Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Advancements and challenges in CAR T cell therapy in autoimmune diseases

Abstract

Chimeric antigen receptor (CAR) T cells are highly effective at targeting and eliminating cells of the B cell lineage. CAR T cell therapy has become a standard-of-care treatment for patients with relapsed or refractory B cell malignancies. In addition, the administration of genetically modified T cells with the capacity to deplete B cells and/or plasma cells has tremendous therapeutic potential in autoimmune diseases. In the past few years, CD19-based and B cell maturation antigen (BCMA)-based CAR T cell therapies have been applied to various B cell-mediated autoimmune diseases including systemic lupus erythematosus, idiopathic inflammatory myopathy, systemic sclerosis, neuromyelitis optica spectrum disorder, myasthenia gravis and multiple sclerosis. The scientific rationale behind this approach is that deep depletion of B cells, including autoreactive B cell clones, could restore normal immune function, referred to as an immune reset. In this Review, we discuss important aspects of CAR T cell therapy in autoimmune disease, including considerations relating to patient selection, safety, efficacy and medical management. These considerations are based on the early experiences of CAR T cell therapy in autoimmune diseases, and as the field of CAR T cell therapy in autoimmune diseases continues to rapidly evolve, these issues will remain subject to ongoing refinement and adaptation.

Key points

  • Chimeric antigen receptor (CAR)-expressing cells provide a new and powerful treatment strategy for severe forms of various autoimmune diseases.

  • The CAR-expressing cells applied so far have typically been T cells that recognize B cell-specific or plasma cell-specific antigens such as CD19 or BCMA (B cell maturation antigen), respectively.

  • Currently, most information on the treatment of autoimmune disease with CAR-expressing cells comes from the treatment of patients with autologous CD19-targeting CAR T cells.

  • The success of treating autoimmune disease with CAR-expressing cells is dependent on various pre-procedural, procedural and post-procedural factors; these factors are important considerations that warrant further investigation in future studies.

  • Critical patient selection and careful monitoring for both efficacy and toxicity are paramount for successful treatment with CAR-expressing cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Vector constructs used for CAR T cell generation in autoimmune disease.
Fig. 2: Spectrum of CAR-based treatment approaches.
Fig. 3: Methods of therapeutic B cell depletion and functional consequences.

Similar content being viewed by others

References

  1. Porter, D. L., Levine, B. L., Kalos, M., Bagg, A. & June, C. H. Chimeric antigen receptor-modified T-cells in chronic lymphoid leukemia. N. Engl. J. Med. 365, 725–733 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. June, C. H., O’Connor, R. S., Kawalekar, O. U., Ghassemi, S. & Milone, M. C. CAR-T-cell immunotherapy for human cancer. Science 359, 1361–1365 (2018).

    Article  CAS  PubMed  Google Scholar 

  3. Boyiadzis, M. M. et al. Chimeric antigen receptor (CAR) T therapies for the treatment of hematologic malignancies: clinical perspective and significance. J. Immunother. Cancer 6, 137 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Del Bufalo, F. et al. GD2-CART01 for relapsed or refractory high-risk neuroblastoma. reply. N. Engl. J. Med. 388, 1284–1295 (2023).

    Article  PubMed  Google Scholar 

  5. Mackensen, A. et al. CLDN6-specific CAR-T-cells plus amplifying RNA vaccine in relapsed or refractory solid tumors: the phase 1 BNT211-01 trial. Nat. Med. 29, 2844–2853 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Schubert, M. L. et al. Side-effect management of chimeric antigen receptor (CAR) T-cell therapy. Ann. Oncol. 32, 34–48 (2021).

    Article  CAS  PubMed  Google Scholar 

  7. Hines, M. R. et al. Immune effector cell-associated hemophagocytic lymphohistiocytosis-like syndrome. Transpl. Cell Ther. 29, 438.e1–438.e16 (2023).

    Article  Google Scholar 

  8. Rejeski, K. et al. Immune effector cell-associated hematotoxicity: EHA/EBMT consensus grading and best practice recommendations. Blood 142, 865–877 (2023).

    Article  CAS  PubMed  Google Scholar 

  9. Kansal, R. et al. Sustained B cell depletion by CD19-targeted CAR T cells is a highly effective treatment for murine lupus. Sci. Transl. Med. 11, eaav1648 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Ellebrecht, C. T. et al. Reengineering chimeric antigen receptor T cells for targeted therapy of autoimmune disease. Science 353, 179–184 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Mougiakakos, D. et al. CD19-targeted CAR T-cells in refractory systemic lupus erythematosus. N. Engl. J. Med. 385, 567–569 (2021).

