J. W. et al. Case report: novel variants in RELA associated with familial Behcet’s-like disease. Front. Immunol. 14, 1127085 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Ozen, S. et al. Prevalence of juvenile chronic arthritis and familial Mediterranean fever in Turkey: a field study. J. Rheumatol. 25, 2445–2449 (1998).

    CAS  PubMed  Google Scholar 

  21. Yilmaz, E. et al. Mutation frequency of Familial Mediterranean fever and evidence for a high carrier rate in the Turkish population. Eur. J. Hum. Genet. 9, 553–555 (2001).

    Article  CAS  PubMed  Google Scholar 

  22. Reygaerts, T. et al. Pyrin variant E148Q potentiates inflammasome activation and the effect of pathogenic mutations in cis. Rheumatology 63, 882–890 (2024).

    Article  PubMed  Google Scholar 

  23. Tchernitchko, D. O. et al. Intrafamilial segregation analysis of the p.E148Q MEFV allele in familial Mediterranean fever. Ann. Rheum. Dis. 65, 1154–1157 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Eyal, O., Shinar, Y., Pras, M. & Pras, E. Familial Mediterranean fever: penetrance of the p.[Met694Val];[Glu148Gln] and p.[Met694Val];[=] genotypes. Hum. Mutat. 41, 1866–1870 (2020).

    Article  CAS  PubMed  Google Scholar 

  25. Honda, Y. et al. Rapid flow cytometry-based assay for the functional classification of MEFV variants. J. Clin. Immunol. 41, 1187–1197 (2021).

    Article  CAS  PubMed  Google Scholar 

  26. Gattorno, M. et al. Classification criteria for autoinflammatory recurrent fevers. Ann. Rheum. Dis. 78, 1025–1032 (2019).

    Article  CAS  PubMed  Google Scholar 

  27. Booty, M. G. et al. Familial Mediterranean fever with a single MEFV mutation: where is the second hit? Arthritis Rheumatol. 60, 1851–1861 (2009).

    Article  CAS  Google Scholar 

  28. Marek-Yagel, D. et al. Clinical disease among patients heterozygous for familial Mediterranean fever. Arthritis Rheumatol. 60, 1862–1866 (2009).

    Article  CAS  Google Scholar 

  29. Ozen, S. Update in familial Mediterranean fever. Curr. Opin. Rheumatol. 33, 398–402 (2021).

    Article  PubMed  Google Scholar 

  30. Gruber, C. N. et al. Complex autoinflammatory syndrome unveils fundamental principles of JAK1 kinase transcriptional and biochemical function. Immunity 53, 672–684.e611 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Akkaya-Ulum, Y. Z. et al. Familial Mediterranean fever-related miR-197-3p targets IL1R1 gene and modulates inflammation in monocytes and synovial fibroblasts. Sci. Rep. 11, 685 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Xu, H. et al. Innate immune sensing of bacterial modifications of Rho GTPases by the Pyrin inflammasome. Nature 513, 237–241 (2014).

    Article  CAS  PubMed  Google Scholar 

  33. Park, Y. H. et al. Ancient familial Mediterranean fever mutations in human pyrin and resistance to Yersinia pestis. Nat. Immunol. 21, 857–867 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Collins, M. Tipping the balance in autoimmune disease. Genome Biol. 8, 317 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Lancieri, M. et al. An update on familial Mediterranean fever. Int. J. Mol. Sci. 24, 9584 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Alehashemi, S. & Goldbach-Mansky, R. Human autoinflammatory diseases mediated by NLRP3-, pyrin-, NLRP1-, and NLRC4-inflammasome dysregulation updates on diagnosis, treatment, and the respective roles of IL-1 and IL-18. Front. Immunol. 11, 1840 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Balcı-Peynircioğlu, B. et al. Comorbidities in familial Mediterranean fever: analysis of 2000 genetically confirmed patients. Rheumatology 59, 1372–1380 (2020).

    Article  PubMed  Google Scholar 

  38. Sener, S. et al. Subclinical enthesitis in enthesitis-related arthritis and sacroiliitis associated with familial Mediterranean fever. Mod. Rheumatol. 34, 607–613 (2023).

    Article  Google Scholar 

  39. Butbul Aviel, Y. et al. Familial Mediterranean fever is commonly diagnosed in children in Israel with periodic fever aphthous stomatitis, pharyngitis, and adenitis syndrome. J. Pediatr. 204, 270–274 (2019).

    Article  PubMed  Google Scholar 

  40. Gomez-Pinedo, U. et al. Variant rs4149584 (R92Q) of the TNFRSF1A gene in patients with familial multiple sclerosis. Neurologia https://doi.org/10.1016/j.nrleng.2022.07.002 (2022).

  41. Kumpfel, T. et al. Late-onset tumor necrosis factor receptor-associated periodic syndrome in multiple sclerosis patients carrying the TNFRSF1A R92Q mutation. Arthritis Rheumatol. 56, 2774–2783 (2007).

    Article  Google Scholar 

  42. Gaggiano, C. et al. Anakinra and canakinumab for patients with R92Q-associated autoinflammatory syndrome: a multicenter observational study from the AIDA Network. Ther. Adv. Musculoskelet. Dis. 13, 1759720X211037178 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Lalaoui, N. et al. Mutations that prevent caspase cleavage of RIPK1 cause autoinflammatory disease. Nature 577, 103–108 (2020).

    Article  CAS  PubMed  Google Scholar 

  44. Tao, P. et al. A dominant autoinflammatory disease caused by non-cleavable variants of RIPK1. Nature 577, 109–114 (2020).

    Article  CAS  PubMed  Google Scholar 

  45. Remmers, E. F. et al. STAT4 and the risk of rheumatoid arthritis and systemic lupus erythematosus. N. Engl. J. Med. 357, 977–986 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Baghdassarian, H. et al. Variant STAT4 and response to ruxolitinib in an autoinflammatory syndrome. N. Engl. J. Med. 388, 2241–2252 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Ott, N., Faletti, L., Heeg, M., Andreani, V. & Grimbacher, B. JAKs and STATs from a clinical perspective: loss-of-function mutations, gain-of-function mutations, and their multidimensional consequences. J. Clin. Immunol. 43, 1326–1359 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Savola, P. et al. Somatic STAT3 mutations in Felty syndrome: an implication for a common pathogenesis with large granular lymphocyte leukemia. Haematologica 103, 304–312 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Lopez-Santillan, M. et al. Prognostic and therapeutic value of somatic mutations in diffuse large B-cell lymphoma: a systematic review. Crit. Rev. Oncol. Hematol. 165, 103430 (2021).

    Article  PubMed  Google Scholar 

  50. Zhou, Q. et al. Loss-of-function mutations in TNFAIP3 leading to A20 haploinsufficiency cause an early-onset autoinflammatory disease. Nat. Genet. 48, 67–73 (2016).

    Article  CAS  PubMed  Google Scholar 

  51. Kato, M. et al. Frequent inactivation of A20 in B-cell lymphomas. Nature 459, 712–716 (2009).

    Article  CAS  PubMed  Google Scholar 

  52. Aluri, J. & Cooper, M. A. Somatic mosaicism in inborn errors of immunity: current knowledge, challenges, and future perspectives. Semin. Immunol. 67, 101761 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Saito, M. et al. Somatic mosaicism of CIAS1 in a patient with chronic infantile neurologic, cutaneous, articular syndrome. Arthritis Rheumatol. 52, 3579–3585 (2005).

    Article  CAS  Google Scholar 

  54. Louvrier, C. et al. NLRP3-associated autoinflammatory diseases: phenotypic and molecular characteristics of germline versus somatic mutations. J. Allergy Clin. Immunol. 145, 1254–1261 (2020).

    Article  CAS  PubMed  Google Scholar 

  55. Mensa-Vilaro, A. et al. Unexpected relevant role of gene mosaicism in patients with primary immunodeficiency diseases. J. Allergy Clin. Immunol. 143, 359–368 (2019).

    Article  CAS  PubMed  Google Scholar 

  56. Tizaoui, K. et al. The role of PTPN22 in the pathogenesis of autoimmune diseases: a comprehensive review. Semin. Arthritis Rheum. 51, 513–522 (2021).

    Article  CAS  PubMed  Google Scholar 

  57. Hum, R. M. et al. Using polygenic risk scores to aid diagnosis of patients with early inflammatory arthritis: results from the Norfolk Arthritis Register. Arthritis Rheumatol. 76, 696–703 (2024).

    Article  CAS  PubMed  Google Scholar 

  58. De Jager, P. L. et al. Meta-analysis of genome scans and replication identify CD6, IRF8 and TNFRSF1A as new multiple sclerosis susceptibility loci. Nat. Genet. 41, 776–782 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  59. Steiner, A. et al. Recessive NLRC4-autoinflammatory disease reveals an ulcerative colitis locus. J. Clin. Immunol. 42, 325–335 (2022).

    Article  CAS  PubMed  Google Scholar 

  60. Yu, C. H., Moecking, J., Geyer, M. & Masters, S. L. Mechanisms of NLRP1-mediated autoinflammatory disease in humans and mice. J. Mol. Biol. 430, 142–152 (2018).

    Article  CAS  PubMed  Google Scholar 

  61. Magnotti, F. et al. Steroid hormone catabolites activate the pyrin inflammasome through a non-canonical mechanism. Cell Rep. 41, 111472 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Ridker, P. M. et al. Antiinflammatory therapy with canakinumab for atherosclerotic disease. N. Engl. J. Med. 377, 1119–1131 (2017).

    Article  CAS  PubMed  Google Scholar 

  63. Elhani, I. et al. A20 haploinsufficiency: a systematic review of 177 cases. J. Invest. Dermatol. 144, 1282–1294.e8 (2024).

    Article  CAS  PubMed  Google Scholar 

  64. Schwartz, D. M. et al. Type I interferon signature predicts response to JAK inhibition in haploinsufficiency of A20. Ann. Rheum. Dis. 79, 429–431 (2020).

    Article  CAS  PubMed  Google Scholar 

  65. Villalvazo, P. et al. Gain-of-function TLR7 and loss-of-function A20 gene variants identify a novel pathway for Mendelian lupus and lupus nephritis. Clin. Kidney J. 15, 1973–1980 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Pandurangi, S., Malik, A., Owens, J., Valencia, C. A. & Miethke, A. G. Deleterious variants in TNFAIP3 are associated with type II and seronegative pediatric autoimmune hepatitis. J. Hepatol. 80, e26–e28 (2024).

    Article  CAS  PubMed  Google Scholar 

  67. Duncan, C. J. A. et al. Early-onset autoimmune disease due to a heterozygous loss-of-function mutation in TNFAIP3 (A20). Ann. Rheum. Dis. 77, 783–786 (2018).

    Article  CAS  PubMed  Google Scholar 

  68. Belot, A. et al. Contribution of rare and predicted pathogenic gene variants to childhood-onset lupus: a large, genetic panel analysis of British and French cohorts. Lancet Rheumatol. 2, e99–e109 (2020).

    Article  PubMed  Google Scholar 

  69. Yin, X. et al. Meta-analysis of 208370 East Asians identifies 113 susceptibility loci for systemic lupus erythematosus. Ann. Rheum. Dis. 80, 632–640 (2021).

    Article  CAS  PubMed  Google Scholar 

  70. Ozen, S. The changing face of polyarteritis nodosa and necrotizing vasculitis. Nat. Rev. Rheumatol. 13, 381–386 (2017).

    Article  PubMed  Google Scholar 

  71. Navon Elkan, P. et al. Mutant adenosine deaminase 2 in a polyarteritis nodosa vasculopathy. N. Engl. J. Med. 370, 921–931 (2014).

    Article  PubMed  Google Scholar 

  72. Zhou, Q. et al. Early-onset stroke and vasculopathy associated with mutations in ADA2. N. Engl. J. Med. 370, 911–920 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Arthur, V. L. et al. IL1RN variation influences both disease susceptibility and response to recombinant human interleukin-1 receptor antagonist therapy in systemic juvenile idiopathic arthritis. Arthritis Rheumatol. 70, 1319–1330 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Saper, V. E. et al. Severe delayed hypersensitivity reactions to IL-1 and IL-6 inhibitors link to common HLA-DRB1*15 alleles. Ann. Rheum. Dis. 81, 406–415 (2022).

    Article  CAS  PubMed  Google Scholar 

  75. Foell, D. et al. Methotrexate withdrawal at 6 vs 12 months in juvenile idiopathic arthritis in remission: a randomized clinical trial. JAMA 303, 1266–1273 (2010).

    Article  CAS  PubMed  Google Scholar 

  76. Holzinger, D., Foell, D. & Kessel, C. The role of S100 proteins in the pathogenesis and monitoring of autoinflammatory diseases. Mol. Cell Pediatr. 5, 7 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  77. Banchereau, R. et al. Personalized immunomonitoring uncovers molecular networks that stratify lupus patients. Cell 165, 551–565 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Nehar-Belaid, D. et al. Mapping systemic lupus erythematosus heterogeneity at the single-cell level. Nat. Immunol. 21, 1094–1106 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Peng, J. et al. Atherosclerosis progression in the APPLE trial can be predicted in young people with juvenile-onset systemic lupus erythematosus using a novel lipid metabolomic signature. Arthritis Rheumatol. 76, 455–468 (2023).

    Article  PubMed  Google Scholar 

  80. Wang, S. et al. Urine proteomics link complement activation with interstitial fibrosis/tubular atrophy in lupus nephritis patients. Semin. Arthritis Rheum. 63, 152263 (2023).

    Article  CAS  PubMed  Google Scholar 

  81. Aljaberi, N., Bennett, M., Brunner, H. I. & Devarajan, P. Proteomic profiling of urine: implications for lupus nephritis. Expert. Rev. Proteom. 16, 303–313 (2019).

    Article  CAS  Google Scholar 

  82. Jackson, H. et al. Kawasaki disease patient stratification and pathway analysis based on host transcriptomic and proteomic profiles. Int. J. Mol. Sci. 22, 5655 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Chen, Z. et al. Distinctive serum lipidomic profile of IVIG-resistant Kawasaki disease children before and after treatment. PLoS One 18, e0283710 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Demir, S. et al. Predictive biomarkers of IgA vasculitis with nephritis by metabolomic analysis. Semin. Arthritis Rheum. 50, 1238–1244 (2020).

    Article  CAS  PubMed  Google Scholar 

  85. Zhu, Z. Q., Zhang, T., Chang, S., Ren, Z. H. & Zhang, Q. AZGP1 as a potential biomarker of IgA vasculitis with nephritis in a children-based urinary proteomics study by diaPASEF. Mol. Med. Rep. 28, 157 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Henderson, L. A. et al. On the alert for cytokine storm: immunopathology in COVID-19. Arthritis Rheumatol. 72, 1059–1063 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Rowley, A. H. Understanding SARS-CoV-2-related multisystem inflammatory syndrome in children. Nat. Rev. Immunol. 20, 453–454 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Consiglio, C. R. et al. The immunology of multisystem inflammatory syndrome in children with COVID-19. Cell 183, 968–981.e7 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Son, M. B. F. et al. Multisystem inflammatory syndrome in children — initial therapy and outcomes. N. Engl. J. Med. 385, 23–34 (2021).

    Article  CAS  PubMed  Google Scholar 

  90. Filippatos, F., Tatsi, E. B. & Michos, A. Immunology of multisystem inflammatory syndrome after COVID-19 in children: a review of the current evidence. Int. J. Mol. Sci. 24, 5711 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Gurlevik, S. L. et al. The difference of the inflammatory milieu in MIS-C and severe COVID-19. Pediatr. Res. 92, 1805–1814 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Diorio, C. et al. Proteomic profiling of MIS-C patients indicates heterogeneity relating to interferon gamma dysregulation and vascular endothelial dysfunction. Nat. Commun. 12, 7222 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Merrill, J. T., Erkan, D., Winakur, J. & James, J. A. Emerging evidence of a COVID-19 thrombotic syndrome has treatment implications. Nat. Rev. Rheumatol. 16, 581–589 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  94. Batu, E. D., Sener, S. & Ozen, S. COVID-19 associated pediatric vasculitis: a systematic review and detailed analysis of the pathogenesis. Semin. Arthritis Rheum. 55, 152047 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Bastard, P. et al. Higher COVID-19 pneumonia risk associated with anti-IFN-α than with anti-IFN-ω auto-Abs in children. J. Exp. Med. 221, e20231353 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Feldmann, M., Maini, R. N., Soriano, E. R., Strand, V. & Takeuchi, T. 25 years of biologic DMARDs in rheumatology. Nat. Rev. Rheumatol. 19, 761–766 (2023).

    Article  PubMed  Google Scholar 

  97. Du, Y., Liu, M., Nigrovic, P. A., Dedeoglu, F. & Lee, P. Y. Biologics and JAK inhibitors for the treatment of monogenic systemic autoinflammatory diseases in children. J. Allergy Clin. Immunol. 151, 607–618 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Kuemmerle-Deschner, J. B. et al. Long-term safety and effectiveness of canakinumab in patients with monogenic autoinflammatory diseases: results from the interim analysis of the RELIANCE registry. RMD Open 10, e003890 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  99. Vastert, S. J. et al. Effectiveness of first-line treatment with recombinant interleukin-1 receptor antagonist in steroid-naive patients with new-onset systemic juvenile idiopathic arthritis: results of a prospective cohort study. Arthritis Rheumatol. 66, 1034–1043 (2014).

    Article  CAS  PubMed  Google Scholar 

  100. Peet, C. J. et al. Pericarditis and autoinflammation: a clinical and genetic analysis of patients with idiopathic recurrent pericarditis and monogenic autoinflammatory diseases at a national referral center. J. Am. Heart Assoc. 11, e024931 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  101. Morand, E. F. et al. Trial of anifrolumab in active systemic lupus erythematosus. N. Engl. J. Med. 382, 211–221 (2020).

    Article  CAS  PubMed  Google Scholar 

  102. Fragoulis, G. E., Brock, J., Basu, N., McInnes, I. B. & Siebert, S. The role for JAK inhibitors in the treatment of immune-mediated rheumatic and related conditions. J. Allergy Clin. Immunol. 148, 941–952 (2021).

    Article  CAS  PubMed  Google Scholar 

  103. Schett, G., Mackensen, A. & Mougiakakos, D. CAR T-cell therapy in autoimmune diseases. Lancet 402, 2034–2044 (2023).

    Article  CAS  PubMed  Google Scholar 

  104. Signa, S., Dell’Orso, G., Gattorno, M. & Faraci, M. Hematopoietic stem cell transplantation in systemic autoinflammatory diseases — the first one hundred transplanted patients. Expert. Rev. Clin. Immunol. 18, 667–689 (2022).

    Article  CAS  PubMed  Google Scholar 

  105. Hashem, H., Dimitrova, D. & Meyts, I. Allogeneic hematopoietic cell transplantation for patients with deficiency of adenosine deaminase 2 (DADA2): approaches, obstacles and special considerations. Front. Immunol. 13, 932385 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Abinun, M. & Slatter, M. A. Haematopoietic stem cell transplantation in paediatric rheumatic disease. Curr. Opin. Rheumatol. 33, 387–397 (2021).

    Article  CAS  PubMed  Google Scholar 

  107. McMaster, C. et al. Artificial intelligence and deep learning for rheumatologists. Arthritis Rheumatol. 74, 1893–1905 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to Seza Ozen.

Ethics declarations

Competing interests

The authors declare no competing interests related to this article. S.O. declares that she has received consultancy and/or speaker fees from Novartis and SOBI.

Peer review

Peer review information

Nature Reviews Rheumatology thanks Roberta Caorsi, Ivan Foeldvari and Sophie Georgin-Lavialle for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ozen, S., Aksentijevich, I. The past 25 years in paediatric rheumatology: insights from monogenic diseases. Nat Rev Rheumatol 20, 585–593 (2024). https://doi.org/10.1038/s41584-024-01145-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41584-024-01145-1

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing