Abstract
Joint kinematic instability, arising from congenital or acquired musculoskeletal pathoanatomy or from imbalances in anabolism and catabolism induced by pathophysiological factors, leads to deterioration of the composition, structure and function of cartilage and, ultimately, progression to osteoarthritis (OA). Alongside articular cartilage degeneration, synovial fluid lubricity decreases in OA owing to a reduction in the concentration and molecular weight of hyaluronic acid and surface-active mucinous glycoproteins that form a lubricating film over the articulating joint surfaces. Minimizing friction between articulating joint surfaces by lubrication is fundamental for decreasing hyaline cartilage wear and for maintaining the function of synovial joints. Augmentation with highly viscous supplements (that is, viscosupplementation) offers one approach to re-establishing the rheological and tribological properties of synovial fluid in OA. However, this approach has varied clinical outcomes owing to limited intra-articular residence time and ineffective mechanisms of chondroprotection. This Review discusses normal hyaline cartilage function and lubrication and examines the advantages and disadvantages of various strategies for restoring normal joint lubrication. These strategies include contemporary viscosupplements that contain antioxidants, anti-inflammatory drugs or platelet-rich plasma and new synthetic synovial fluid additives and cartilage matrix enhancers. Advanced biomimetic tribosupplements offer promise for mitigating cartilage wear, restoring joint function and, ultimately, improving patient care.
Key points
-
In osteoarthritis, compositional changes to the synovial fluid reduce the lubricating ability of the joint and can lead to propagation of cartilage wear.
-
Clinically approved viscosupplements are aimed at restoring synovial fluid lubricity and reducing the inflammatory response, but their efficacy remains nebulous.
-
Enhanced viscosupplements combine sodium hyaluronate with additional materials (such as glucocorticoids and antioxidants) that target specific aspects of osteoarthritis, but the benefits of these additions seem minimal.
-
Tribosupplementation, the delivery of non-hyaluronan-based lubricants to the joint, shows some promise but is largely in the preclinical stages of development; this approach includes fluid additives and matrix enhancers.
-
Fluid additives are cartilage lubricants (with a linear, hydrogel or particle structure) that remain suspended in the synovial fluid following intraarticular injection and comprise linear, hydrogel and particle structures.
-
Matrix enhancers are cartilage lubricants (with a linear, hydrogel or particle structure) that, in addition to containing a lubricious domain, contain a domain that binds to the cartilage surface.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 print issues and online access
$209.00 per year
only $17.42 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
Long, H. et al. Prevalence trends of site-specific osteoarthritis from 1990 to 2019: findings from the Global Burden of Disease Study 2019. Arthritis Rheumatol. 74, 1172–1183 (2022).
Hootman, J. M., Helmick, C. G., Barbour, K. E., Theis, K. A. & Boring, M. A. Updated projected prevalence of self-reported doctor-diagnosed arthritis and arthritis-attributable activity limitation among US adults, 2015–2040. Arthritis Rheumatol. 68, 1582–1587 (2016).
Arden, N. K. et al. Non-surgical management of knee osteoarthritis: comparison of ESCEO and OARSI 2019 guidelines. Nat. Rev. Rheumatol. 17, 59–66 (2021).
Bijlsma, J. W. J., Berenbaum, F. & Lafeber, F. P. J. G. Osteoarthritis: an update with relevance for clinical practice. Lancet 377, 2115–2126 (2011).
Sinusas, K. Osteoarthritis: diagnosis and treatment. Am. Fam. Physician 85, 49–56 (2012).
Maudens, P., Jordan, O. & Allémann, E. Recent advances in intra-articular drug delivery systems for osteoarthritis therapy. Drug. Discov. Today 23, 1761–1775 (2018).
Balazs, E. A. & Denlinger, J. L. Viscosupplementation: a new concept in the treatment of osteoarthritis. J. Rheumatol. Suppl. 39, 3–9 (1993).
Legré-Boyer, V. Viscosupplementation: techniques, indications, results. Orthop. Traumatol. Surg. Res. 101, S101–S108 (2015).
Venn, M. & Maroudas, A. Chemical composition and swelling of normal and osteoarthrotic femoral head cartilage. I. Chemical composition. Ann. Rheum. Dis. 36, 121–129 (1977).
Sophia Fox, A. J., Bedi, A. & Rodeo, S. A. The basic science of articular cartilage: structure, composition, and function. Sports Health 1, 461–468 (2009).
Carballo, C. B., Nakagawa, Y., Sekiya, I. & Rodeo, S. A. Basic science of articular cartilage. Clin. Sports Med. 36, 413–425 (2017).
Chen, S. S., Falcovitz, Y. H., Schneiderman, R., Maroudas, A. & Sah, R. L. Depth-dependent compressive properties of normal aged human femoral head articular cartilage: relationship to fixed charge density. Osteoarthritis Cartilage 9, 561–569 (2001).
Ateshian, G. A. The role of interstitial fluid pressurization in articular cartilage lubrication. J. Biomech. 42, 1163–1176 (2009).
Mäkelä, J. T. A., Han, S. K., Herzog, W. & Korhonen, R. K. Very early osteoarthritis changes sensitively fluid flow properties of articular cartilage. J. Biomech. 48, 3369–3376 (2015).
Park, S., Krishnan, R., Nicoll, S. B. & Ateshian, G. A. Cartilage interstitial fluid load support in unconfined compression. J. Biomech. 36, 1785–1796 (2003).
Mansour, J. M. & Mow, V. C. The permeability of articular cartilage under compressive strain and at high pressures. J. Bone Joint Surg. Am. 58, 509–516 (1976).
Krishnan, R., Kopacz, M. & Ateshian, G. A. Experimental verification of the role of interstitial fluid pressurization in cartilage lubrication. J. Orthop. Res. 22, 565–570 (2004).
McCutchen, C. W. The frictional properties of animal joints. Wear 5, 1–17 (1962).
Radin, E. L., Paul, I. L., Swann, D. A. & Schottstaedt, E. S. Lubrication of synovial membrane. Ann. Rheum. Dis. 30, 322 (1971).
Ateshian, G. A. & Wang, H. Rolling resistance of articular cartilage due to interstitial fluid flow. Proc. Inst. Mech. Eng. H 211, 419–424 (2016).
Walker, P. S., Dowson, D., Longfield, M. D. & Wright, V. Lubrication of human joints. Ann. Rheum. Dis. 28, 194 (1969).
Ludwig, T. E., Hunter, M. M. & Schmidt, T. A. Cartilage boundary lubrication synergism is mediated by hyaluronan concentration and PRG4 concentration and structure. BMC Musculoskelet. Disord. 16, 386 (2015).
Bonnevie, E. D., Galesso, D., Secchieri, C., Cohen, I. & Bonassar, L. J. Elastoviscous transitions of articular cartilage reveal a mechanism of synergy between lubricin and hyaluronic acid. PLoS One 10, e0143415 (2015).
Greene, G. W. et al. Adaptive mechanically controlled lubrication mechanism found in articular joints. Proc. Natl Acad. Sci. USA 108, 5255–5259 (2011).
Seror, J., Zhu, L., Goldberg, R., Day, A. J. & Klein, J. Supramolecular synergy in the boundary lubrication of synovial joints. Nat. Commun. 2015 61(6), 1–7 (2015).
Jahn, S. & Klein, J. Hydration lubrication: the macromolecular domain. Macromolecules 48, 5059–5075 (2015).
Oungoulian, S. R. et al. Articular cartilage wear characterization with a particle sizing and counting analyzer. J. Biomech. Eng. 135, 024501 (2013).
Workman, J., Thambyah, A. & Broom, N. The influence of early degenerative changes on the vulnerability of articular cartilage to impact-induced injury. Clin. Biomech. 43, 40–49 (2017).
Steinmeyer, J., Knue, S., Raiss, R. X. & Pelzer, I. Effects of intermittently applied cyclic loading on proteoglycan metabolism and swelling behaviour of articular cartilage explants. Osteoarthritis Cartilage 7, 155–164 (1999).
Hossain, M. J. et al. Anisotropic properties of articular cartilage in an accelerated in vitro wear test. J. Mech. Behav. Biomed. Mater. 109, 103834 (2020).
Santos, S., Emery, N., Neu, C. P. & Pierce, D. M. Propagation of microcracks in collagen networks of cartilage under mechanical loads. Osteoarthritis Cartilage 27, 1392–1402 (2019).
McNulty, A. L., Rothfusz, N. E., Leddy, H. A. & Guilak, F. Synovial fluid concentrations and relative potency of interleukin-1 alpha and beta in cartilage and meniscus degradation. J. Orthop. Res. 31, 1039–1045 (2013).
Berg, W. B., van den, Loo, F. A., van de, Zwarts, W. A. & Otterness, I. G. Effects of murine recombinant interleukin 1 on intact homologous articular cartilage: a quantitative and autoradiographic study. Ann. Rheum. Dis. 47, 855 LP–855863 (1988).
Fam, H., Bryant, J. T. & Kontopoulou, M. Rheological properties of synovial fluids. Biorheology 44, 59–74 (2007).
Elsaid, K. A., Jay, G. D., Warman, M. L., Rhee, D. K. & Chichester, C. O. Association of articular cartilage degradation and loss of boundary-lubricating ability of synovial fluid following injury and inflammatory arthritis. Arthritis Rheum. 52, 1746–1755 (2005).
Elsaid, K. A. et al. Decreased lubricin concentrations and markers of joint inflammation in the synovial fluid of patients with anterior cruciate ligament injury. Arthritis Rheum. 58, 1707–1715 (2008).
Ludwig, T. E., McAllister, J. R., Lun, V., Wiley, J. P. & Schmidt, T. A. Diminished cartilage-lubricating ability of human osteoarthritic synovial fluid deficient in proteoglycan 4: restoration through proteoglycan 4 supplementation. Arthritis Rheum. 64, 3963–3971 (2012).
Watkins, A. R. & Reesink, H. L. Lubricin in experimental and naturally occurring osteoarthritis: a systematic review. Osteoarthritis Cartilage 28, 1303–1315 (2020).
Bonnevie, E. D. & Bonassar, L. J. A century of cartilage tribology research is informing lubrication therapies. J. Biomech. Eng. 142, 031004 (2020).
Lin, W. & Klein, J. Recent progress in cartilage lubrication. Adv. Mater. 33, 2005513 (2021).
Stribeck, R. Kugellager Für Beliebige Belastungen (Buchdruckerei AW Schade, 1901).
Mori, S., Naito, M. & Moriyama, S. Highly viscous sodium hyaluronate and joint lubrication. Int. Orthop. 26, 116–121 (2002).
Gleghorn, J. P. & Bonassar, L. J. Lubrication mode analysis of articular cartilage using Stribeck surfaces. J. Biomech. 41, 1910–1918 (2008).
Bonnevie, E. D., Galesso, D., Secchieri, C. & Bonassar, L. J. Frictional characterization of injectable hyaluronic acids is more predictive of clinical outcomes than traditional rheological or viscoelastic characterization. PLoS One 14, e0216702 (2019).
Lewis, P. R. & McCutchen, C. W. Mechanism of animal joints: experimental evidence for weeping lubrication in mammalian joints. Nature 184, 1285 (1959).
Walker, P. S., Dowson, D., Longfield, M. D. & Wright, V. ‘Boosted lubrication’ in synovial joints by fluid entrapment and enrichment. Ann. Rheum. Dis. 27, 512–520 (1968).
Hlaváček, M. Squeeze-film lubrication of the human ankle joint with synovial fluid filtrated by articular cartilage with the superficial zone worn out. J. Biomech. 33, 1415–1422 (2000).
Higginson, G. R. & Norman, R. A model investigation of squeeze-film lubrication in animal joints. Phys. Med. Biol. 19, 785 (1974).
Dowson, D. & Jin, Z.-M. Micro-elastohydrodynamic lubrication of synovial joints. Eng. Med. 15, 63–65 (1986).
Schmidt, T. A. & Sah, R. L. Effect of synovial fluid on boundary lubrication of articular cartilage. Osteoarthritis Cartilage 15, 35–47 (2007).
Bellamy, N. et al. Viscosupplementation for the treatment of osteoarthritis of the knee. Cochrane Database Syst. Rev. 2006, CD005321 (2006).
Gupta, R. C., Lall, R., Srivastava, A. & Sinha, A. Hyaluronic acid: molecular mechanisms and therapeutic trajectory. Front. Vet. Sci. 6, 192 (2019).
Yatabe, T. et al. Hyaluronan inhibits expression of ADAMTS4 (aggrecanase-1) in human osteoarthritic chondrocytes. Ann. Rheum. Dis. 68, 1051 LP–1051058 (2009).
Nelson, F. R. et al. The effects of an oral preparation containing hyaluronic acid (Oralvisc®) on obese knee osteoarthritis patients determined by pain, function, bradykinin, leptin, inflammatory cytokines, and heavy water analyses. Rheumatol. Int. 35, 43–52 (2015).
Gotoh, S. et al. Effects of the molecular weight of hyaluronic acid and its action mechanisms on experimental joint pain in rats. Ann. Rheum. Dis. 52, 817 LP–817822 (1993).
Huang & Le, T. et al. Intra-articular injections of sodium hyaluronate (Hyalgan®) in osteoarthritis of the knee. A randomized, controlled, double-blind, multicenter trial in the Asian population. BMC Musculoskelet. Disord. 12, 1–8 (2011).
Priano, F. Early efficacy of intra-articular HYADD® 4 (Hymovis®) injections for symptomatic knee osteoarthritis. Joints 5, 79–84 (2017).
Petterson, S. C. & Plancher, K. D. Single intra-articular injection of lightly cross-linked hyaluronic acid reduces knee pain in symptomatic knee osteoarthritis: a multicenter, double-blind, randomized, placebo-controlled trial. Knee Surgery. Sport. Traumatol. Arthrosc. 27, 1992–2002 (2019).
Adams, M. E. et al. The role of viscosupplementation with hylan G-F 20 (Synvisc®) in the treatment of osteoarthritis of the knee: a Canadian multicenter trial comparing hylan G-F 20 alone, hylan G-F 20 with non-steroidal anti-inflammatory drugs (NSAIDs) and NSAIDs alone. Osteoarthritis Cartilage 3, 213–225 (1995).
Chevalier, X. et al. Single, intra-articular treatment with 6 ml hylan G-F 20 in patients with symptomatic primary osteoarthritis of the knee: a randomised, multicentre, double-blind, placebo controlled trial. Ann. Rheum. Dis. 69, 113–119 (2010).
Xin, Y. et al. The efficacy and safety of sodium hyaluronate injection (Adant®) in treating degenerative osteoarthritis: a multi-center, randomized, double-blind, positive-drug parallel-controlled and non-inferiority clinical study. Int. J. Rheum. Dis. 19, 271–278 (2016).
Gadek, A., Miśkowiec, K., Wordliczek, J. & Lekarski, H. L. Effectiveness and safety of intra-articular use of hyaluronic acid (Suplasyn) in the treatment of knee osteoarthritis. Przegl. Lek. 68, 307–310 (2011).
Pavelka, K. & Uebelhart, D. Efficacy evaluation of highly purified intra-articular hyaluronic acid (Sinovial®) vs Hylan G-F20 (Synvisc®) in the treatment of symptomatic knee osteoarthritis. A double-blind, controlled, randomized, parallel-group non-inferiority study. Osteoarthritis Cartilage 19, 1294–1300 (2011).
Bronstone, A., Neary, J. T., Lambert, T. H. & Dasa, V. Supartz (Sodium Hyaluronate) for the treatment of knee osteoarthritis: a review of efficacy and safety. Clin. Med. Insights Arthritis Musculoskelet. Disord. 12, 1179544119835221 (2019).
Neustadt, D., Caldwell, J., Bell, M., Wade, J. & Gimbel, J. Clinical effects of intraarticular injection of high molecular weight hyaluronan (Orthovisc) in osteoarthritis of the knee: a randomized, controlled, multicenter trial. J. Rheumatol. 32, 1928–1936 (2005).
Altman, R. D., Rosen, J. E., Bloch, D. A., Hatoum, H. T. & Korner, P. A double-blind, randomized, saline-controlled study of the efficacy and safety of EUFLEXXA® for treatment of painful osteoarthritis of the knee, with an open-label safety extension (The FLEXX Trial). Semin. Arthritis Rheum. 39, 1–9 (2009).
Strand, V., Baraf, H. S. B., Lavin, P. T., Lim, S. & Hosokawa, H. A multicenter, randomized controlled trial comparing a single intra-articular injection of Gel-200, a new cross-linked formulation of hyaluronic acid, to phosphate buffered saline for treatment of osteoarthritis of the knee. Osteoarthritis Cartilage 20, 350–356 (2012).
Altman, R. D. et al. Efficacy and safety of a single intra-articular injection of non-animal stabilized hyaluronic acid (NASHA) in patients with osteoarthritis of the knee. Osteoarthritis Cartilage 12, 642–649 (2004).
Kolasinski, S. L. et al. 2019 American College of Rheumatology/Arthritis Foundation guideline for the management of osteoarthritis of the hand, hip, and knee. Arthritis Rheumatol. 72, 220–233 (2020).
American Academy of Orthopaedic Surgeons. Viscosupplementation; cannot recommend. AAOS http://www.orthoguidelines.org/guideline-detail?id=1214 (2015).
Kirchner, M. & Marshall, D. A double-blind randomized controlled trial comparing alternate forms of high molecular weight hyaluronan for the treatment of osteoarthritis of the knee. Osteoarthritis Cartilage 14, 154–162 (2006).
Wobig, M., Dickhut, A., Maier, R. & Vetter, G. Viscosupplementation with Hylan G-F 20: a 26-week controlled trial of efficacy and safety in the osteoarthritic knee. Clin. Ther. 20, 410–423 (1998).
Shah, R. P. et al. T1Rho magnetic resonance imaging at 3t detects knee cartilage changes after viscosupplementation. Orthopedics 38, e604–e610 (2015).
Kolarz, G., Kotz, R. & Hochmayer, I. Long-term benefits and repeated treatment cycles of intra-articular sodium hyaluronate (Hyalgan) in patients with osteoarthritis of the knee. Semin. Arthritis Rheum. 32, 310–319 (2003).
Waddell, D. D. & Bricker, D. W. C. Total knee replacement delayed with Hylan G-F 20 use in patients with grade IV osteoarthritis. J. Managed Care Pharm. 13, 113–121 (2007).
Rutjes, A. W. S. et al. Viscosupplementation for osteoarthritis of the knee: a systematic review and meta-analysis. Ann. Intern. Med. 157, 180–191 (2012).
Berenbaum, F. et al. A randomised, double-blind, controlled trial comparing two intra-articular hyaluronic acid preparations differing by their molecular weight in symptomatic knee osteoarthritis. Ann. Rheum. Dis. 71, 1454–1460 (2012).
Gigis, I., Fotiadis, E., Nenopoulos, A., Tsitas, K. & Hatzokos, I. Comparison of two different molecular weight intra-articular injections of hyaluronic acid for the treatment of knee osteoarthritis. Hippokratia 20, 26–31 (2016).
Wang, Y. et al. Effects of Hylan G-F 20 supplementation on cartilage preservation detected by magnetic resonance imaging in osteoarthritis of the knee: a two-year single-blind clinical trial. BMC Musculoskelet. Disord. 12, 1–9 (2011).
Kul-Panza, E. & Berker, N. Is hyaluronate sodium effective in the management of knee osteoarthritis? A placebo-controlled double-blind study. Minerva Med. 101, 63–72 (2010).
Karlsson, J. Comparison of two hyaluronan drugs and placebo in patients with knee osteoarthritis. A controlled, randomized, double-blind, parallel-design multicentre study. Rheumatology 41, 1240–1248 (2002).
Pereira, T. V. et al. Viscosupplementation for knee osteoarthritis: systematic review and meta-analysis. Br. Med. J. 378, e069722 (2022).
van der Weegen, W., Wullems, J. A., Bos, E., Noten, H. & van Drumpt, R. A. M. No difference between intra-articular injection of hyaluronic acid and placebo for mild to moderate knee osteoarthritis: a randomized, controlled, double-blind trial. J. Arthroplast. 30, 754–757 (2015).
Jevsevar, D., Donnelly, P., Brown, G. A. & Cummins, D. S. Viscosupplementation for osteoarthritis of the knee: a systematic review of the evidence. J. Bone Joint Surg. Am. 97, 2047–2060 (2014).
Cooper, B. G., Catalina Bordeianu, Nazarian, A., Snyder, B. D. & Grinstaff, M. W. Active agents, biomaterials, and technologies to improve biolubrication and strengthen soft tissues. Biomaterials 181, 210–226 (2018).
Pontes-Quero, G. M. et al. Active viscosupplements for osteoarthritis treatment. Semin. Arthritis Rheumatism 49, 171–183 (2019).
Hohmann, E., Tetsworth, K. & Glatt, V. Is platelet-rich plasma effective for the treatment of knee osteoarthritis? A systematic review and meta-analysis of level 1 and 2 randomized controlled trials. Eur. J. Orthop. Surg. Traumatol. 30, 955–967 (2020).
Chouhan, D. K. et al. Multiple platelet-rich plasma injections versus single platelet-rich plasma injection in early osteoarthritis of the knee: an experimental study in a guinea pig model of early knee osteoarthritis. Am. J. Sports Med. 47, 2300–2307 (2019).
Yang, F. et al. Autophagy is independent of the chondroprotection induced by platelet-rich plasma releasate. Biomed. Res. Int. 2018, 9726703 (2018).
Xue, Y. et al. Pure platelet-rich plasma facilitates the repair of damaged cartilage and synovium in a rabbit hemorrhagic arthritis knee model. Arthritis Res. Ther. 22, 1–15 (2020).
Sánchez, M. et al. Platelet-rich plasma injections delay the need for knee arthroplasty: a retrospective study and survival analysis. Int. Orthop. 45, 401–410 (2021).
Dallari, D. et al. Ultrasound-guided injection of platelet-rich plasma and hyaluronic acid, separately and in combination, for hip osteoarthritis. Am. J. Sports Med. 44, 664–671 (2016).
Saturveithan, C. et al. Intra-articular hyaluronic acid (HA) and platelet rich plasma (PRP) injection versus hyaluronic acid (HA) injection alone in patients with grade III and IV knee osteoarthritis (OA): a retrospective study on functional outcome. Malays. Orthop. J. 10, 35 (2016).
Kon, E. et al. Platelet-rich plasma intra-articular injection versus hyaluronic acid viscosupplementation as treatments for cartilage pathology: from early degeneration to osteoarthritis. Arthrosc. J. Arthrosc. Relat. Surg. 27, 1490–1501 (2011).
Cole, B. J. et al. Hyaluronic acid versus platelet-rich plasma: a prospective, double-blind randomized controlled trial comparing clinical outcomes and effects on intra-articular biology for the treatment of knee osteoarthritis. Am. J. Sports Med. 45, 339–346 (2016).
Sánchez, M. et al. A randomized clinical trial evaluating plasma rich in growth factors (PRGF-Endoret) versus hyaluronic acid in the short-term treatment of symptomatic knee osteoarthritis. Arthrosc. J. Arthrosc. Relat. Surg. 28, 1070–1078 (2012).
Spaková, T., Rosocha, J., Lacko, M., Harvanová, D. & Gharaibeh, A. Treatment of knee joint osteoarthritis with autologous platelet-rich plasma in comparison with hyaluronic acid. Am. J. Phys. Med. Rehabil. 91, 411–417 (2012).
Patel, S., Dhillon, M. S., Aggarwal, S., Marwaha, N. & Jain, A. Treatment with platelet-rich plasma is more effective than placebo for knee osteoarthritis: a prospective, double-blind, randomized trial. Am. J. Sports Med. 41, 356–364 (2013).
Filardo, G. et al. Platelet-rich plasma vs hyaluronic acid to treat knee degenerative pathology: study design and preliminary results of a randomized controlled trial. BMC Musculoskelet. Disord. 13, 229 (2012).
Raynauld, J.-P. et al. Safety and efficacy of long-term intraarticular steroid injections in osteoarthritis of the knee: a randomized, double-blind, placebo-controlled trial. Arthritis Rheum. 48, 370–377 (2003).
Savvidou, O. et al. Glucocorticoid signaling and osteoarthritis. Mol. Cell. Endocrinol. 480, 153–166 (2019).
Hangody, L. et al. Intraarticular injection of a cross-linked sodium hyaluronate combined with triamcinolone hexacetonide (cingal) to provide symptomatic relief of osteoarthritis of the knee: a randomized, double-blind, placebo-controlled multicenter clinical trial. Cartilage 9, 276–283 (2018).
Kaderli, S. et al. A novel oxido-viscosifying Hyaluronic Acid-antioxidant conjugate for osteoarthritis therapy: biocompatibility assessments. Eur. J. Pharm. Biopharm. 90, 70–79 (2015).
Borrás-Verdera, A., Calcedo-Bernal, V., Ojeda-Levenfeld, J. & Clavel-Sainz, C. Efficacy and safety of a single intra-articular injection of 2% hyaluronic acid plus mannitol injection in knee osteoarthritis over a 6-month period. Rev. Esp. Cir. Ortop. Ed. Traumatol. 56, 274–280 (2012).
Frobenius, K. A new high-dose treatment with intra-articular hyaluronic acid facilitates the management of osteoarthritis. shopify https://cdn.shopify.com/s/files/1/0630/0467/2149/files/Frebenius_2009_English_Only_Ostenil_Plus.pdf?v=1671531691 (2009).
Lertwanich, P. & Lamsam, C. Efficacy of a single intra-articular injection of 2% sodium hyaluronate plus 0.5% mannitol in patients with symptomatic osteoarthritis of the knee: a preliminary report. J. Med. Assoc. Thai. 99, 1094–1101 (2016).
Dernek, B. et al. Efficacy of single-dose hyaluronic acid products with two different structures in patients with early-stage knee osteoarthritis. J. Phys. Ther. Sci. 28, 3036–3040 (2016).
Maheu, E., Avouac, B., Dreiser, R. L. & Bardin, T. A single intra-articular injection of 2.0% non-chemically modified sodium hyaluronate vs 0.8% hylan G-F 20 in the treatment of symptomatic knee osteoarthritis: a 6-month, multicenter, randomized, controlled non-inferiority trial. PLoS One 14, e0226007 (2019).
Conrozier, T. et al. Safety and efficacy of intra-articular injections of a combination of hyaluronic acid and mannitol (HAnOX-M) in patients with symptomatic knee osteoarthritis: results of a double-blind, controlled, multicenter, randomized trial. Knee 23, 842–848 (2016).
Matthieu, M., Bozgan, A.-M. & Conrozier, T. Safety and efficacy of single intra-articular injection of a cross-linked hyaluronic acid/mannitol formulation (HappycrossTM) in knee osteoarthritis results of a prospective observational study in daily practice conditions. Ortho. Rheum. Open Access. J. 5, 555664 (2017).
Conrozier, T., Bossert, M., Balblanc, J., Sondag, M. & Walliser-Lohse, A. Viscosupplementation with HANOX-M-XL is effective in moderate hip osteoarthritis but is not an alternative to hip joint surgery in patients with severe disease. Results of a clinical survey in 191 patients treated in daily practice. Eur. J. Musculoskelet. Dis. 3, 49–55 (2014).
Cortet, B., Lombion, S., Naissant, B., Vidovic, E. & Bruyère, O. Non-inferiority of a single injection of sodium hyaluronate plus sorbitol to hylan G-F20: a 6-month randomized controlled trial. Adv. Ther. 38, 2271–2283 (2021).
Bali, J. P., Cousse, H. & Neuzil, E. Biochemical basis of the pharmacologic action of chondroitin sulfates on the osteoarticular system. Semin. Arthritis Rheum. 31, 58–68 (2001).
Rivera, F. et al. Effectiveness of intra-articular injections of sodium hyaluronate-chondroitin sulfate in knee osteoarthritis: a multicenter prospective study. J. Orthop. Traumatol. 17, 27–33 (2016).
Vincent, P. Intra-articular hyaluronic acid in knee osteoarthritis: clinical data for a product family (ARTHRUM), with comparative meta-analyses. Curr. Ther. Res. 95, 100637 (2021).
McNary, S. M., Athanasiou, K. A. & Reddi, A. H. Engineering lubrication in articular cartilage. Tissue Eng. Part. B Rev. 18, 88–100 (2012).
Dedinaite, A. Biomimetic lubrication. Soft Matter 8, 273–284 (2012).
Chen, M., Briscoe, W. H., Armes, S. P. & Klein, J. Lubrication at physiological pressures by polyzwitterionic brushes. Science 323, 1698–1701 (2009).
Pradal, C., Yakubov, G. E., Williams, M. A. K., McGuckin, M. A. & Stokes, J. R. Lubrication by biomacromolecules: mechanisms and biomimetic strategies. Bioinspiration Biomim. 14, 51001 (2019).
Schmidt, T. A., Gastelum, N. S., Nguyen, Q. T., Schumacher, B. L. & Sah, R. L. Boundary lubrication of articular cartilage: role of synovial fluid constituents. Arthritis Rheum. 56, 882–891 (2007).
Zhao, T., Wei, Z., Zhu, W. & Weng, X. Recent developments and current applications of hydrogels in osteoarthritis. Bioengineering 9, 132 (2022).
Lawson, T. B., Mäkelä, J. T. A., Klein, T., Snyder, B. D. & Grinstaff, M. W. Nanotechnology and osteoarthritis. part 1: clinical landscape and opportunities for advanced diagnostics. J. Orthop. Res. 39, 465–472 (2020).
Samaroo, K. J., Tan, M., Putnam, D. & Bonassar, L. J. Binding and lubrication of biomimetic boundary lubricants on articular cartilage. J. Orthop. Res. 35, 548–557 (2017).
Wang, X.-B. & Liu, W.-M. Nanoparticle-based lubricant additives. Encycl. Tribol. 2369–2376 (2013).
Chen, M., Briscoe, W. H., Armes, S. P., Cohen, H. & Klein, J. Polyzwitterionic brushes: extreme lubrication by design. Eur. Polym. J. 47, 511–523 (2011).
Chen, H. et al. Cartilage matrix-inspired biomimetic superlubricated nanospheres for treatment of osteoarthritis. Biomaterials 242, 119931 (2020).
Zheng, Y. et al. Bioinspired hyaluronic acid/phosphorylcholine polymer with enhanced lubrication and anti-inflammation. Biomacromolecules 20, 4135–4142 (2019).
Gonçalves, C., Carvalho, D. N., Silva, T. H., Reis, R. L. & Oliveira, J. M. Engineering of viscosupplement biomaterials for treatment of osteoarthritis: a comprehensive review. Adv. Eng. Mater. 24, 2101541 (2022).
Xie, R. et al. Biomimetic cartilage-lubricating polymers regenerate cartilage in rats with early osteoarthritis. Nat. Biomed. Eng. 5, 1189–1201 (2021).
Wathier, M. et al. A synthetic polymeric biolubricant imparts chondroprotection in a rat meniscal tear model. Biomaterials 182, 13–20 (2018).
Wathier, M. et al. A large-molecular-weight polyanion, synthesized via ring-opening metathesis polymerization, as a lubricant for human articular cartilage. J. Am. Chem. Soc. 135, 4930–4933 (2013).
Lakin, B. A. et al. A synthetic bottle-brush polyelectrolyte reduces friction and wear of intact and previously worn cartilage. ACS Biomater. Sci. Eng. 5, 3060–3067 (2019).
Gleghorn, J. P., Jones, A. R. C., Flannery, C. R. & Bonassar, L. J. Boundary mode lubrication of articular cartilage by recombinant human lubricin. J. Orthop. Res. 27, 771–777 (2009).
Abubacker, S. et al. Full-length recombinant human proteoglycan 4 interacts with hyaluronan to provide cartilage boundary lubrication. Ann. Biomed. Eng. 44, 1128–1137 (2016).
Jay, G. D. et al. Prevention of cartilage degeneration and restoration of chondroprotection by lubricin tribosupplementation in the rat following anterior cruciate ligament transection. Arthritis Rheum. 62, 2382–2391 (2010).
Waller, K. A. et al. Intra-articular recombinant human proteoglycan 4 mitigates cartilage damage after destabilization of the medial meniscus in the Yucatan minipig. Am. J. Sports Med. 45, 1512–1521 (2017).
Shurer, C. R. et al. Stable recombinant production of codon-scrambled lubricin and mucin in human cells. Biotechnol. Bioeng. 116, 1292–1303 (2019).
Flannery, C. R. et al. Prevention of cartilage degeneration in a rat model of osteoarthritis by intraarticular treatment with recombinant lubricin. Arthritis Rheum. 60, 840–847 (2009).
Lambiase, A. et al. A two-week, randomized, double-masked study to evaluate safety and efficacy of lubricin (150 μg/mL) eye drops versus sodium hyaluronate (HA) 0.18% eye drops (Vismed®) in patients with moderate dry eye disease. Ocul. Surf. 15, 77–87 (2017).
Cooper, B. G. et al. A polymer network architecture provides superior cushioning and lubrication of soft tissue compared to a linear architecture. Biomater. Sci. 11, 7339–7345 (2023).
Cai, Z., Zhang, H., Wei, Y., Wu, M. & Fu, A. Shear-thinning hyaluronan-based fluid hydrogels to modulate viscoelastic properties of osteoarthritis synovial fluids. Biomater. Sci. 7, 3143–3157 (2019).
Chen, M. et al. Gellan gum modified hyaluronic acid hydrogels as viscosupplements with lubrication maintenance and enzymatic resistance. J. Mater. Chem. B 10, 4479–4490 (2022).
Mou, D. et al. Intra-articular injection of chitosan-based supramolecular hydrogel for osteoarthritis treatment. Tissue Eng. Regen. Med. 18, 113–125 (2021).
Kivitz, A. et al. A randomized, open-label, single-dose study to assess safety and systemic exposure of triamcinolone acetonide extended-release in patients with hip osteoarthritis. Rheumatol. Ther. 9, 679–691 (2022).
Conaghan, P. G. et al. Effects of a single intra-articular injection of a microsphere formulation of triamcinolone acetonide on knee osteoarthritis pain: a double-blinded, randomized, placebo-controlled, multinational study. J. Bone Joint Surg. Am. 100, 666–677 (2018).
Conaghan, P. G. et al. Brief report: a phase IIb trial of a novel extended-release microsphere formulation of triamcinolone acetonide for intraarticular injection in knee osteoarthritis. Arthritis Rheumatol. 70, 204–211 (2018).
Lawson, T. B., Mäkelä, J. T. A., Klein, T., Snyder, B. D. & Grinstaff, M. W. Nanotechnology and osteoarthritis. part 2: opportunities for advanced devices and therapeutics. J. Orthop. Res. 39, 473–484 (2021).
Zhao, W. et al. Dopamine/phosphorylcholine copolymer as an efficient joint lubricant and ROS scavenger for the treatment of osteoarthritis. ACS Appl. Mater. Interfaces 12, 51236–51248 (2020).
Lin, W., Kampf, N., Goldberg, R., Driver, M. J. & Klein, J. Poly-phosphocholinated liposomes form stable superlubrication vectors. Langmuir 35, 6048–6054 (2019).
Lin, W., Goldberg, R. & Klein, J. Poly-phosphocholination of liposomes leads to highly-extended retention time in mice joints. J. Mater. Chem. B 10, 2820–2827 (2022).
Charlesworth, J., Fitzpatrick, J., Perera, N. K. P. & Orchard, J. Osteoarthritis — a systematic review of long-term safety implications for osteoarthritis of the knee. BMC Musculoskelet. Disord. 20, 151 (2019).
Yang, L., Sun, L., Zhang, H., Bian, F. & Zhao, Y. Ice-inspired lubricated drug delivery particles from microfluidic electrospray for osteoarthritis treatment. ACS Nano 15, 20600–20606 (2021).
Han, Z. et al. Nanofat functionalized injectable super-lubricating microfluidic microspheres for treatment of osteoarthritis. Biomaterials 285, 121545 (2022).
Grünherz, L., Sanchez-Macedo, N., Frueh, F. S., McLuckie, M. & Lindenblatt, N. Nanofat applications: from clinical esthetics to regenerative research: potential applications of nanofat in tissue regeneration with a focus on wound healing and vascularization. Curr. Opin. Biomed. Eng. 10, 174–180 (2019).
Burzio, L. O., Burzio, V. A., Silva, T., Burzio, L. A. & Pardo, J. Environmental bioadhesion: themes and applications. Curr. Opin. Biotechnol. 8, 309–312 (1997).
Feinberg, H. & Hanks, T. W. Polydopamine: a bioinspired adhesive and surface modification platform. Polym. Int. 71, 578–582 (2022).
Yang, J. et al. Ball-bearing-inspired polyampholyte-modified microspheres as bio-lubricants attenuate osteoarthritis. Small 16, 2004519 (2020).
Lei, Y. et al. Injectable hydrogel microspheres with self-renewable hydration layers alleviate osteoarthritis. Sci. Adv. 8, eabl6449 (2023).
Trujillo, R. J., Tam, A. T., Bonassar, L. J. & Putnam, D. Effective viscous lubrication of cartilage with low viscosity microgels. Materialia 33, 102000 (2024).
Jahn, S., Seror, J. & Klein, J. Lubrication of articular cartilage. Annu. Rev. Biomed. Eng. 18, 235–258 (2016).
Chawla, K., Ham, H. O., Nguyen, T. & Messersmith, P. B. Molecular resurfacing of cartilage with proteoglycan 4. Acta Biomater. 6, 3388–3394 (2010).
Abubacker, S., Ham, H. O., Messersmith, P. B. & Schmidt, T. A. Cartilage boundary lubricating ability of aldehyde modified proteoglycan 4 (PRG4-CHO). Osteoarthritis Cartilage 21, 186–189 (2013).
Morgese, G., Ramakrishna, S. N., Simic, R., Zenobi-Wong, M. & Benetti, E. M. Hairy and slippery polyoxazoline-based copolymers on model and cartilage surfaces. Biomacromolecules 19, 680–690 (2018).
Morgese, G., Cavalli, E., Rosenboom, J.-G., Zenobi-Wong, M. & Benetti, E. M. Cyclic polymer grafts that lubricate and protect damaged cartilage. Angew. Chem. 130, 1637–1642 (2018).
Morgese, G., Cavalli, E., Müller, M., Zenobi-Wong, M. & Benetti, E. M. Nanoassemblies of tissue-reactive, polyoxazoline graft-copolymers restore the lubrication properties of degraded cartilage. ACS Nano 11, 2794–2804 (2017).
Singh, A. et al. Enhanced lubrication on tissue and biomaterial surfaces through peptide-mediated binding of hyaluronic acid. Nat. Mater. 13, 988–995 (2014).
Sun, Z. et al. Boundary mode lubrication of articular cartilage with a biomimetic diblock copolymer. Proc. Natl Acad. Sci. USA 116, 12437–12441 (2019).
Nemirov, D. et al. Effect of lubricin mimetics on the inhibition of osteoarthritis in a rat anterior cruciate ligament transection model. Am. J. Sports Med. 48, 624–634 (2020).
Barthold, J. E. et al. Particulate ECM biomaterial ink is 3D printed and naturally crosslinked to form structurally-layered and lubricated cartilage tissue mimics. Biofabrication 14, 025021 (2022).
Mancipe Castro, L. M., Sequeira, A., García, A. J. & Guldberg, R. E. Articular cartilage- and synoviocyte-binding poly(ethylene glycol) nanocomposite microgels as intra-articular drug delivery vehicles for the treatment of osteoarthritis. ACS Biomater. Sci. Eng. 6, 5084–5095 (2020).
Stewart, H. L. et al. A missed opportunity: a scoping review of the effect of sex and age on osteoarthritis using large animal models. Osteoarthritis Cartilage 32, 501–513 (2024).
Acknowledgements
C.D.D.M. acknowledges support from the National Science Foundation Graduate Research Fellowship Program (DGE-1840990). T.B.L. acknowledges support from the National Institutes of Health (NIH; F31 AR075386). J.M. acknowledges support from the Academy of Finland (348410, 357787), Instrumentarium Science Foundation (190021) and the Orion Research Foundation sr. B.D.S. acknowledges support from the Harvard Catalyst Foundation. A.J., D.T.F., T.P.S., M.B., M.B.A. and M.W.G. acknowledge support from Boston University and the Wallace H. Coulter Foundation.
Author information
Authors and Affiliations
Contributions
M.W.G., C.D.D.M. and A.J. researched data for the article. M.W.G., C.D.D.M., A.J., T.B.L., T.P.S., M.B., M.B.A., J.M. and B.D.S. contributed substantially to discussion of the content. All authors wrote the article and reviewed and/or edited the manuscript before submission.
Corresponding authors
Ethics declarations
Competing interests
A patent was filed and is owned by Boston University on poly(7-oxanorbornene-2-carboxylate), a tribosupplement formulation described in the Review, and the patent is available for licensing (US8378064B2). M.W.G. is an inventor listed on the patent. No IP has been licensed to the author. All other authors declare no competing interests.
Peer review
Peer review information
Nature Reviews Rheumatology thanks the anonymous reviewers for their contribution to the peer review of this work.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Glossary
- Boundary lubrication
-
The mode of lubrication in which the two sliding surfaces are only separated by a thin film of lubricant, such that imperfections along the surfaces can come into contact with each other.
- Fluid-film lubrication
-
The mode of lubrication in which two sliding surfaces are completely separated by a film of lubricant.
- Hydration lubrication
-
The phenomenon of water molecules clustering around charged groups to form hydration layers that maintain extremely low coefficients of friction.
- Interstitial fluid load support
-
The proportion of an applied load that is supported by pressurized fluid entrapped within the cartilage matrix.
- Non-Newtonian fluid
-
A fluid that has a variable viscosity depending on the stress applied to it.
- Rheological properties
-
The deformation properties of a material, often described in terms of viscosity, storage modulus and loss modulus.
- Shear-thinning
-
A rheological behaviour in which the viscosity of a fluid decreases with increasing shear strain.
- Tribological properties
-
The frictional properties of a material during rubbing; lubricants are intended to affect tribological properties by decreasing friction between two rubbing surfaces.
- Tribosupplementation
-
Delivery of a material, other than an exogenous hyaluronic acid solution, to a synovial joint, with the intention of improving cartilage lubrication as a treatment for osteoarthritis.
- Viscosupplementation
-
Delivery of an exogenous hyaluronic acid solution, often formulated as sodium hyaluronate, to an osteoarthritic joint, to restore the lubricity of the synovial fluid.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
DeMoya, C.D., Joenathan, A., Lawson, T.B. et al. Advances in viscosupplementation and tribosupplementation for early-stage osteoarthritis therapy. Nat Rev Rheumatol 20, 432–451 (2024). https://doi.org/10.1038/s41584-024-01125-5
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s41584-024-01125-5