    Article  PubMed  Google Scholar 

  12. Mackensen, A. et al. Anti-CD19 CAR T-cell therapy for refractory systemic lupus erythematosus. Nat. Med. 28, 2124–2132 (2022).

    Article  CAS  PubMed  Google Scholar 

  13. Müller, F. et al. CD19 CAR T-cell therapy in autoimmune disease — a case series with follow-up. N. Engl. J. Med. 390, 687–700. (2024).

    Article  PubMed  Google Scholar 

  14. Taubmann, J. et al. CD19 chimeric antigen receptor T-cell treatment: unraveling the role of B-cells in systemic lupus erythematosus. Arthritis Rheumatol. 76, 497–504 (2023).

    Article  Google Scholar 

  15. Wang, W. et al. BCMA-CD19 compound CAR T cells for systemic lupus erythematosus: a phase 1 open-label clinical trial. Ann. Rheum. Dis. 30:ard-2024-225785; https://doi.org/10.1136/ard-2024-225785 (2024).

  16. Taubmann, J. et al. Rescue therapy of antisynthetase syndrome with CD19-targeted CAR-T-cells after failure of several B-cell depleting antibodies. Rheumatology 63, e12–e14 (2023).

    Article  PubMed Central  Google Scholar 

  17. Pecher, A. C. et al. CD19-targeting CAR T-cells for myositis and interstitial lung disease associated with antisynthetase syndrome. JAMA 329, 2154–2162 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Qin, C. et al. Single-cell analysis of refractory anti-SRP necrotizing myopathy treated with anti-BCMA CAR-T-cell therapy. Proc. Natl Acad. Sci. USA 121, e2315990121 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Müller, F. et al. CD19-targeted CAR T-cells in refractory anti-synthetase syndrome. Lancet 401, 815–818 (2023).

    Article  PubMed  Google Scholar 

  20. Bergmann, C. et al. Treatment of a patient with severe systemic sclerosis (SSc) using CD19-targeted CAR-T-cells. Ann. Rheum. Dis. 82, 1117–1120 (2023).

    Article  PubMed  Google Scholar 

  21. Merkt, W. et al. Third-generation CD19.CAR-T-cell-containing combination therapy in Scl70+ systemic sclerosis. Ann. Rheum. Dis. 83, 543–546 (2023).

    Article  Google Scholar 

  22. Qin, C. et al. Anti-BCMA CAR T-cell therapy CT103A in relapsed or refractory AQP4-IgG seropositive neuromyelitis optica spectrum disorders: phase 1 trial interim results. Signal Transduct. Target. Ther. 8, 5 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Haghikia, A. et al. Anti-CD19 CAR T-cells for refractory myasthenia gravis. Lancet Neurol. 22, 1104–1105 (2023).

    Article  CAS  PubMed  Google Scholar 

  24. Granit, V. et al. Safety and clinical activity of autologous RNA chimeric antigen receptor T-cell therapy in myasthenia gravis (MG-001): a prospective, multicentre, open-label, non-randomised phase 1b/2a study. Lancet Neurol. 22, 578–590 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Tian, D. S. et al. B-cell lineage reconstitution underlies CAR-T-cell therapeutic efficacy in patients with refractory myasthenia gravis. EMBO Mol. Med. 16, 966–987 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Fischbach, F. et al. CD19-targeted chimeric antigen receptor T cell therapy in two patients with multiple sclerosis. Med 5, 550–558.e2 (2024).

    Article  CAS  PubMed  Google Scholar 

  27. Doglio, M. et al. Regulatory T cells expressing CD19-targeted chimeric antigen receptor restore homeostasis in Systemic Lupus Erythematosus. Nat. Commun. 15, 2542 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Greco, R. et al. Innovative cellular therapies for autoimmune diseases: expert-based position statement and clinical practice recommendations from the EBMT practice harmonization and guidelines committee. EClinicalMedicine 69, 102476 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Muraro, P. A. Resetting tolerance in autoimmune disease. Science 380, 470–471 (2023).

    Article  CAS  PubMed  Google Scholar 

  30. Del Bufalo, F. et al. Allogeneic, donor-derived, second-generation, CD19-directed CAR-T-cells for the treatment of pediatric relapsed/refractory BCP-ALL. Blood 142, 146–157 (2023).

    PubMed  Google Scholar 

  31. Jhita, N. & Raikar, S. S. Allogeneic gamma delta T cells as adoptive cellular therapy for hematologic malignancies. Explor. Immunol. 2, 334–350 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Yang, L. et al. Recent advances in lipid nanoparticles for delivery of mRNA. Pharmaceutics 14, 2682 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Dimitri, A., Herbst, F. & Fraietta, J. A. Engineering the next-generation of CAR T-cells with CRISPR-Cas9 gene editing. Mol. Cancer 21, 78 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Xin, T. et al. In-vivo induced CAR-T cell for the potential breakthrough to overcome the barriers of current CAR-T cell therapy. Front. Oncol. 12, 809754 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Mog, B. et al. Chimeric autoantigen-T cell receptor (CATCR)-T cell therapies to selectively target autoreactive B cells. Arthritis Rheumatol. 74 (2022).

  36. Cho, J. H., Collins, J. J. & Wong, W. W. Universal chimeric antigen receptors for multiplexed and logical control of T cell responses. Cell 173, 1426–1438.e11 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Davenport, A. J. et al. CAR-T cells inflict sequential killing of multiple tumor target cells. Cancer Immunol. Res. 3, 483–494 (2015).

    Article  CAS  PubMed  Google Scholar 

  38. Gupta, S. et al. CAR-T cell-mediated B-cell depletion in central nervous system autoimmunity. Neurol. Neuroimmunol. Neuroinflamm 10, e200080 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Mitsdoerffer, M. et al. Formation and immunomodulatory function of meningeal B cell aggregates in progressive CNS autoimmunity. Brain 144, 1697–1710 (2021).

    Article  PubMed  Google Scholar 

  40. Siddiqi, T. et al. CD19-directed CAR T-cell therapy for treatment of primary CNS lymphoma. Blood Adv. 5, 4059–4063 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Danaher, P. et al. Single cell spatial transcriptomic profiling of childhood-onset lupus nephritis reveals complex interactions between kidney stroma and infiltrating immune cells. bioRxiv https://doi.org/10.1101/2023.11.09.566503 (2023).

  42. Zamvil, S. S. & Hauser, S. L. Antigen presentation by B-cells in multiple sclerosis. N. Engl. J. Med. 38, 378–381 (2021).

    Article  Google Scholar 

  43. Melenhorst, J. J. et al. Decade-long leukaemia remissions with persistence of CD4+ CAR T-cells. Nature 602, 503–509 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Schett, G., Mackensen, A. & Mougiakakos, D. CAR T-cell therapy in autoimmune diseases. Lancet 402, 2034–2044 (2023).

    Article  CAS  PubMed  Google Scholar 

  45. Voskens, C. et al. Autologous regulatory T-cell transfer in refractory ulcerative colitis with concomitant primary sclerosing cholangitis. Gut 72, 49–53 (2023).

    Article  CAS  PubMed  Google Scholar 

  46. Furukawa, S. et al. Darvadstrocel for complex perianal fistulas in Japanese adults with Crohn’s disease: a phase 3 study. J. Crohns Colitis 17, 369–378 (2023).

    Article  PubMed  Google Scholar 

  47. Arends, S. et al. Why do drug treatments fail in Sjögren’s disease? Considerations for treatment, trial design and interpretation of clinical efficacy. Expert. Rev. Clin. Immunol. 19, 1187–1194 (2023).

    Article  CAS  PubMed  Google Scholar 

  48. Nocturne, G., Pontarini, E., Bombardieri, M. & Mariette, X. Lymphomas complicating primary Sjögren’s syndrome: from autoimmunity to lymphoma. Rheumatology 60, 3513–3521 (2021).

    Article  CAS  PubMed  Google Scholar 

  49. Sheng, L. et al. Concurrent remission of lymphoma and Sjögren’s disease following anti-CD19 chimeric antigen receptor-T-cell therapy for diffuse large B-cell lymphoma: a case report. Front. Immunol. 14, 1298815 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Rejeski, K., Subklewe, M. & Locke, F. L. Recognizing, defining, and managing CAR-T hematologic toxicities. Hematol. Am. Soc. Hematol. Educ. Program 2023, 198–208 (2023).

    Article  Google Scholar 

  51. Doria, A. et al. Long-term prognosis and causes of death in systemic lupus erythematosus. Am. J. Med. 119, 700–706 (2006).

    Article  PubMed  Google Scholar 

  52. Masani, N. N., Imbriano, L. J., D’Agati, V. D. & Markowitz, G. S. SLE and rapidly progressive glomerulonephritis. Am. J. Kidney Dis. 45, 950–955 (2005).

    Article  PubMed  Google Scholar 

  53. Kammoun, K. et al. Poor prognostic factors of lupus nephritis. Saudi J. Kidney Dis. Transpl. 22, 727–732 (2011).

    PubMed  Google Scholar 

  54. Pokeerbux, M. R. et al. Survival and prognosis factors in systemic sclerosis: data of a French multicenter cohort, systematic review, and meta-analysis of the literature. Arthritis Res. Ther. 21, 86 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Meijs, J. et al. A prediction model for progressive disease in systemic sclerosis. RMD Open 1, e000113 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  56. Gono, T. et al. Clinical manifestation and prognostic factor in anti-melanoma differentiation-associated gene 5 antibody-associated interstitial lung disease as a complication of dermatomyositis. Rheumatology 49, 1713–1719 (2010).

    Article  CAS  PubMed  Google Scholar 

  57. Nombel, A., Fabien, N. & Coutant, F. Dermatomyositis with anti-MDA5 antibodies: bioclinical features, pathogenesis and emerging therapies. Front. Immunol. 12, 773352 (2021). 

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Reimann, H. et al. Cellular and humoral immune responses to SARS-CoV-2 vaccination in patients after CD19.CAR T-cell therapy. Blood Adv. 7, 2066–2069 (2023).

    Article  CAS  PubMed  Google Scholar 

  59. Arumugakani, G. et al. Early emergence of CD19-negative human antibody-secreting cells at the plasmablast to plasma cell transition. J. Immunol. 198, 4618–4628 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Parker, K. R. et al. Single-cell analyses identify brain mural cells expressing CD19 as potential off-tumor targets for CAR-T immunotherapies. Cell 183, 126–142 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Morris, E. C., Neelapu, S. S., Giavridis, T. & Sadelain, M. Cytokine release syndrome and associated neurotoxicity in cancer immunotherapy. Nat. Rev. Immunol. 22, 85–96 (2022).

    Article  CAS  PubMed  Google Scholar 

  62. Forsthuber, T. G., Cimbora, D. M., Ratchford, J. N., Katz, E. & Stüve, O. B cell-based therapies in CNS autoimmunity: differentiating CD19 and CD20 as therapeutic targets. Ther. Adv. Neurol. Disord. 11, 1756286418761697 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Munshi, N. C. et al. Idecabtagene vicleucel in relapsed and refractory multiple myeloma. N. Engl. J. Med. 384, 705–716 (2021).

    Article  CAS  PubMed  Google Scholar 

  64. Jenks, S. A. et al. Distinct effector B-cells induced by unregulated toll-like receptor 7 contribute to pathogenic responses in systemic lupus erythematosus. Immunity 49, 725–739 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Feng, J., Hu, Y., Chang, A. H. & Huang, H. CD19/BCMA CAR-T-cell therapy for refractory systemic lupus erythematosus — safety and preliminary efficacy data from a phase I clinical study. Blood 142, 4835 (2023).

    Article  Google Scholar 

  66. Zeng, F. et al. Effect of CD38 on B-cell function and its role in the diagnosis and treatment of B-cell-related diseases. J. Cell Physiol. 237, 2796–2807 (2022).

    Article  CAS  PubMed  Google Scholar 

  67. Ostendorf, L. et al. Targeting CD38 with daratumumab in refractory systemic lupus erythematosus. N. Engl. J. Med. 383, 1149–1155 (2020).

    Article  CAS  PubMed  Google Scholar 

  68. Majzner, R. G. & Mackall, C. L. Tumor antigen escape from CAR T-cell therapy. Cancer Discov. 8, 1219–1226 (2018).

    Article  CAS  PubMed  Google Scholar 

  69. Neelapu, S. S. CAR-T efficacy: is conditioning the key? Blood 133, 1799–1800 (2019).

    Article  CAS  PubMed  Google Scholar 

  70. Lickefett, B. et al. Lymphodepletion — an essential but undervalued part of the chimeric antigen receptor T-cell therapy cycle. Front. Immunol. 14, 1303935 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Dekker, L. et al. Fludarabine exposure predicts outcome after CD19 CAR T-cell therapy in children and young adults with acute leukemia. Blood Adv. 6, 1969–1976 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Amini, L. et al. Preparing for CAR T-cell therapy: patient selection, bridging therapies and lymphodepletion. Nat. Rev. Clin. Oncol. 19, 342–355 (2022).

    Article  PubMed  Google Scholar 

  73. Ghilardi, G. et al. Bendamustine lymphodepletion before axicabtagene ciloleucel is safe and associates with reduced inflammatory cytokines. Blood Adv. 8, 653–666 (2024).

    Article  CAS  PubMed  Google Scholar 

  74. Nelson, M. H., Diven, M. A., Huff, L. W. & Paulos, C. M. Harnessing the microbiome to enhance cancer immunotherapy. J. Immunol. Res. 2015, 368736 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  75. Adams, E. M. et al. A pilot study: use of fludarabine for refractory dermatomyositis and polymyositis, and examination of endpoint measures. J. Rheumatol. 26, 352–360 (1999).

    CAS  PubMed  Google Scholar 

  76. Illei, G. G. et al. Long-term effects of combination treatment with fludarabine and low-dose pulse cyclophosphamide in patients with lupus nephritis. Rheumatology 46, 952–956 (2007).

    Article  CAS  PubMed  Google Scholar 

  77. Koshy, M., Berger, D. & Crow, M. K. Increased expression of CD40 ligand on systemic lupus erythematosus lymphocytes. J. Clin. Invest. 98, 826–837 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Wang, S. et al. IL-21 drives expansion and plasma cell differentiation of autoreactive CD11chiT-bet+ B-cells in SLE. Nat. Commun. 9, 1758 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  79. FDA. Food and Drug Administration. FDA Requires Boxed Warning for T cell Malignancies Following Treatment with BCMA-Directed or CD19-Directed Autologous Chimeric Antigen Receptor (CAR) T cell Immunotherapies. www.fda.govhttps://www.fda.gov/vaccines-blood-biologics/safety-availability-biologics/fda-requires-boxed-warning-t-cell-malignancies-following-treatment-bcma-directed-or-cd19-directed (2024).

  80. Wang, Y. et al. Humoral immune reconstitution after anti-BCMA CAR T-cell therapy in relapsed/refractory multiple myeloma. Blood Adv. 5, 5290–5299 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Walti, C. S. et al. Antibodies against vaccine-preventable infections after CAR-T-cell therapy for B-cell malignancies. JCI Insight 6, e146743 (2021).

    PubMed  PubMed Central  Google Scholar 

  82. Krikau, T. et al. CAR-T-cell therapy rescues adolescent with rapidly progressive lupus nephritis from haemodialysis. CAR-T-cell therapy rescues adolescent with rapidly progressive lupus nephritis from haemodialysis. Lancet 403, 1627–1630 (2024).

    Article  Google Scholar 

  83. De Benedetti, F., Diomedi Camassei, F. & Locatelli, F. CAR T-cell therapy in autoimmune disease. N. Engl. J. Med. 390, 1629 (2024).

    PubMed  Google Scholar 

  84. Ligon, J. A. et al. Fertility and CAR T-cells: current practice and future directions. Transpl. Cell Ther. 28, 605.e1–605.e8 (2022).

    Article  CAS  Google Scholar 

  85. Tamirou, F. et al. Brief report: the Euro-Lupus low-dose intravenous cyclophosphamide regimen does not impact the ovarian reserve, as measured by serum levels of anti-Müllerian hormone. Arthritis Rheumatol. 69, 1267–1271 (2017).

    Article  CAS  PubMed  Google Scholar 

  86. Hayden, P. J. et al. Management of adults and children receiving CAR T-cell therapy: 2021 best practice recommendations of the European Society for Blood and Marrow Transplantation (EBMT) and the Joint Accreditation Committee of ISCT and EBMT (JACIE) and the European Haematology Association (EHA). Ann. Oncol. 33, 259–275 (2022).

    Article  CAS  PubMed  Google Scholar 

  87. Peleg, A. Y. et al. Opportunistic infections in 547 organ transplant recipients receiving alemtuzumab, a humanized monoclonal CD-52 antibody. Clin. Infect. Dis. 44, 204–212 (2007).

    Article  CAS  PubMed  Google Scholar 

  88. Oluwole, O. O. et al. Long-term outcomes of patients with large B-cell lymphoma treated with axicabtagene ciloleucel and prophylactic corticosteroids. Bone Marrow Transpl. 59, 366–372 (2024).

    Article  CAS  Google Scholar 

  89. Fanouriakis, A. et al. EULAR recommendations for the management of systemic lupus erythematosus: 2023 update. Ann. Rheum. Dis. 83, 15–29 (2024).

    Article  CAS  PubMed  Google Scholar 

  90. Khan, A. N. et al. Immunogenicity of CAR-T-cell therapeutics: evidence, mechanism and mitigation. Front. Immunol. 13, 886546 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Myers, R. M. et al. Reinfusion of CD19 CAR T-cells for relapse prevention and treatment in children with acute lymphoblastic leukemia. Blood Adv. 8, 2182–2192 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Hepburn, A. L., Narat, S. & Mason, J. C. The management of peripheral blood cytopenias in systemic lupus erythematosus. Rheumatology 49, 2243–2254 (2010).

    Article  CAS  PubMed  Google Scholar 

  93. Mahdi, J. et al. Tumor inflammation-associated neurotoxicity. Nat. Med. 29, 803–810 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Cook, M. R. et al. Toxicity and efficacy of CAR T-cell therapy in primary and secondary CNS lymphoma: a meta-analysis of 128 patients. Blood Adv. 7, 32–39 (2023).

    Article  CAS  PubMed  Google Scholar 

  95. Sharma, N., Reagan, P. M. & Liesveld, J. L. Cytopenia after CAR-T-cell therapy — a brief review of a complex problem. Cancers 14, 1501 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Nitta, E. et al. A high incidence of late-onset neutropenia following rituximab-containing chemotherapy as a primary treatment of CD20-positive B-cell lymphoma: a single-institution study. Ann. Oncol. 18, 364–369 (2007).

    Article  CAS  PubMed  Google Scholar 

  97. Verdun, N. & Marks, P. Secondary cancers after chimeric antigen receptor T-cell therapy. N. Engl. J. Med. 390, 584–586 (2024).

    Article  CAS  PubMed  Google Scholar 

  98. Liu A. FDA investigates ‘serious risk’ of secondary cancer following CAR T-cell treatment. Fierce Pharma. Published November 28, https://www.fiercepharma.com/pharma/fda-investigates-serious-risk-secondary-cancer-following-car-t-therapy-treatment (2023).

  99. Chihara, D., Dores, G. M., Flowers, C. R. & Morton, L. M. The bidirectional increased risk of B-cell lymphoma and T-cell lymphoma. Blood 138, 785–789 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Zhang, N. & Dalal, M. R. Incidence and prevalence of T-cell lymphoma in the EMA member states: methodology for estimation in rare malignancies of CTCL and PTCL. Value Health 22, S853 (2019).

    Article  Google Scholar 

  101. Ghilardi, G. et al. T-cell lymphoma and secondary primary malignancy risk after commercial CAR T-cell therapy. Nat. Med. 30, 984–989 (2024).

    Article  CAS  PubMed  Google Scholar 

  102. Storgard, R., Rejeski, K., Perales, M. A., Goldman, A. & Shouval, R. T-cell malignant neoplasms after chimeric antigen receptor T-cell therapy. JAMA Oncol. 10, 826–828 (2024).

    Article  PubMed  Google Scholar 

  103. Levine, B. L. et al. Unanswered questions following reports of secondary malignancies after CAR-T cell therapy. Nat. Med. 30, 338–341 (2024).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors wrote the article. G.S. researched data for the article, contributed substantially to discussion of the content and reviewed and/or edited the manuscript before submission.

Corresponding author

Correspondence to Georg Schett.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Rheumatology thanks Raffaella Greco, who co-reviewed with Giorgio Orofino; Marko Radic; E. Hachulla; and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schett, G., Müller, F., Taubmann, J. et al. Advancements and challenges in CAR T cell therapy in autoimmune diseases. Nat Rev Rheumatol 20, 531–544 (2024). https://doi.org/10.1038/s41584-024-01139-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41584-024-01139-z

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing