Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Integrin signalling in joint development, homeostasis and osteoarthritis

Abstract

Integrins are key regulators of cell–matrix interactions during joint development and joint tissue homeostasis, as well as in the development of osteoarthritis (OA). The signalling cascades initiated by the interactions of integrins with a complex network of extracellular matrix (ECM) components and intracellular adaptor proteins orchestrate cellular responses necessary for maintaining joint tissue integrity. Dysregulated integrin signalling, triggered by matrix degradation products such as matrikines, disrupts this delicate balance, tipping the scales towards an environment conducive to OA pathogenesis. The interplay between integrin signalling and growth factor pathways further underscores the multifaceted nature of OA. Moreover, emerging insights into the role of endocytic trafficking in regulating integrin signalling add a new layer of complexity to the understanding of OA development. To harness the therapeutic potential of targeting integrins for mitigation of OA, comprehensive understanding of their molecular mechanisms across joint tissues is imperative. Ultimately, deciphering the complexities of integrin signalling will advance the ability to treat OA and alleviate its global burden.

Key points

  • Integrins mediate cell–matrix adhesion integral to joint development and maintenance of tissue homeostasis. The collagen-binding integrins, for example, α10β1 integrin, are important for normal bone and cartilage development.

  • Matrix degradation products called matrikines, such as fibronectin fragments that bind to the α5β1 integrin, alter integrin signalling and the balance between intracellular anabolism and catabolism, thereby promoting the pathogenesis of osteoarthritis (OA).

  • Integrin α5β1 signalling in chondrocytes is regulated by endocytic trafficking, an emerging mechanism that has garnered attention for its precise spatiotemporal orchestration of intracellular integrin functions.

  • Complex interplay between integrin signalling and growth factor pathways, such as with transforming growth factor-β, notably impacts OA progression.

  • Therapeutic breakthroughs targeting α5β1 and other integrins in OA will require enhanced mechanistic understanding of integrin signalling to tailor interventions to individual disease endotypes and specific joint tissues during OA progression.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Overview of integrin signalling.
Fig. 2: Fibronectin matrikines in osteoarthritis.
Fig. 3: Integrin signalling in osteoarthritis development.

Similar content being viewed by others

References

  1. Allen, K. D., Thoma, L. M. & Golightly, Y. M. Epidemiology of osteoarthritis. Osteoarthr. Cartil. 30, 184–195 (2022).

    Article  CAS  Google Scholar 

  2. Loeser, R. F., Goldring, S. R., Scanzelllo, C. R. & Goldring, M. B. Osteoarthritis: a disease of the joint as an organ. Arthritis Rheum. 64, 1697–1707 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  3. Katz, J. N., Arant, K. R. & Loeser, R. F. Diagnosis and treatment of hip and knee osteoarthritis: a review. J. Am. Med. Assoc. 325, 568–578 (2021).

    Article  CAS  Google Scholar 

  4. Hunter, D. J. & Bierma-Zeinstra, S. Osteoarthritis. Lancet 393, 1745–1759 (2019).

    Article  CAS  PubMed  Google Scholar 

  5. Safiri, S. et al. Global, regional and national burden of osteoarthritis 1990-2017: a systematic analysis of the Global Burden of Disease Study 2017. Ann. Rheum. Dis. 79, 819–828 (2020).

    Article  PubMed  Google Scholar 

  6. Hunter, D. J. Pharmacologic therapy for osteoarthritis-the era of disease modification. Nat. Rev. Rheumatol. 7, 13–22 (2011).

    Article  CAS  PubMed  Google Scholar 

  7. Kolasinski, S. L. et al. 2019 American College of Rheumatology/Arthritis Foundation guideline for the management of osteoarthritis of the hand, hip, and knee. Arthritis Rheumatol. 72, 220–233 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Oo, W. M. & Hunter, D. J. Repurposed and investigational disease-modifying drugs in osteoarthritis (DMOADs). Ther. Adv. Musculoskelet. Dis. 14, 1759720X221090297 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Lotz, M. & Loeser, R. F. Effects of aging on articular cartilage homeostasis. Bone 51, 241–248 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Goldring, M. B. & Marcu, K. B. Cartilage homeostasis in health and rheumatic diseases. Arthritis Res. Ther. 11, 224 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Lories, R. J. U. Joint homeostasis, restoration, and remodeling in osteoarthritis. Best Pract. Res. Clin. Rheumatol. 22, 209–220 (2008).

    Article  CAS  PubMed  Google Scholar 

  12. Lotz, M. K. & Caramés, B. Autophagy and cartilage homeostasis mechanisms in joint health, aging and OA. Nat. Rev. Rheumatol. 7, 579–587 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Goldring, M. B. The role of the chondrocyte in osteoarthritis. Arthritis Rheum. 43, 1916–1926 (2000).

    Article  CAS  PubMed  Google Scholar 

  14. Saito, T. et al. Transcriptional regulation of endochondral ossification by HIF-2α during skeletal growth and osteoarthritis development. Nat. Med. 16, 678–686 (2010).

    Article  CAS  PubMed  Google Scholar 

  15. Dreier, R. Hypertrophic differentiation of chondrocytes in osteoarthritis: the developmental aspect of degenerative joint disorders. Arthritis Res. Ther. 12, 216 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Hosaka, Y. et al. Notch signaling in chondrocytes modulates endochondral ossification and osteoarthritis development. Proc. Natl Acad. Sci. USA 110, 1875–1880 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Goldring, S. R. Role of bone in osteoarthritis pathogenesis. Med. Clin. North Am. 93, 25–35 (2009).

    Article  PubMed  Google Scholar 

  18. Burr, D. B. & Gallant, M. A. Bone remodelling in osteoarthritis. Nat. Rev. Rheumatol. 8, 665–673 (2012).

    Article  CAS  PubMed  Google Scholar 

  19. Goldring, S. R. & Goldring, M. B. Changes in the osteochondral unit during osteoarthritis: structure, function and cartilage bone crosstalk. Nat. Rev. Rheumatol. 12, 632–644 (2016).

    Article  PubMed  Google Scholar 

  20. Ricard-Blum, S. & Salza, R. Matricryptins and matrikines: biologically active fragments of the extracellular matrix. Exp. Dermatol. 23, 457–463 (2014).

    Article  CAS  PubMed  Google Scholar 

  21. Sanchez-Lopez, E., Coras, R., Torres, A., Lane, N. E. & Guma, M. Synovial inflammation in osteoarthritis progression. Nat. Rev. Rheumatol. 18, 258–275 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Scanzello, C. R. & Goldring, S. R. The role of synovitis in osteoarthritis pathogenesis. Bone 51, 249–257 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Guilak, F., Nims, R. J., Dicks, A., Wu, C. L. & Meulenbelt, I. Osteoarthritis as a disease of the cartilage pericellular matrix. Matrix Biol. 71–72, 40–50 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Eyre, D. Articular cartilage and changes in arthritis: collagen of articular cartilage. Arthritis Res. Ther. 4, 30–35 (2002).

    Article  CAS  Google Scholar 

  25. Knudson, W., Ishizuka, S., Terabe, K., Askew, E. B. & Knudson, C. B. The pericellular hyaluronan of articular chondrocytes. Matrix Biol. 78–79, 32–46 (2019).

    Article  PubMed  Google Scholar 

  26. Roughley, P. J. & Mort, J. S. The role of aggrecan in normal and osteoarthritic cartilage. J. Exp. Orthop. 1, 8 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Kiani, C., Chen, L., Wu, Y. J., Yee, A. J. & Yang, B. B. Structure and function of aggrecan. Cell Res. 12, 19–32 (2002).

    Article  PubMed  Google Scholar 

  28. Hodgkinson, T., Kelly, D. C., Curtin, C. M. & O’Brien, F. J. Mechanosignalling in cartilage: an emerging target for the treatment of osteoarthritis. Nat. Rev. Rheumatol. 18, 67–84 (2022).

    Article  PubMed  Google Scholar 

  29. Alexopoulos, L. G., Haider, M. A., Vail, T. P. & Guilak, F. Alterations in the mechanical properties of the human chondrocyte pericellular matrix with osteoarthritis. J. Biomech. Eng. 125, 323–333 (2003).

    Article  PubMed  Google Scholar 

  30. Peng, Z. et al. The regulation of cartilage extracellular matrix homeostasis in joint cartilage degeneration and regeneration. Biomaterials 268, 120555 (2021).

    Article  CAS  PubMed  Google Scholar 

  31. Loeser, R. F. Integrins and chondrocyte–matrix interactions in articular cartilage. Matrix Biol. 39, 11–16 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Bonnans, C., Chou, J. & Werb, Z. Remodelling the extracellular matrix in development and disease. Nat. Rev. Mol. Cell Biol. 15, 786–801 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Larsen, M., Artym, V. V., Green, J. A. & Yamada, K. M. The matrix reorganized: extracellular matrix remodeling and integrin signaling. Curr. Opin. Cell Biol. 18, 463–471 (2006).

    Article  CAS  PubMed  Google Scholar 

  34. Wu, W. et al. Sites of collagenase cleavage and denaturation of type II collagen in aging and osteoarthritic articular cartilage and their relationship to the distribution of matrix metalloproteinase 1 and matrix metalloproteinase 13. Arthritis Rheum. 46, 2087–2094 (2002).

    Article  CAS  PubMed  Google Scholar 

  35. Loeser, R. F. Aging and osteoarthritis: the role of chondrocyte senescence and aging changes in the cartilage matrix. Osteoarthr. Cartil. 17, 971–979 (2009).

    Article  CAS  Google Scholar 

  36. Patel, D. F. et al. An extracellular matrix fragment drives epithelial remodeling and airway hyperresponsiveness. Sci. Transl. Med. 10, eaaq0693 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Hahn, C. S. et al. The matrikine N-α-PGP couples extracellular matrix fragmentation to endothelial permeability. Sci. Adv. 1, e1500175 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Jariwala, N. et al. Matrikines as mediators of tissue remodelling. Adv. Drug Deliv. Rev. 185, 114240 (2022).

    Article  CAS  PubMed  Google Scholar 

  39. Gaggar, A. & Weathington, N. Bioactive extracellular matrix fragments in lung health and disease. J. Clin. Invest. 126, 3176–3184 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Miao, M. Z. et al. Redox-active endosomes mediate α5β1 integrin signaling and promote chondrocyte matrix metalloproteinase production in osteoarthritis. Sci. Signal. 16, eadf8299 (2023).

    Article  CAS  PubMed  Google Scholar 

  41. Loeser, R. F., Collins, J. A. & Diekman, B. O. Ageing and the pathogenesis of osteoarthritis. Nat. Rev. Rheumatol. 12, 412–420 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Heinegård, D. & Saxne, T. The role of the cartilage matrix in osteoarthritis. Nat. Rev. Rheumatol. 7, 50–56 (2011).

    Article  PubMed  Google Scholar 

  43. Pap, T. & Korb-Pap, A. Cartilage damage in osteoarthritis and rheumatoid arthritis — two unequal siblings. Nat. Rev. Rheumatol. 11, 606–615 (2015).

    Article  PubMed  Google Scholar 

  44. Gerwin, N. et al. Angiopoietin-like 3-derivative LNA043 for cartilage regeneration in osteoarthritis: a randomized phase 1 trial. Nat. Med. 28, 2633–2645 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Hynes, R. O. Integrins: bidirectional, allosteric signaling machines. Cell 110, 673–687 (2002).

    Article  CAS  PubMed  Google Scholar 

  46. Anthis, N. J. & Campbell, I. D. The tail of integrin activation. Trends Biochem. Sci. 36, 191–198 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Giancotti, F. G. & Ruoslahti, E. Integrin signaling. Science 285, 1028–1033 (1999).

    Article  CAS  PubMed  Google Scholar 

  48. Takagi, J., Petre, B. M., Walz, T. & Springer, T. A. Global conformational rearrangements in integrin extracellular domains in outside-in and inside-out signaling. Cell 110, 599–611 (2002).

    Article  CAS  PubMed  Google Scholar 

  49. Shimaoka, M., Takagi, J. & Springer, T. A. Conformational regulation of integrin structure and function. Annu. Rev. Biophys. Biomol. Struct. 31, 485–516 (2002).

    Article  CAS  PubMed  Google Scholar 

  50. Xiao, T., Takagi, J., Coller, B. S., Wang, J. H. & Springer, T. A. Structural basis for allostery in integrins and binding to fibrinogen-mimetic therapeutics. Nature 432, 59–67 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Campbell, I. D. & Humphries, M. J. Integrin structure, activation, and interactions. Cold Spring Harb. Perspect. Biol. 3, a004994 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  52. Li, J. et al. Conformational equilibria and intrinsic affinities define integrin activation. EMBO J. 36, 629–645 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Xiong, J.-P. et al. Crystal structure of the extracellular segment of integrin αVβ3. Science 294, 339–345 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Xiong, J.-P. et al. Crystal structure of the extracellular segment of integrin αVβ3 in complex with an Arg-Gly-Asp ligand. Science 296, 151–155 (2002).

    Article  CAS  PubMed  Google Scholar 

  55. Sun, Z., Costell, M. & Fässler, R. Integrin activation by talin, kindlin and mechanical forces. Nat. Cell Biol. 21, 25–31 (2019).

    Article  CAS  PubMed  Google Scholar 

  56. Shattil, S. J., Kim, C. & Ginsberg, M. H. The final steps of integrin activation: the end game. Nat. Rev. Mol. Cell Biol. 11, 288–300 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Calderwood, D. A., Campbell, I. D. & Critchley, D. R. Talins and kindlins: partners in integrin-mediated adhesion. Nat. Rev. Mol. Cell Biol. 14, 503–517 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Miyamoto, S., Teramoto, H., Gutkind, J. S. & Yamada, K. M. Integrins can collaborate with growth factors for phosphorylation of receptor tyrosine kinases and MAP kinase activation: roles of integrin aggregation and occupancy of receptors. J. Cell Biol. 135, 1633–1642 (1996).

    Article  CAS  PubMed  Google Scholar 

  59. Yamada, K. M. & Even-Ram, S. Integrin regulation of growth factor receptors. Nat. Cell Biol. 4, E75–E76 (2002).

    Article  CAS  PubMed  Google Scholar 

  60. Hynes, R. O. Integrins: versatility, modulation, and signaling in cell adhesion. Cell 69, 11–25 (1992).

    Article  CAS  PubMed  Google Scholar 

  61. Geiger, B., Bershadsky, A., Pankov, R. & Yamada, K. M. Transmembrane extracellular matrix — cytoskeleton crosstalk. Nat. Rev. Mol. Cell Biol. 2, 793–805 (2001).

    Article  CAS  PubMed  Google Scholar 

  62. Emsley, J., Knight, C. G., Farndale, R. W., Barnes, M. J. & Liddington, R. C. Structural basis of collagen recognition by integrin α2β1. Cell 101, 47–56 (2000).

    Article  CAS  PubMed  Google Scholar 

  63. Xu, Y. et al. Multiple binding sites in collagen type I for the integrins α1β1 and α2β1. J. Biol. Chem. 275, 38981–38989 (2000).

    Article  CAS  PubMed  Google Scholar 

  64. Akiyama, S. K., Yamada, S. S., Yamada, K. M. & LaFlamme, S. E. Transmembrane signal transduction by integrin cytoplasmic domains expressed in single-subunit chimeras. J. Biol. Chem. 269, 15961–15964 (1994).

    Article  CAS  PubMed  Google Scholar 

  65. Schaller, M. D. et al. Autophosphorylation of the focal adhesion kinase, pp125FAK, directs SH2-dependent binding of pp60src. Mol. Cell. Biol. 14, 1680–1688 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Hughes, P. E. & Pfaff, M. Integrin affinity modulation. Trends Cell Biol. 8, 359–364 (1998).

    Article  CAS  PubMed  Google Scholar 

  67. Ginsberg, M. H., Du, X. & Plow, E. F. Inside-out integrin signalling. Curr. Opin. Cell Biol. 4, 766–771 (1992).

    Article  CAS  PubMed  Google Scholar 

  68. Lee, J. O., Bankston, L. A., Robert, C. & Liddington, M. A. A. Two conformations of the integrin A-domain (I-domain): a pathway for activation? Structure 3, 1333–1340 (1995).

    Article  CAS  PubMed  Google Scholar 

  69. Lee, J. O., Rieu, P., Arnaout, M. A. & Liddington, R. Crystal structure of the A domain from the a subunit of integrin CR3 (CD11 b/CD18). Cell 80, 631–638 (1995).

    Article  CAS  PubMed  Google Scholar 

  70. Burridge, K. & Connell, L. A new protein of adhesion plaques and ruffling membranes. J. Cell Biol. 97, 359–367 (1983).

    Article  CAS  PubMed  Google Scholar 

  71. Tadokoro, S. et al. Talin binding to integrin β tails: a final common step in integrin activation. Science 302, 103–106 (2003).

    Article  CAS  PubMed  Google Scholar 

  72. Saltel, F. et al. New PI(4,5)P2- and membrane proximal integrin-binding motifs in the talin head control β3-integrin clustering. J. Cell Biol. 187, 715–731 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Chinthalapudi, K., Rangarajan, E. S. & Izard, T. The interaction of talin with the cell membrane is essential for integrin activation and focal adhesion formation. Proc. Natl Acad. Sci. USA 115, 10339–10344 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. O’Toole, T. E. et al. Integrin cytoplasmic domains mediate inside-out signal transduction. J. Cell Biol. 124, 1047–1059 (1994).

    Article  PubMed  Google Scholar 

  75. Anthis, N. J. et al. The structure of an integrin/talin complex reveals the basis of inside-out signal transduction. EMBO J. 28, 3623–3632 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Wegener, K. L. et al. Structural basis of integrin activation by talin. Cell 128, 171–182 (2007).

    Article  CAS  PubMed  Google Scholar 

  77. Kim, C., Ye, F., Hu, X. & Ginsberg, M. H. Talin activates integrins by altering the topology of the β transmembrane domain. J. Cell Biol. 197, 605–611 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Kim, M., Carman, C. V. & Springer, T. A. Bidirectional transmembrane signaling by cytoplasmic domain separation in integrins. Science 301, 1720–1725 (2003).

    Article  CAS  PubMed  Google Scholar 

  79. Aretz, J., Aziz, M., Strohmeyer, N., Sattler, M. & Fässler, R. Talin and kindlin use integrin tail allostery and direct binding to activate integrins. Nat. Struct. Mol. Biol. 30, 1913–1924 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Winograd-Katz, S. E., Fässler, R., Geiger, B. & Legate, K. R. The integrin adhesome: from genes and proteins to human disease. Nat. Rev. Mol. Cell Biol. 15, 273–288 (2014).

    Article  CAS  PubMed  Google Scholar 

  81. Kanchanawong, P. & Calderwood, D. A. Organization, dynamics and mechanoregulation of integrin-mediated cell–ECM adhesions. Nat. Rev. Mol. Cell Biol. 24, 142–161 (2023).

    Article  CAS  PubMed  Google Scholar 

  82. Clark, E. A. & Brugge, J. S. Integrins and signal transduction pathways: the road taken. Science 268, 233–239 (1995).

    Article  CAS  PubMed  Google Scholar 

  83. Zaidel-bar, R., Itzkovitz, S., Ma, A., Iyengar, R. & Geiger, B. Functional atlas of the integrin adhesome. Nat. Cell Biol. 9, 858–867 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Horton, E. R. et al. Definition of a consensus integrin adhesome and its dynamics during adhesion complex assembly and disassembly. Nat. Cell Biol. 17, 1577–1587 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Kanchanawong, P. et al. Nanoscale architecture of integrin-based cell adhesions. Nature 468, 580–584 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Tan, S. J. et al. Regulation and dynamics of force transmission at individual cell-matrix adhesion bonds. Sci. Adv. 6, eaax0317 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Liu, J. et al. Talin determines the nanoscale architecture of focal adhesions. Proc. Natl Acad. Sci. USA 112, E4864–E4873 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Friedland, J. C., Lee, M. H. & Boettiger, D. Mechanically activated integrin switch controls α5β1 function. Science 323, 642–644 (2009).

    Article  CAS  PubMed  Google Scholar 

  89. Liu, Y. J. et al. Differential transmission of actin motion within focal adhesions. Science 315, 111–115 (2007).

    Article  Google Scholar 

  90. Zhu, J. et al. Structure of a complete integrin ectodomain in a physiologic resting state and activation and deactivation by applied forces. Mol. Cell 32, 849–861 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Kong, F. et al. Cyclic mechanical reinforcement of integrin-ligand interactions. Mol. Cell 49, 1060–1068 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Geiger, B., Spatz, J. P. & Bershadsky, A. D. Environmental sensing through focal adhesions. Nat. Rev. Mol. Cell Biol. 10, 21–33 (2009).

    Article  CAS  PubMed  Google Scholar 

  93. Miyamoto, S. et al. Integrin function: molecular hierarchies of cytoskeletal and signaling molecules. J. Cell Biol. 131, 791–805 (1995).

    Article  CAS  PubMed  Google Scholar 

  94. Robertson, J. et al. Defining the phospho-adhesome through the phosphoproteomic analysis of integrin signalling. Nat. Commun. 6, 6265 (2015).

    Article  CAS  PubMed  Google Scholar 

  95. Kong, F., García, A. J., Mould, A. P., Humphries, M. J. & Zhu, C. Demonstration of catch bonds between an integrin and its ligand. J. Cell Biol. 185, 1275–1284 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Elosegui-Artola, A. et al. Mechanical regulation of a molecular clutch defines force transmission and transduction in response to matrix rigidity. Nat. Cell Biol. 18, 540–548 (2016).

    Article  CAS  PubMed  Google Scholar 

  97. Jiang, G., Giannone, G., Critchley, D. R., Fukumoto, E. & Sheet, M. P. Two-piconewton slip bond between fibronectin and the cytoskeleton depends on talin. Nature 424, 334–337 (2003).

    Article  CAS  PubMed  Google Scholar 

  98. Elosegui-Artola, A. et al. Force triggers YAP nuclear entry by regulating transport across nuclear pores. Cell 171, 1397–1410.e14 (2017).

    Article  CAS  PubMed  Google Scholar 

  99. Ling, K., Doughman, R. L., Firestone, A. J., Bunce, M. W. & Anderson, R. A. Type Iγ phosphatidylinositol phosphate kinase targets and regulates focal adhesions. Nature 420, 89–93 (2002).

    Article  CAS  PubMed  Google Scholar 

  100. Martel, V. et al. Conformation, localization, and integrin binding of talin depend on its interaction with phosphoinositides. J. Biol. Chem. 276, 21217–21227 (2001).

    Article  CAS  PubMed  Google Scholar 

  101. Wills, R. C. & Hammond, G. R. V. PI(4,5)P2: signaling the plasma membrane. Biochem. J. 479, 2311–2325 (2022).

    Article  CAS  PubMed  Google Scholar 

  102. Wood, S. T. et al. Cysteine-mediated redox regulation of cell signaling in chondrocytes stimulated with fibronectin fragments. Arthritis Rheumatol. 68, 117–126 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Khan, I. M. et al. The development of synovial joints. Curr. Top. Dev. Biol. 79, 1–36 (2007).

    Article  CAS  PubMed  Google Scholar 

  104. Gao, Y. et al. The ECM-cell interaction of cartilage extracellular matrix on chondrocytes. Biomed. Res. Int. 2014, 648459 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  105. Docheva, D., Popov, C., Alberton, P. & Aszodi, A. Integrin signaling in skeletal development and function. Birth Defects Res. C. Embryo Today 102, 13–36 (2014).

    Article  CAS  PubMed  Google Scholar 

  106. Ostergaard, K. et al. Expression of α and β subunits of the integrin superfamily in articular cartilage from macroscopically normal and osteoarthritic human femoral heads. Ann. Rheum. Dis. 57, 303–308 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Loeser, R. F., Carlson, C. S. & McGee, M. P. Expression of β1 integrins by cultured articular chondrocytes and in osteoarthritic cartilage. Exp. Cell Res. 217, 248–257 (1995).

    Article  CAS  PubMed  Google Scholar 

  108. Zemmyo, M., Meharra, E. J., Kühn, K., Creighton-Achermann, L. & Lotz, M. Accelerated, aging-dependent development of osteoarthritis in α1 integrin-deficient mice. Arthritis Rheum. 48, 2873–2880 (2003).

    Article  CAS  PubMed  Google Scholar 

  109. Hughes, D. E., Salter, D. M., Dedhar, S. & Simpson, R. Integrin expression in human bone. J. Bone Miner. Res. 8, 527–533 (1993).

    Article  CAS  PubMed  Google Scholar 

  110. Shekaran, A. & García, A. J. Extracellular matrix-mimetic adhesive biomaterials for bone repair. J. Biomed. Mater. Res. A 96, 261–272 (2011).

    Article  PubMed  Google Scholar 

  111. Gronthos, S., Stewart, K., Graves, S. E., Hay, S. & Simmons, P. J. Integrin expression and function on human osteoblast-like cells. J. Bone Miner. Res. 12, 1189–1197 (1997).

    Article  CAS  PubMed  Google Scholar 

  112. Duong, L. T., Lakkakorpi, P., Nakamura, I. & Rodan, G. A. Integrins and signaling in osteoclast function. Matrix Biol. 19, 97–105 (2000).

    Article  CAS  PubMed  Google Scholar 

  113. Prasadam, I. et al. Impact of extracellular matrix derived from osteoarthritis subchondral bone osteoblasts on osteocytes: role of integrin β1 and focal adhesion kinase signaling cues. Arthritis Res. Ther. 15, R150 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  114. Robinson, W. H. et al. Low-grade inflammation as a key mediator of the pathogenesis of osteoarthritis. Nat. Rev. Rheumatol. 12, 580–592 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Konttinen, Y. T. et al. Expression of laminins and their integrin receptors in different conditions of synovial membrane and synovial membrane-like interface tissue. Ann. Rheum. Dis. 58, 683–690 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Korkusuz, P., Dagdeviren, A., Eksioglu, F. & Ors, U. Immunohistological analysis of normal and osteoarthritic human synovial tissue. Bull. Hosp. Jt Dis. 63, 63–69 (2005).

    PubMed  Google Scholar 

  117. Rinaldi, N. et al. Increased expression of integrins on fibroblast-like synoviocytes from rheumatoid arthritis in vitro correlates with enhanced binding to extracellular matrix proteins. Ann. Rheum. Dis. 56, 45–51 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Shahrara, S., Castro-Rueda, H. P., Haines, G. K. & Koch, A. E. Differential expression of the FAK family kinases in rheumatoid arthritis and osteoarthritis synovial tissues. Arthritis Res. Ther. 9, R112 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  119. Schedel, J. et al. Differential adherence of osteoarthritis and rheumatoid arthritis synovial fibroblasts to cartilage and bone matrix proteins and its implication for osteoarthritis pathogenesis. Scand. J. Immunol. 60, 514–523 (2004).

    Article  CAS  PubMed  Google Scholar 

  120. Daley, W. P. & Yamada, K. M. ECM-modulated cellular dynamics as a driving force for tissue morphogenesis. Curr. Opin. Genet. Dev. 23, 408–414 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Cruz Walma, D. A. & Yamada, K. M. The extracellular matrix in development. Development 147, dev175596 (2020).

    Article  Google Scholar 

  122. Soul, J., Barter, M. J., Little, C. B. & Young, D. A. OATargets: a knowledge base of genes associated with osteoarthritis joint damage in animals. Ann. Rheum. Dis. 80, 376–383 (2021).

    Article  CAS  PubMed  Google Scholar 

  123. Fang, H. & Beier, F. Mouse models of osteoarthritis: modelling risk factors and assessing outcomes. Nat. Rev. Rheumatol. 10, 413–421 (2014).

    Article  PubMed  Google Scholar 

  124. Candela, M. E. et al. Alpha 5 integrin mediates osteoarthritic changes in mouse knee joints. PLoS ONE 11, e0156783 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  125. Bengtsson, T. et al. Loss of α10β1 integrin expression leads to moderate dysfunction of growth plate chondrocytes. J. Cell Sci. 118, 929–936 (2005).

    Article  CAS  PubMed  Google Scholar 

  126. Aszodi, A., Hunziker, E. B., Brakebusch, C. & Fässler, R. β1 integrins regulate chondrocyte rotation, G1 progression, and cytokinesis. Genes Dev. 17, 2465–2479 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Raducanu, A., Hunziker, E. B., Drosse, I. & Aszédi, A. β1 integrin deficiency results in multiple abnormalities of the knee joint. J. Biol. Chem. 284, 23780–23792 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Grashoff, C., Aszódi, A., Sakai, T., Hunziker, E. B. & Fässler, R. Integrin-linked kinase regulates chondrocyte shape and proliferation. EMBO Rep. 4, 432–438 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Terpstra, L. et al. Reduced chondrocyte proliferation and chondrodysplasia in mice lacking the integrin-linked kinase in chondrocytes. J. Cell Biol. 162, 139–148 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Qu, M. et al. Pip5k1c loss in chondrocytes causes spontaneous osteoarthritic lesions in aged mice. Aging Dis. 14, 502–514 (2023).

    PubMed  PubMed Central  Google Scholar 

  131. Wu, X. et al. Kindlin-2 preserves integrity of the articular cartilage to protect against osteoarthritis. Nat. Aging 2, 332–347 (2022).

    Article  CAS  PubMed  Google Scholar 

  132. Lai, Y. et al. Kindlin-2 loss in condylar chondrocytes causes spontaneous osteoarthritic lesions in the temporomandibular joint in mice. Int. J. Oral. Sci. 14, 33 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Wu, C. et al. Kindlin-2 controls TGF-β signalling and Sox9 expression to regulate chondrogenesis. Nat. Commun. 6, 7531 (2015).

    Article  PubMed  Google Scholar 

  134. Swingler, T. E. et al. Degradome expression profiling in human articular cartilage. Arthritis Res. Ther. 11, R96 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  135. Rydén, M. et al. Identification and quantification of degradome components in human synovial fluid reveals an increased proteolytic activity in knee osteoarthritis patients vs controls. Proteomics 23, e2300040 (2023).

    Article  PubMed  Google Scholar 

  136. Bhutada, S. et al. Forward and reverse degradomics defines the proteolytic landscape of human knee osteoarthritic cartilage and the role of the serine protease HtrA1. Osteoarthr. Cartil. 30, 1091–1102 (2022).

    Article  CAS  Google Scholar 

  137. Rapp, A. E. & Zaucke, F. Cartilage extracellular matrix-derived matrikines in osteoarthritis. Am. J. Physiol. Cell Physiol. 324, C377–C394 (2023).

    Article  CAS  PubMed  Google Scholar 

  138. Ricard-Blum, S. & Vallet, S. D. Fragments generated upon extracellular matrix remodeling: biological regulators and potential drugs. Matrix Biol. 75–76, 170–189 (2019).

    Article  PubMed  Google Scholar 

  139. Tuckwell, D. S., Ayad, S., Grant, M. E., Takigawa, M. & Humphries, M. J. Conformation dependence of integrin-type II collagen binding Inability of collagen peptides to support α2β1 binding, and mediation of adhesion to denatured collagen by a novel α5β1-fibronectin bridge. J. Cell Sci. 107, 993–1005 (1994).

    Article  CAS  PubMed  Google Scholar 

  140. Guilak, F. et al. The pericellular matrix as a transducer of biomechanical and biochemical signals in articular cartilage. Ann. N. Y. Acad. Sci. 1068, 498–512 (2006).

    Article  CAS  PubMed  Google Scholar 

  141. Wilusz, R. E., Sanchez-Adams, J. & Guilak, F. The structure and function of the pericellular matrix of articular cartilage. Matrix Biol. 39, 25–32 (2014).

    Article  CAS  PubMed  Google Scholar 

  142. Sparding, N. et al. Endotrophin, a collagen type VI-derived matrikine, reflects the degree of renal fibrosis in patients with IgA nephropathy and in patients with ANCA-associated vasculitis. Nephrol. Dial. Transplant. 37, 1099–1108 (2022).

    Article  CAS  PubMed  Google Scholar 

  143. Park, J. & Scherer, P. E. Adipocyte-derived endotrophin promotes malignant tumor progression. J. Clin. Invest. 122, 4243–4256 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Pankov, R. & Yamada, K. M. Fibronectin at a glance. J. Cell Sci. 115, 3861–3863 (2002).

    Article  CAS  PubMed  Google Scholar 

  145. Xie, D., Meyers, R. & Homandberg, G. A. Fibronectin fragments in osteoarthritic synovial fluid. J. Rheumatol. 19, 1448–1452 (1992).

    CAS  PubMed  Google Scholar 

  146. Homandberg, G. A., Wen, C. & Hui, F. Cartilage damaging activities of fibronectin fragments derived from cartilage and synovial fluid. Osteoarthr. Cartil. 6, 231–244 (1998).

    Article  CAS  Google Scholar 

  147. Barilla, M. L. & Carsons, S. E. Fibronectin fragments and their role in inflammatory arthritis. Semin. Arthritis Rheum. 29, 252–265 (2000).

    Article  CAS  PubMed  Google Scholar 

  148. Zack, M. D. et al. Identification of fibronectin neoepitopes present in human osteoarthritic cartilage. Arthritis Rheum. 54, 2912–2922 (2006).

    Article  CAS  PubMed  Google Scholar 

  149. Zhang, X., Chen, C. T., Bhargava, M. & Torzilli, P. A. A comparative study of fibronectin cleavage by MMP-1, -3, -13, and -14. Cartilage 3, 267–277 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  150. Zack, M. D. et al. ADAM-8 isolated from human osteoarthritic chondrocytes cleaves fibronectin at Ala271. Arthritis Rheum. 60, 2704–2713 (2009).

    Article  CAS  PubMed  Google Scholar 

  151. Sofat, N. Analysing the role of endogenous matrix molecules in the development of osteoarthritis. Int. J. Exp. Pathol. 90, 463–479 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Pérez-García, S. et al. Profile of matrix-remodeling proteinases in osteoarthritis: impact of fibronectin. Cells 9, 40 (2020).

    Article  Google Scholar 

  153. Homandberg, G. A., Costa, V. & Wen, C. Fibronectin fragments active in chondrocytic chondrolysis can be chemically cross-linked to the alpha5 integrin receptor subunit. Osteoarthr. Cartil. 10, 938–949 (2002).

    Article  CAS  Google Scholar 

  154. Midwood, K. S., Chiquet, M., Tucker, R. P. & Orend, G. Tenascin-C at a glance. J. Cell Sci. 129, 4321–4327 (2016).

    Article  CAS  PubMed  Google Scholar 

  155. Tucker, R. P. & Chiquet-Ehrismann, R. Tenascin-C: its functions as an integrin ligand. Int. J. Biochem. Cell Biol. 65, 165–168 (2015).

    Article  CAS  PubMed  Google Scholar 

  156. Chiquet-Ehrismann, R. & Tucker, R. P. Tenascins and the importance of adhesion modulation. Cold Spring Harb. Perspect. Biol. 3, a004960 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  157. Patel, L. et al. Tenascin-C induces inflammatory mediators and matrix degradation in osteoarthritic cartilage. BMC Musculoskelet. Disord. 12, 164 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Sofat, N. et al. Tenascin-C fragments are endogenous inducers of cartilage matrix degradation. Rheumatol. Int. 32, 2809–2817 (2012).

    Article  CAS  PubMed  Google Scholar 

  159. Hasegawa, M., Yoshida, T. & Sudo, A. Tenascin-C in osteoarthritis and rheumatoid arthritis. Front. Immunol. 11, 577015 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Hasegawa M et al. Tenascin-C concentration in synovial fluid correlates with radiographic progression of knee osteoarthritis. J. Rheumatol. 31, 2021–2026 (2004).

    PubMed  Google Scholar 

  161. Iozzo, R. V. & Schaefer, L. Proteoglycan form and function: a comprehensive nomenclature of proteoglycans. Matrix Biol. 42, 11–55 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Barreto, G. et al. Soluble biglycan: a potential mediator of cartilage degradation in osteoarthritis. Arthritis Res. Ther. 17, 379 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  163. Monfort, J. et al. Degradation of small leucine-rich repeat proteoglycans by matrix metalloprotease-13: identification of a new biglycan cleavage site. Arthritis Res. Ther. 8, R26 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  164. Zhen, E. Y. et al. Characterization of metalloprotease cleavage products of human articular cartilage. Arthritis Rheum. 58, 2420–2431 (2008).

    Article  CAS  PubMed  Google Scholar 

  165. Haglund, L. et al. Identification and characterization of the integrin α2β1 binding motif in chondroadherin mediating cell attachment. J. Biol. Chem. 286, 3925–3934 (2011).

    Article  CAS  PubMed  Google Scholar 

  166. Camper, L., Heinegård, D. & Lundgren-Åkerlund, E. Integrin α2β1 is a receptor for the cartilage matrix protein chondroadherin. J. Cell Biol. 138, 1159–1167 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Akhatib, B. et al. Chondroadherin fragmentation mediated by the protease HTRA1 distinguishes human intervertebral disc degeneration from normal aging. J. Biol. Chem. 288, 19280–19287 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Sengupta, S. et al. Differentiated glioma cell-derived fibromodulin activates integrin-dependent Notch signaling in endothelial cells to promote tumor angiogenesis and growth. eLife 11, e78972 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Acharya, C. et al. Cartilage oligomeric matrix protein and its binding partners in the cartilage extracellular matrix: interaction, regulation and role in chondrogenesis. Matrix Biol. 37, 102–111 (2014).

    Article  CAS  PubMed  Google Scholar 

  170. Lohmander, L. S., Saxne, T. & Heinegard, D. K. Release of cartilage oligomeric matrix protein (COMP) into joint fluid after knee injury and in osteoarthritis. Ann. Rheum. Dis. 53, 8–13 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Åhrman, E. et al. Novel cartilage oligomeric matrix protein (COMP) neoepitopes identified in synovial fluids from patients with joint diseases using affinity chromatography and mass spectrometry. J. Biol. Chem. 289, 20908–20916 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  172. Neidhart, M. et al. Small fragments of cartilage oligomeric matrix protein in synovial fluid and serum as markers for cartilage degradation. Br. J. Rheumatol. 36, 1151–1160 (1997).

    Article  CAS  PubMed  Google Scholar 

  173. Di Cesare, P. E. et al. Increased degradation and altered tissue distribution of cartilage oligomeric matrix protein in human rheumatoid and osteoarthritic cartilage. J. Orthop. Res. 14, 946–955 (1996).

    Article  PubMed  Google Scholar 

  174. Chen, F. H., Thomas, A. O., Hecht, J. T., Goldring, M. B. & Lawler, J. Cartilage oligomeric matrix protein/thrombospondin 5 supports chondrocyte attachment through interaction with integrins. J. Biol. Chem. 280, 32655–32661 (2005).

    Article  CAS  PubMed  Google Scholar 

  175. Kvansakul, M., Adams, J. C. & Hohenester, E. Structure of a thrombospondin C-terminal fragment reveals a novel calcium core in the type 3 repeats. EMBO J. 23, 1223–1233 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Ciregia, F. et al. Modulation of αVβ6 integrin in osteoarthritis-related synovitis and the interaction with VTN(381–397 a.a.) competing for TGF-β1 activation. Exp. Mol. Med. 53, 210–222 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Carsons, S. E. & Wolf, J. Interaction between synoviocytes and extracellular matrix in vitro. Ann. Rheum. Dis. 54, 413–416 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Forsyth, C. B., Pulai, J. & Loeser, R. F. Fibronectin fragments and blocking antibodies to α2β1 and α5β1 integrins stimulate mitogen-activated protein kinase signaling and increase collagenase 3 (matrix metalloproteinase 13) production by human articular chondrocytes. Arthritis Rheum. 46, 2368–2376 (2002).

    Article  CAS  PubMed  Google Scholar 

  179. Del Carlo, M., Schwartz, D., Erickson, E. A. & Loeser, R. F. Endogenous production of reactive oxygen species is required for stimulation of human articular chondrocyte matrix metalloproteinase production by fibronectin fragments. Free. Radic. Biol. Med. 42, 1350–1358 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  180. Pulai, J. I. et al. NF-κB mediates the stimulation of cytokine and chemokine expression by human articular chondrocytes in response to fibronectin fragments. J. Immunol. 174, 5781–5788 (2005).

    Article  CAS  PubMed  Google Scholar 

  181. Long, D. L., Willey, J. S. & Loeser, R. F. Rac1 is required for matrix metalloproteinase 13 production by chondrocytes in response to fibronectin fragments. Arthritis Rheum. 65, 1561–1568 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Loeser, R. F., Forsyth, C. B., Samarel, A. M. & Im, H. J. Fibronectin fragment activation of proline-rich tyrosine kinase PYK2 mediates integrin signals regulating collagenase-3 expression by human chondrocytes through a protein kinase C-dependent pathway. J. Biol. Chem. 278, 24577–24585 (2003).

    Article  CAS  PubMed  Google Scholar 

  183. Obara, M., Kang, M. S. & Yamada, K. M. Site-directed mutagenesis of the cell-binding domain of human fibronectin: separable, synergistic sites mediate adhesive function. Cell 53, 649–657 (1988).

    Article  CAS  PubMed  Google Scholar 

  184. Aota, S. I., Nomizu, M. & Yamada, K. M. The short amino acid sequence Pro-His-Ser-Arg-Asn in human fibronectin enhances cell-adhesive function. J. Biol. Chem. 269, 24756–24761 (1994).

    Article  CAS  PubMed  Google Scholar 

  185. Schumacher, S. et al. Structural insights into integrin α5β1 opening by fibronectin ligand. Sci. Adv. 7, eabe9716 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Reed, K. S. M. et al. Transcriptional response of human articular chondrocytes treated with fibronectin fragments: an in vitro model of the osteoarthritis phenotype. Osteoarthr. Cartil. 29, 235–247 (2021).

    Article  CAS  Google Scholar 

  187. Thulson, E. et al. 3D chromatin structure in chondrocytes identifies putative osteoarthritis risk genes. Genetics 222, iyac141 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  188. Sorkin, A. & Von Zastrow, M. Signal transduction and endocytosis: close encounters of many kinds. Nat. Rev. Mol. Cell Biol. 3, 600–614 (2002).

    Article  CAS  PubMed  Google Scholar 

  189. Sorkin, A. & Von Zastrow, M. Endocytosis and signalling: intertwining molecular networks. Nat. Rev. Mol. Cell Biol. 10, 609–622 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Willette, B. K. A., Zhang, J. F., Zhang, J. & Tsvetanova, N. G. Endosome positioning coordinates spatially selective GPCR signaling. Nat. Chem. Biol. 20, 151–161 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  191. Chen, Y. G. Endocytic regulation of TGF-β signaling. Cell Res. 19, 58–70 (2009).

    Article  PubMed  Google Scholar 

  192. Alanko, J. et al. Integrin endosomal signalling suppresses anoikis. Nat. Cell Biol. 17, 1412–1421 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Nader, G. P. F., Ezratty, E. J. & Gundersen, G. G. FAK, talin and PIPKIγ regulate endocytosed integrin activation to polarize focal adhesion assembly. Nat. Cell Biol. 18, 491–503 (2016).

    Article  CAS  PubMed  Google Scholar 

  194. Kechagia, J. Z., Ivaska, J. & Roca-Cusachs, P. Integrins as biomechanical sensors of the microenvironment. Nat. Rev. Mol. Cell Biol. 20, 457–473 (2019).

    Article  CAS  PubMed  Google Scholar 

  195. Caswell, P. T., Vadrevu, S. & Norman, J. C. Integrins: masters and slaves of endocytic transport. Nat. Rev. Mol. Cell Biol. 10, 843–853 (2009).

    Article  CAS  PubMed  Google Scholar 

  196. Sies, H. et al. Defining roles of specific reactive oxygen species (ROS) in cell biology and physiology. Nat. Rev. Mol. Cell Biol. 23, 499–515 (2022).

    Article  CAS  PubMed  Google Scholar 

  197. Sies, H. Hydrogen peroxide as a central redox signaling molecule in physiological oxidative stress: oxidative eustress. Redox Biol. 11, 613–619 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Sies, H. & Jones, D. P. Reactive oxygen species (ROS) as pleiotropic physiological signalling agents. Nat. Rev. Mol. Cell Biol. 21, 363–383 (2020).

    Article  CAS  PubMed  Google Scholar 

  199. Oakley, F. D., Abbott, D., Li, Q. & Engelhardt, J. F. Signaling components of redox active endosomes: the redoxosomes. Antioxid. Redox Signal. 11, 1313–1333 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Withofs, N. et al. 18F-FPRGD2 PET/CT imaging of musculoskeletal disorders. Ann. Nucl. Med. 29, 839–847 (2015).

    Article  CAS  PubMed  Google Scholar 

  201. Charlier, E. et al. Toward diagnostic relevance of the αVβ5, αVβ3, and αVβ6 integrins in OA: expression within human cartilage and spinal osteophytes. Bone Res. 8, 35 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Hua, Q., Knudson, C. B. & Knudson, W. Internalization of hyaluronan by chondrocytes occurs via receptor-mediated endocytosis. J. Cell Sci. 106, 365–375 (1993).

    Article  CAS  PubMed  Google Scholar 

  203. Embry, J. J. & Knudson, W. G1 domain of aggrecan cointernalizes with hyaluronan via a CD44-mediated mechanism in bovine articular chondrocytes. Arthritis Rheum. 48, 3431–3441 (2003).

    Article  CAS  PubMed  Google Scholar 

  204. Silverstein, A. M. et al. Toward understanding the role of cartilage particulates in synovial inflammation. Osteoarthr. Cartil. 25, 1353–1361 (2017).

    Article  CAS  Google Scholar 

  205. Zhen, G. et al. Mechanical stress determines the configuration of TGFβ activation in articular cartilage. Nat. Commun. 12, 1–16 (2021).

    Article  Google Scholar 

  206. Wang, Q. et al. Dysregulated integrin aVβ3 and CD47 signaling promotes joint inflammation, cartilage breakdown, and progression of osteoarthritis. JCI Insight 4, 1706 (2019).

    Article  Google Scholar 

  207. Li, K. et al. Tyrosine kinase Fyn promotes osteoarthritis by activating the β-catenin pathway. Ann. Rheum. Dis. 77, 935–943 (2018).

    CAS  PubMed  Google Scholar 

  208. Sumsuzzman, D. M., Khan, Z. A., Choi, J. & Hong, Y. Assessment of functional roles and therapeutic potential of integrin receptors in osteoarthritis: a systematic review and meta-analysis of preclinical studies. Ageing Res. Rev. 81, 101729 (2022).

    Article  CAS  PubMed  Google Scholar 

  209. Maylin, A. B. et al. Genetic abrogation of the fibronectin-α5β1 integrin interaction in articular cartilage aggravates osteoarthritis in mice. PLoS ONE 13, e0198559 (2018).

    Article  Google Scholar 

  210. Song, F. et al. Integrin αVβ3 signaling in the progression of osteoarthritis induced by excessive mechanical stress. Inflammation 46, 739–751 (2023).

    Article  CAS  PubMed  Google Scholar 

  211. Lian, C. et al. Collagen type II suppresses articular chondrocyte hypertrophy and osteoarthritis progression by promoting integrin β1−SMAD1 interaction. Bone Res 7, 8 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  212. St Amant, J. et al. Depleting transforming growth factor beta receptor 2 signalling in the cartilage of itga1-null mice attenuates spontaneous knee osteoarthritis. Osteoarthr. Cartil. Open. 5, 100399 (2023).

    Article  Google Scholar 

  213. Shin, S. Y., Pozzi, A., Boyd, S. K. & Clark, A. L. Integrin α1β1 protects against signs of post-traumatic osteoarthritis in the female murine knee partially via regulation of epidermal growth factor receptor signalling. Osteoarthr. Cartil. 24, 1795–1806 (2016).

    Article  CAS  Google Scholar 

  214. Cui, Z. et al. Endothelial PDGF-BB/PDGFR-β signaling promotes osteoarthritis by enhancing angiogenesis-dependent abnormal subchondral bone formation. Bone Res 10, 58 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  215. Li, T. et al. TGF-β type 2 receptor-mediated modulation of the IL-36 family can be therapeutically targeted in osteoarthritis. Sci. Transl. Med. 11, eaan2585 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  216. Tetsunaga, T. et al. Mechanical stretch stimulates integrin αVβ3-mediated collagen expression in human anterior cruciate ligament cells. J. Biomech. 42, 2097–2103 (2009).

    Article  PubMed  Google Scholar 

  217. Mousavizadeh, R. et al. β1 integrin, ILK and mTOR regulate collagen synthesis in mechanically loaded tendon cells. Sci. Rep. 10, 12644 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  218. Wang, D. et al. Tendon-derived extracellular matrix induces mesenchymal stem cell tenogenesis via an integrin/transforming growth factor-β crosstalk-mediated mechanism. FASEB J. 34, 8172–8186 (2020).

    Article  CAS  PubMed  Google Scholar 

  219. Moffat, K. L. et al. Characterization of the structure-function relationship at the ligament-to-bone interface. Proc. Natl Acad. Sci. USA 105, 7947–7952 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  220. Fleming, B. C., Hulstyn, M. J., Oksendahl, H. L. & Fadale, P. D. Ligament injury, reconstruction and osteoarthritis. Curr. Opin. Orthop. 16, 354–362 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  221. Dai, B. et al. Blockage of osteopontin-integrin β3 signaling in infrapatellar fat pad attenuates osteoarthritis in mice. Adv. Sci. 10, e2300897 (2023).

    Article  Google Scholar 

  222. Song, E. K. et al. ITGBL1 modulates integrin activity to promote cartilage formation and protect against arthritis. Sci. Transl. Med. 10, eaam7486 (2018).

    Article  PubMed  Google Scholar 

  223. Delco, M. L. et al. Integrin α10β1-selected mesenchymal stem cells mitigate the progression of osteoarthritis in an equine talar impact model. Am. J. Sports Med. 48, 612–623 (2020).

    Article  PubMed  Google Scholar 

  224. Andersen, C. et al. Human integrin α10β1-selected mesenchymal stem cells home to cartilage defects in the rabbit knee and assume a chondrocyte-like phenotype. Stem Cell Res. Ther. 13, 206 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  225. Coller, B. S. et al. Monoclonal antibodies to platelet glycoprotein IIb/IIIa as antithrombotic agents. Ann. N. Y. Acad. Sci. 614, 193–213 (1991).

    Article  CAS  PubMed  Google Scholar 

  226. De Luca, G. et al. Abciximab as adjunctive therapy to reperfusion in acute ST-segment elevation myocardial infarction: a meta-analysis of randomized trials. J. Am. Med. Assoc. 293, 1759–1765 (2005).

    Article  Google Scholar 

  227. Slack, R. J., Macdonald, S. J. F., Roper, J. A., Jenkins, R. G. & Hatley, R. J. D. Emerging therapeutic opportunities for integrin inhibitors. Nat. Rev. Drug Discov. 21, 60–78 (2022).

    Article  CAS  PubMed  Google Scholar 

  228. Pang, X. et al. Targeting integrin pathways: mechanisms and advances in therapy. Signal Transduct. Target. Ther. 8, 1 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  229. Desgrosellier, J. S. & Cheresh, D. A. Integrins in cancer: biological implications and therapeutic opportunities. Nat. Rev. Cancer 10, 9–22 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  230. Stupp, R. et al. Cilengitide combined with standard treatment for patients with newly diagnosed glioblastoma with methylated MGMT promoter (CENTRIC EORTC 26071-22072 study): a multicentre, randomised, open-label, phase 3 trial. Lancet Oncol. 15, 1100–1108 (2014).

    Article  CAS  PubMed  Google Scholar 

  231. Cox, D., Brennan, M. & Moran, N. Integrins as therapeutic targets: lessons and opportunities. Nat. Rev. Drug Discov. 9, 804–820 (2010).

    Article  CAS  PubMed  Google Scholar 

  232. Cox, D. How not to discover a drug - integrins. Expert Opin. Drug Discov. 16, 197–211 (2021).

    Article  CAS  PubMed  Google Scholar 

  233. Saraswathibhatla, A., Indana, D. & Chaudhuri, O. Cell–extracellular matrix mechanotransduction in 3D. Nat. Rev. Mol. Cell Biol. 24, 495–516 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  234. Schäfer, N. & Grässel, S. Targeted therapy for osteoarthritis: progress and pitfalls. Nat. Med. 28, 2473–2475 (2022).

    Article  PubMed  Google Scholar 

  235. Chevalier, X. Fibronectin, cartilage, and osteoarthritis. Semin. Arthritis Rheum. 22, 307–318 (1993).

    Article  CAS  PubMed  Google Scholar 

  236. Johnson, K. et al. A stem cell-based approach to cartilage repair. Science 336, 717–721 (2012).

    Article  CAS  PubMed  Google Scholar 

  237. Karsdal, M. A. et al. Reflections from the OARSI 2022 clinical trials symposium: the pain of OA — deconstruction of pain and patient-reported outcome measures for the benefit of patients and clinical trial design. Osteoarthr. Cartil. 31, 1293–1302 (2023).

    Article  CAS  Google Scholar 

  238. Syx, D., Tran, P. B., Miller, R. E. & Malfait, A. M. Peripheral mechanisms contributing to osteoarthritis pain. Curr. Rheumatol. Rep. 20, 9 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  239. Zhu, S. et al. Subchondral bone osteoclasts induce sensory innervation and osteoarthritis pain. J. Clin. Invest. 129, 1076–1093 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  240. Sroka, I. C. et al. The laminin binding integrin α6β1 in prostate cancer perineural invasion. J. Cell. Physiol. 224, 283–288 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  241. Lefèvre, S. et al. Synovial fibroblasts spread rheumatoid arthritis to unaffected joints. Nat. Med. 15, 1414–1420 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  242. Lowin, T. & Straub, R. H. Integrins and their ligands in rheumatoid arthritis. Arthritis Res. Ther. 13, 244 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  243. Sharma, L. Osteoarthritis of the knee. N. Engl. J. Med. 384, 51–59 (2021).

    Article  CAS  PubMed  Google Scholar 

  244. Deveza, L. A. et al. Phenotypes of osteoarthritis - current state and future implications. Clin. Exp. Rheumatol. 37, 64–72 (2019).

    PubMed  PubMed Central  Google Scholar 

  245. Hamidi, H. & Ivaska, J. Every step of the way: integrins in cancer progression and metastasis. Nat. Rev. Cancer 18, 533–548 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  246. Boer, C. G. et al. Deciphering osteoarthritis genetics across 826,690 individuals from 9 populations. Cell 184, 4784–4818.e17 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  247. Zengini, E. et al. Genome-wide analyses using UK Biobank data provide insights into the genetic architecture of osteoarthritis. Nat. Genet. 50, 549–558 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  248. Nelson, M. R. et al. The support of human genetic evidence for approved drug indications. Nat. Genet. 47, 856–860 (2015).

    Article  CAS  PubMed  Google Scholar 

  249. Namba, S., Konuma, T., Wu, K. H., Zhou, W. & Okada, Y. A practical guideline of genomics-driven drug discovery in the era of global biobank meta-analysis. Cell Genomics 2, 100190 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  250. Reay, W. R. & Cairns, M. J. Advancing the use of genome-wide association studies for drug repurposing. Nat. Rev. Genet. 22, 658–671 (2021).

    Article  CAS  PubMed  Google Scholar 

  251. Kang, H. et al. PharmGWAS: a GWAS-based knowledgebase for drug repurposing. Nucleic Acids Res. 52, D972–D979 (2024).

    Article  PubMed  Google Scholar 

  252. Giacomini, K. M. et al. Genome-wide association studies of drug response and toxicity: an opportunity for genome medicine. Nat. Rev. Drug Discov. 16, 1 (2016).

    PubMed  PubMed Central  Google Scholar 

  253. Moffat, J. G., Vincent, F., Lee, J. A., Eder, J. & Prunotto, M. Opportunities and challenges in phenotypic drug discovery: an industry perspective. Nat. Rev. Drug Discov. 16, 531–543 (2017).

    Article  CAS  PubMed  Google Scholar 

  254. Schermelleh, L. et al. Super-resolution microscopy demystified. Nat. Cell Biol. 21, 72–84 (2019).

    Article  CAS  PubMed  Google Scholar 

  255. Balzarotti, F. et al. Nanometer resolution imaging and tracking of fluorescent molecules with minimal photon fluxes. Science 355, 606–612 (2017).

    Article  CAS  PubMed  Google Scholar 

  256. Huet-Calderwood, C. et al. Novel ecto-tagged integrins reveal their trafficking in live cells. Nat. Commun. 8, 570 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  257. Tsunoyama, T. A. et al. Super-long single-molecule tracking reveals dynamic-anchorage-induced integrin function. Nat. Chem. Biol. 14, 497–506 (2018).

    Article  CAS  PubMed  Google Scholar 

  258. Branon, T. C. et al. Efficient proximity labeling in living cells and organisms with TurboID. Nat. Biotechnol. 36, 880–898 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  259. Liu, X., Salokas, K., Weldatsadik, R. G., Gawriyski, L. & Varjosalo, M. Combined proximity labeling and affinity purification−mass spectrometry workflow for mapping and visualizing protein interaction networks. Nat. Protoc. 15, 3182–3211 (2020).

    Article  CAS  PubMed  Google Scholar 

  260. Witze, E. S., Old, W. M., Resing, K. A. & Ahn, N. G. Mapping protein post-translational modifications with mass spectrometry. Nat. Methods 4, 798–806 (2007).

    Article  CAS  PubMed  Google Scholar 

  261. Smith, L. M. et al. The human proteoform project: defining the human proteome. Sci. Adv. 7, eabk0734 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  262. Cukierman, E., Pankov, R., Stevens, D. R. & Yamada, K. M. Taking cell-matrix adhesions to the third dimension. Science 294, 1708–1712 (2001).

    Article  CAS  PubMed  Google Scholar 

  263. Paggi, C. A., Teixeira, L. M., Le Gac, S. & Karperien, M. Joint-on-chip platforms: entering a new era of in vitro models for arthritis. Nat. Rev. Rheumatol. 18, 217–231 (2022).

    Article  PubMed  Google Scholar 

  264. Li, Z. A. et al. Synovial joint-on-a-chip for modeling arthritis: progress, pitfalls, and potential. Trends Biotechnol. 41, 511–527 (2023).

    Article  CAS  PubMed  Google Scholar 

  265. Smith, M. H. et al. Drivers of heterogeneity in synovial fibroblasts in rheumatoid arthritis. Nat. Immunol. 24, 1200–1210 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  266. Griffith, L. G. & Swartz, M. A. Capturing complex 3D tissue physiology in vitro. Nat. Rev. Mol. Cell Biol. 7, 211–224 (2006).

    Article  CAS  PubMed  Google Scholar 

  267. Kholodenko, B. N. Cell-signalling dynamics in time and space. Nat. Rev. Mol. Cell Biol. 7, 165–176 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  268. Dwivedi-Agnihotri, H. et al. Distinct phosphorylation sites in a prototypical GPCR differently orchestrate β-arrestin interaction, trafficking, and signaling. Sci. Adv. 6, eabb8368 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  269. Moreno-Layseca, P. et al. Cargo-specific recruitment in clathrin- and dynamin-independent endocytosis. Nat. Cell Biol. 23, 1073–1084 (2021).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by National Institute of Arthritis, Musculoskeletal, and Skin Diseases R37 AR049003 (to R.F.L.); Intramural Research Program of the NIH, NIDCR ZIA DE000719 (to K.M.Y.); ZIA DE000746 (to J.S.L.); and ZIE DE000727 (training support to M.Z.M.).

Author information

Authors and Affiliations

Authors

Contributions

All authors made a substantial contribution to discussion of the content, wrote the article and reviewed and/or edited the manuscript before submission.

Corresponding authors

Correspondence to Kenneth M. Yamada or Richard F. Loeser.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Rheumatology thanks Yusheng Li, Mary Goldring and the other, anonymous, reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

ClinicalTrials.gov: https://clinicaltrials.gov

Glossary

Arg–Gly–Asp

(RGD). A tripeptide motif that acts as an integrin binding site in extracellular matrix proteins such as fibronectin.

Catch and slip bonds

Catch bonds in integrins strengthen under force, exhibiting increased bond lifetime, whereas slip bonds weaken with force, showing shorter lifetimes. This occurs within specific force ranges. Focal adhesions may contain both catch and slip bonds.

Damage-associated molecular patterns

(DAMPs). Also known as danger signals or alarmins, DAMPs are endogenous stimuli released from the extracellular matrix or injured or stressed cells that initiate or exacerbate the inflammatory response by engaging various pattern recognition receptors. These receptors include membrane-bound Toll-like receptors, C-type lectin receptors, cytoplasmic NOD-like receptors, retinoic acid-inducible gene I (RIG-I)-like receptors and multiple DNA sensors.

Disease-modifying osteoarthritis drugs

(DMOADs). Pharmacological agents that modify the OA disease process by delaying or reversing joint structural damage and improve symptoms.

Endochondral ossification

Process of bone formation, vital for skeletal growth, whereby embryonic cartilage serves as a scaffold, as cartilage is gradually replaced by bone tissue through hypertrophic differentiation, followed by vascular invasion and cartilage matrix degradation, ultimately converting avascular cartilage into vascularized bone.

Fibronectin fragments

(FN-fs). In osteoarthritis (OA), fibronectin undergoes degradation yielding FN-fs in cartilage and synovial fluid at concentrations of ~1 µM in OA synovial fluids. These fragments trigger signal transduction through receptors that include the α5β1 integrin, activating pro-inflammatory and pro-catabolic responses.

Focal adhesion

An integrin adhesion complex comprising three layers: integrin signalling, force transduction and actin regulatory layers. These dynamic organelles mediate cell–extracellular matrix adhesion and mechanotransduction, as well as generating and relaying signals from the cell surface. Talin spans all three layers, and its unfolding facilitates adhesion maturation. Focal adhesions can evolve into elongated fibrillar adhesions.

Inside-in signalling

This variation of integrin signalling occurs when active integrins, signalling complexes and extracellular matrix ligands within endosomes trigger intracytoplasmic signals separately from membrane adhesion sites.

Integrin activation

Structural change in integrin conformation that involves a stepwise transition from a closed to an extended conformation, driven by inside-out or outside-in interactions. Activation enables engagement with the extracellular matrix and cytoskeleton, facilitating signalling events.

Integrin adhesion complex

Activated integrin receptors binding to extracellular matrix ligands initiate this dynamic signalling platform of molecules, transitioning from small, short-lived nascent adhesions to larger, stable focal adhesions. This allows cells to finely tune responses to their surroundings.

Integrin-mediated mechanotransduction

A cellular process in which integrins sense and respond to extracellular biophysical or mechanical cues via integrin-based adhesion, transducing intracellular signalling that influences cellular phenotypes integral to maintaining cartilage integrity and joint homeostasis, with aberrant loading in this process contributing to osteoarthritis pathology.

Integrin trafficking

Integrins are constantly trafficked within cells. Dynamic trafficking, using clathrin-dependent and independent pathways, regulates integrin–extracellular matrix (ECM) interactions, which can impact cellular signalling and ECM remodelling, for example, of fibronectin.

Joint-on-a-chip platforms

Multi-tissue platforms that accommodate human joint tissue cells or tissue explants connected via microfluidic coupling for ex vivo studies. This would include various combinations of cells representing cartilage, meniscus, synovium, bone, fat or other joint tissues such as ligaments.

Matrikines

Bioactive peptides derived from enzymatic or chemical cleavage of larger extracellular matrix macromolecules. They act as signalling molecules, transmitting physiological or pathological signals to cells via a cell surface receptor. Signalling outcomes are often distinct from those of the full-sized parent matrix.

Reactive oxygen species

(ROS). Includes molecules such as superoxide and hydrogen peroxide (H2O2). H2O2 serves as a second messenger to regulate cell signalling through reversible oxidation of protein cysteine residues. The NADPH oxidase family is a key ROS generator and has a major role in redox signalling.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Miao, M.Z., Lee, J.S., Yamada, K.M. et al. Integrin signalling in joint development, homeostasis and osteoarthritis. Nat Rev Rheumatol 20, 492–509 (2024). https://doi.org/10.1038/s41584-024-01130-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41584-024-01130-8

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing