Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Recent advancements in cartilage tissue engineering innovation and translation

Abstract

Articular cartilage was expected to be one of the first successfully engineered tissues, but today, cartilage repair products are few and they exhibit considerable limitations. For example, of the cell-based products that are available globally, only one is marketed for non-knee indications, none are indicated for severe osteoarthritis or rheumatoid arthritis, and only one is approved for marketing in the USA. However, advances in cartilage tissue engineering might now finally lead to the development of new cartilage repair products. To understand the potential in this field, it helps to consider the current landscape of tissue-engineered products for articular cartilage repair and particularly cell-based therapies. Advances relating to cell sources, bioactive stimuli and scaffold or scaffold-free approaches should now contribute to progress in therapeutic development. Engineering for an inflammatory environment is required because of the need for implants to withstand immune challenge within joints affected by osteoarthritis or rheumatoid arthritis. Bringing additional cartilage repair products to the market will require an understanding of the translational vector for their commercialization. Advances thus far can facilitate the future translation of engineered cartilage products to benefit the millions of patients who suffer from cartilage injuries and arthritides.

Key points

  • Of the cell-based articular cartilage products available globally, only one is marketed for non-knee indications, none are marketed for severe osteoarthritis and none are marketed for rheumatoid arthritis.

  • Cartilage tissue engineering advances include making scaffold-based and scaffold-free cartilage with robust mechanical properties that might enable implants to survive in the loaded-joint environment.

  • Tissue engineering cartilage implants to survive the inflammatory environment through the use of immunomodulatory biomaterials and synthetic biology is a current research highlight.

  • Most large-animal studies for cartilage tissue engineering in the knee use porcine, caprine and ovine models, whereas porcine models are used for temporomandibular joint studies.

  • Several tissue-engineered cartilage products in clinical development use allogeneic cell sources; the use of cell banks that employ allogeneic cells can improve reproducibility and consistency.

  • Owing to the arduous nature of translating biologics, academic researchers should familiarize themselves with the translational vector (including regulatory, manufacturing, funding and intellectual property aspects) to facilitate clinical development.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Strategies for articular cartilage tissue engineering.
Fig. 2: Approaches for tissue engineering cartilage in an inflammatory environment.
Fig. 3: The translational vector for tissue-engineered cartilage products.

Similar content being viewed by others

References

  1. Langer, R. & Vacanti, J. P. Tissue engineering. Science 260, 920–926 (1993).

    Article  CAS  PubMed  Google Scholar 

  2. Huey, D. J., Hu, J. C. & Athanasiou, K. A. Unlike bone, cartilage regeneration remains elusive. Science 338, 917–921 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Matthews, L. S., Sonstegard, D. A. & Henke, J. A. Load bearing characteristics of the patello-femoral joint. Acta Orthop. Scand. 48, 511–516 (1977).

    Article  CAS  PubMed  Google Scholar 

  4. Kellathur, S. N. & Lou, H.-X. Cell and tissue therapy regulation: worldwide status and harmonization. Biologicals 40, 222–224 (2012).

    Article  PubMed  Google Scholar 

  5. Nordberg, R. C., Otarola, G. A., Wang, D., Hu, J. C. & Athanasiou, K. A. Navigating regulatory pathways for translation of biologic cartilage repair products. Sci. Transl. Med. 14, eabp8163 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. US Food and Drug Administration. Expedited programs for regenerative medicine therapies for serious conditions. fda.gov https://www.fda.gov/regulatory-information/search-fda-guidance-documents/expedited-programs-regenerative-medicine-therapies-serious-conditions (2019).

  7. Muthu, S. et al. Failure of cartilage regeneration: emerging hypotheses and related therapeutic strategies. Nat. Rev. Rheumatol. 19, 403–416 (2023).

    Article  CAS  PubMed  Google Scholar 

  8. Sun, H. B. Mechanical loading, cartilage degradation, and arthritis. Ann. N. Y. Acad. Sci. 1211, 37–50 (2010).

    Article  CAS  PubMed  Google Scholar 

  9. Torzilli, P. A., Grigiene, R., Borrelli, J. & Helfet, D. L. Effect of impact load on articular cartilage: cell metabolism and viability, and matrix water content. J. Biomech. Eng. 121, 433–441 (1999).

    Article  CAS  PubMed  Google Scholar 

  10. Long, H. et al. Prevalence trends of site-specific osteoarthritis from 1990 to 2019: findings from the Global Burden of Disease study 2019. Arthritis Rheumatol. 74, 1172–1183 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Almutairi, K., Nossent, J., Preen, D., Keen, H. & Inderjeeth, C. The global prevalence of rheumatoid arthritis: a meta-analysis based on a systematic review. Rheumatol. Int. 41, 863–877 (2021).

    Article  PubMed  Google Scholar 

  12. Andriacchi, T. P. & Favre, J. The nature of in vivo mechanical signals that influence cartilage health and progression to knee osteoarthritis. Curr. Rheumatol. Rep. 16, 463 (2014).

    Article  PubMed  Google Scholar 

  13. Bullock, J. et al. Rheumatoid arthritis: a brief overview of the treatment. Med. Princ. Pract. 27, 501–507 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Ruiz, D. J. et al. The direct and indirect costs to society of treatment for end-stage knee osteoarthritis. J. Bone Jt Surg. Am. 95, 1473–1480 (2013).

    Article  Google Scholar 

  15. Birnbaum, H. et al. Societal cost of rheumatoid arthritis patients in the US. Curr. Med. Res. Opin. 26, 77–90 (2010).

    Article  PubMed  Google Scholar 

  16. Torio, C. & Moore, B. National inpatient hospital costs: the most expensive conditions by payer, 2013. in Healthcare Cost and Utilization Project (HCUP) Statistical Briefs. PMID: 27359025 (2016).

  17. Takahashi, T. et al. Commercialization of regenerative-medicine therapies. Nat. Rev. Bioeng. 1, 906–929 (2023).

    Article  Google Scholar 

  18. Lee, D. H., Kim, S. J., Kim, S. A. & Ju, G. Past, present, and future of cartilage restoration: from localized defect to arthritis. Knee Surg. Relat. Res. 34, 1 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Kwon, H. et al. Surgical and tissue engineering strategies for articular cartilage and meniscus repair. Nat. Rev. Rheumatol. 15, 550–570 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Murray, I. R. et al. Regulatory and ethical aspects of orthobiologic therapies. Orthop. J. Sports Med. 10, 23259671221101624 (2022).

    Google Scholar 

  21. European Medicines Agency. Spherox. em.europa.eu https://www.ema.europa.eu/en/medicines/human/EPAR/spherox (2023).

  22. National Institute for Health and Care Excellence. Autologous chondrocyte implantation using chondrosphere for treating symptomatic articular cartilage defects of the knee. nice.org.uk https://www.nice.org.uk/guidance/ta508/resources/autologous-chondrocyte-implantation-using-chondrosphere-for-treating-symptomatic-articular-cartilage-defects-of-the-knee-pdf-82606726260421 (2018).

  23. Jiang, S. et al. Clinical application status of articular cartilage regeneration techniques: tissue-engineered cartilage brings new hope. Stem Cell Int. 2020, 5690252 (2020).

    Google Scholar 

  24. National Institute for Health and Care Research. NOVOCART 3D for articular cartilage defects of the knee. io.nihr.ac.uk https://www.io.nihr.ac.uk/wp-content/uploads/2022/01/13181-Autologous-Chondrocyte-Implant-for-Articular-Cartilage-Defects-V1.0-SEP2019-NON-CONF.pdf (2019).

  25. US Food and Drug Administration. Approved cellular and gene therapy products. fda.gov https://www.fda.gov/vaccines-blood-biologics/cellular-gene-therapy-products/approved-cellular-and-gene-therapy-products (2024).

  26. Pharmaceuticals and Medical Devices Agency. Review reports: regenerative medical products. pmda.go.jp https://www.pmda.go.jp/english/review-services/reviews/approved-information/0004.html (2023).

  27. Ministry of Food and Drug Safety. 2022 Drug approval report. mfds.go.kr https://www.mfds.go.kr/eng/brd/m_19/down.do?brd_id=eng0004&seq=70438&data_tp=A&file_seq=1 (2023).

  28. World Health Organization. Ageing and health. who.int https://who.int/news-room/fact-sheets/detail/ageing-and-health (2022).

  29. Bielajew, B. J. et al. Knee orthopedics as a template for the temporomandibular joint. Cell Rep. Med. 2, 100241 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  30. Manchikanti, L. et al. Prevalence of facet joint pain in chronic spinal pain of cervical, thoracic, and lumbar regions. BMC Musculoskelet. Disord. 5, 15 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Lawrence, R. C. et al. Estimates of the prevalence of arthritis and other rheumatic conditions in the United States. Part II. Arthritis Rheum. 58, 26–35 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Evenbratt, H. et al. Insights into the present and future of cartilage regeneration and joint repair. Cell Regen. 11, 3 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. LaPrade, R. F. & Botker, J. C. Donor-site morbidity after osteochondral autograft transfer procedures. Arthroscopy 20, e69–e73 (2004).

    Article  PubMed  Google Scholar 

  34. Li, Y., Wei, X., Zhou, J. & Wei, L. The age-related changes in cartilage and osteoarthritis. Biomed. Res. Int. 2013, 916530 (2013).

    PubMed  PubMed Central  Google Scholar 

  35. Darling, E. M. & Athanasiou, K. A. Rapid phenotypic changes in passaged articular chondrocyte subpopulations. J. Orthop. Res. 23, 425–432 (2005).

    Article  CAS  PubMed  Google Scholar 

  36. US Department of Health & Human Services. Points to consider in the characterization of cell lines used to produce biologicals. fda.gov https://www.fda.gov/media/76255/download (1993).

  37. Park, Y.-B., Ha, C.-W., Lee, C.-H., Yoon, Y. C. & Park, Y.-G. Cartilage regeneration in osteoarthritic patients by a composite of allogeneic umbilical cord blood-derived mesenchymal stem cells and hyaluronate hydrogel: results from a clinical trial for safety and proof-of-concept with 7 years of extended follow-up. Stem Cell Transl. Med. 6, 613–621 (2017).

    Article  CAS  Google Scholar 

  38. Gille, J., Behrens, P., Schulz, A. P., Oheim, R. & Kienast, B. Matrix-associated autologous chondrocyte implantation. Cartilage 7, 309–315 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Hoburg, A. et al. Safety and efficacy of matrix-associated autologous chondrocyte implantation with spheroids for patellofemoral or tibiofemoral defects: a 5-year follow-up of a phase 2, dose-confirmation trial. Orthop. J. Sports Med. 10, 232596712110533 (2022).

    Article  Google Scholar 

  40. Thorp, H. et al. Trends in articular cartilage tissue engineering: 3D mesenchymal stem cell sheets as candidates for engineered hyaline-like cartilage. Cells 10, 643 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Vonk, L. A., De Windt, T. S., Slaper-Cortenbach, I. C. M. & Saris, D. B. F. Autologous, allogeneic, induced pluripotent stem cell or a combination stem cell therapy? Where are we headed in cartilage repair and why: a concise review. Stem Cell Res. Ther. 6, 94 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Lin, Z. et al. Gene expression profiles of human chondrocytes during passaged monolayer cultivation. J. Orthop. Res. 26, 1230–1237 (2008).

    Article  CAS  PubMed  Google Scholar 

  43. Cavalli, E. et al. Characterization of polydactyly chondrocytes and their use in cartilage engineering. Sci. Rep. 9, 4275 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Tsvetkova, A. V. et al. Chondrogeneic potential of MSC from different sources in spheroid culture. Bull. Exp. Biol. Med. 170, 528–536 (2021).

    Article  CAS  PubMed  Google Scholar 

  45. Mohamed-Ahmed, S. et al. Adipose-derived and bone marrow mesenchymal stem cells: a donor-matched comparison. Stem Cell Res. Ther. 9, 168 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Pievani, A. et al. Comparative analysis of multilineage properties of mesenchymal stromal cells derived from fetal sources shows an advantage of mesenchymal stromal cells isolated from cord blood in chondrogenic differentiation potential. Cytotherapy 16, 893–905 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Hennig, T. et al. Reduced chondrogenic potential of adipose tissue derived stromal cells correlates with an altered TGFβ receptor and BMP profile and is overcome by BMP-6. J. Cell. Physiol. 211, 682–691 (2007).

    Article  CAS  PubMed  Google Scholar 

  48. Mueller, M. B. & Tuan, R. S. Functional characterization of hypertrophy in chondrogenesis of human mesenchymal stem cells. Arthritis Rheum. 58, 1377–1388 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Le, H. et al. Mesenchymal stem cells for cartilage regeneration. J. Tissue Eng. 11, 2041731420943839 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  50. Chen, S., Fu, P., Cong, R., Wu, H. & Pei, M. Strategies to minimize hypertrophy in cartilage engineering and regeneration. Genes Dis. 2, 76–95 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  51. Rikkers, M., Korpershoek, J. V., Levato, R., Malda, J. & Vonk, L. A. The clinical potential of articular cartilage-derived progenitor cells: a systematic review. NPJ Regen. Med. 7, 2 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  52. Levato, R. et al. The bio in the ink: cartilage regeneration with bioprintable hydrogels and articular cartilage-derived progenitor cells. Acta Biomater. 61, 41–53 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Carluccio, S. et al. Progenitor cells activated by platelet lysate in human articular cartilage as a tool for future cartilage engineering and reparative strategies. Cells 9, 1052 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Xue, K. et al. Cartilage progenitor cells combined with PHBV in cartilage tissue engineering. J. Transl. Med. 17, 104 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  55. Neumann, A. J. et al. Human articular cartilage progenitor cells are responsive to mechanical stimulation and adenoviral-mediated overexpression of bone-morphogenetic protein 2. PLoS ONE 10, e0136229 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  56. Adkar, S. S. et al. Step-wise chondrogenesis of human induced pluripotent stem cells and purification via a reporter allele generated by CRISPR-Cas9 genome editing. Stem Cell 37, 65–76 (2019).

    Article  CAS  Google Scholar 

  57. Rodríguez Ruiz, A. et al. Cartilage from human-induced pluripotent stem cells: comparison with neo-cartilage from chondrocytes and bone marrow mesenchymal stromal cells. Cell Tissue Res. 386, 309–320 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  58. Huang, B. J., Hu, J. C. & Athanasiou, K. A. Effects of passage number and post-expansion aggregate culture on tissue engineered, self-assembled neocartilage. Acta Biomater. 43, 150–159 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Kwon, H., Brown W. E, O’Leary, S. A., Hu, J. C. & Athanasiou, K. A. Rejuvenation of extensively passaged human chondrocytes to engineer functional articular cartilage. Biofabrication 13, 035002 (2021).

    Article  CAS  Google Scholar 

  60. Qin, S. et al. Research progress of functional motifs based on growth factors in cartilage tissue engineering: a review. Front. Bioeng. Biotechnol. 11, 1127949 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  61. Jelodari, S. et al. New insights into cartilage tissue engineering: improvement of tissue-scaffold integration to enhance cartilage regeneration. Biomed. Res. Int. 2022, 7638245 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  62. Daou, F., Cochis, A., Leigheb, M. & Rimondini, L. Current advances in the regeneration of degenerated articular cartilage: a literature review on tissue engineering and its recent clinical translation. Materials 15, 31 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  63. Takematsu, E. et al. Optimizing delivery of therapeutic growth factors for bone and cartilage regeneration. Gels 9, 377 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Patel, J. M., Saleh, K. S., Burdick, J. A. & Mauck, R. L. Bioactive factors for cartilage repair and regeneration: improving delivery, retention, and activity. Acta Biomater. 93, 222–238 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Ranmuthu, C. K. I., Ranmuthu, C. D. S., Wijewardena, C. K., Seah, M. K. T. & Khan, W. S. Evaluating the effect of hypoxia on human adult mesenchymal stromal cell chondrogenesis in vitro: a systematic review. Int. J. Mol. Sci. 23, 15210 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Kwon, H., Paschos, N. K., Hu, J. C. & Athanasiou, K. Articular cartilage tissue engineering: the role of signaling molecules. Cell Mol. Life Sci. 73, 1173–1194 (2016).

    Article  CAS  PubMed  Google Scholar 

  67. Otarola, G. A., Hu, J. C. & Athanasiou, K. A. Ion modulatory treatments toward functional self-assembled neocartilage. Acta Biomater. 153, 85–96 (2022).

    Article  CAS  PubMed  Google Scholar 

  68. Rojas, A. et al. Dickkopf-1 reduces hypertrophic changes in human chondrocytes derived from bone marrow stem cells. Gene 687, 228–237 (2019).

    Article  CAS  PubMed  Google Scholar 

  69. Cruz, M. A. et al. Micronutrient optimization for tissue engineered articular cartilage production of type II collagen. Front. Bioeng. Biotechnol. 11, 1179332 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  70. Lee, J. K. et al. Tension stimulation drives tissue formation in scaffold-free systems. Nat. Mater. 16, 864–873 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Ouyang, X., Xie, Y. & Wang, G. Mechanical stimulation promotes the proliferation and the cartilage phenotype of mesenchymal stem cells and chondrocytes co-cultured in vitro. Biomed. Pharmacother. 117, 109146 (2019).

    Article  CAS  PubMed  Google Scholar 

  72. Du, G. et al. Roles of TRPV4 and piezo channels in stretch-evoked Ca2+ response in chondrocytes. Exp. Biol. Med. 245, 180–189 (2020).

    Article  CAS  Google Scholar 

  73. Salinas, E. Y. et al. Shear stress induced by fluid flow produces improvements in tissue-engineered cartilage. Biofabrication 12, 045010 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Farhang, N. et al. Synergistic CRISPRa-regulated chondrogenic extracellular matrix deposition without exogenous growth factors. Tissue Eng. Part. A 26, 1169–1179 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Seidl, C. I., Fulga, T. A. & Murphy, C. L. CRISPR-Cas9 targeting of MMP13 in human chondrocytes leads to significantly reduced levels of the metalloproteinase and enhanced type II collagen accumulation. Osteoarthr. Cartil. 27, 140–147 (2019).

    Article  CAS  Google Scholar 

  76. Nguyen, N. T. K. et al. CRISPR activation of long non-coding RNA DANCR promotes bone regeneration. Biomaterials 275, 120965 (2021).

    Article  CAS  PubMed  Google Scholar 

  77. Li, C. et al. “Genetic scissors” CRISPR/Cas9 genome editing cutting-edge biocarrier technology for bone and cartilage repair. Bioact. Mater. 22, 254–273 (2023).

    CAS  PubMed  Google Scholar 

  78. Uzieliene, I., Kalvaityte, U., Bernotiene, E. & Mobasheri, A. Non-viral gene therapy for osteoarthritis. Front. Bioeng. Biotechnol. 8, 618399 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  79. Cucchiarini, M. & Madry, H. Advances in gene therapy for cartilage repair. Ann. Jt. 3, 97 (2018).

    Article  Google Scholar 

  80. Han, X. et al. Advances of hydrogel-based bioprinting for cartilage tissue engineering. Front. Bioeng. Biotechnol. 9, 746564 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  81. Stone, R. N., Reeck, J. C. & Oxford, J. T. Advances in cartilage tissue engineering using bioinks with decellularized cartilage and three-dimensional printing. Int. J. Mol. Sci. 24, 5526 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Huang, Y., Li, X., Poudel, A. J., Zhang, W. & Xiao, L. Hydrogel-based bioinks for 3D bioprinting articular cartilage: a comprehensive review with focus on mechanical reinforcement. Appl. Mater. Today 29, 101668 (2022).

    Article  Google Scholar 

  83. Yilmaz, E. N. & Zeugolis, D. I. Electrospun polymers in cartilage engineering—state of play. Front. Bioeng. Biotechnol. 8, 77 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  84. Niemczyk-Soczynska, B., Zaszczyńska, A., Zabielski, K. & Sajkiewicz, P. Hydrogel, electrospun and composite materials for bone/cartilage and neural tissue engineering. Materials 14, 6899 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Wei, W. et al. Advanced hydrogels for the repair of cartilage defects and regeneration. Bioact. Mater. 6, 998–1011 (2021).

    CAS  PubMed  Google Scholar 

  86. Zhu, S. et al. Advanced injectable hydrogels for cartilage tissue engineering. Front. Bioeng. Biotechnol. 10, 954501 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  87. Liu, M. et al. Injectable hydrogels for cartilage and bone tissue engineering. Bone Res. 5, 17014 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Hafezi, M., Nouri Khorasani, S., Zare, M., Esmaeely Neisiany, R. & Davoodi, P. Advanced hydrogels for cartilage tissue engineering: recent progress and future directions. Polymers 13, 4199 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Zhou, L. et al. Functionalized hydrogels for articular cartilage tissue engineering. Engineering 13, 71–90 (2022).

    Article  Google Scholar 

  90. Qiu, F. et al. Recent progress in hydrogel-based synthetic cartilage: focus on lubrication and load-bearing capacities. Gels 9, 144 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Girão, A. F., Semitela, Â., Ramalho, G., Completo, A. & Marques, P. A. A. P. Mimicking nature: fabrication of 3D anisotropic electrospun polycaprolactone scaffolds for cartilage tissue engineering applications. Compos. B Eng. 154, 99–107 (2018).

    Article  Google Scholar 

  92. Garrigues, N. W., Little, D., Sanchez-Adams, J., Ruch, D. S. & Guilak, F. Electrospun cartilage-derived matrix scaffolds for cartilage tissue engineering. J. Biomed. Mater. Res. A 102, 3998–4008 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  93. Galarraga, J. H., Kwon, M. Y. & Burdick, J. A. 3D bioprinting via an in situ crosslinking technique towards engineering cartilage tissue. Sci. Rep. 9, 19987 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Beketov, E. E. et al. Bioprinting of cartilage with bioink based on high-concentration collagen and chondrocytes. Int. J. Mol. Sci. 22, 11351 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Larson, B. L. et al. Chondrogenic, hypertrophic, and osteochondral differentiation of human mesenchymal stem cells on three-dimensionally woven scaffolds. J. Tissue Eng. Regen. Med. 13, 1453–1465 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Huynh, N. P. T. et al. Genetic engineering of mesenchymal stem cells for differential matrix deposition on 3D woven scaffolds. Tissue Eng. Part A 24, 1531–1544 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. US Food and Drug Administration. Use of International Standard ISO 10993-1, ‘Biological evaluation of medical devices - part 1: Evaluation and testing within a risk management process’. fda.gov https://www.fda.gov/regulatory-information/search-fda-guidance-documents/use-international-standard-iso-10993-1-biological-evaluation-medical-devices-part-1-evaluation-and (2020).

  98. Yang, F. et al. A synthetic hydrogel composite with the mechanical behavior and durability of cartilage. Adv. Funct. Mater. 30, 2003451 (2020).

    Article  CAS  Google Scholar 

  99. Huang, B. et al. Hydrogel composite scaffolds achieve recruitment and chondrogenesis in cartilage tissue engineering applications. J. Nanobiotechnol. 20, 25 (2022).

    Article  CAS  Google Scholar 

  100. Chen, J. et al. Tough hydrophobic association hydrogels with self-healing and reforming capabilities achieved by polymeric core-shell nanoparticles. Mater. Sci. Eng. C 99, 460–467 (2019).

    Article  CAS  Google Scholar 

  101. Jiang, Y., Guo, S., Jiao, J. & Li, L. A biphasic hydrogel with self-healing properties and a continuous layer structure for potential application in osteochondral defect repair. Polymers 15, 2744 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Li, P. et al. Building a poly(amino acid)/chitosan-based self-healing hydrogel via host–guest interaction for cartilage regeneration. ACS Biomater. Sci. Eng. 9, 4855–4866 (2023).

    Article  CAS  PubMed  Google Scholar 

  103. Huerta-López, C. & Alegre-Cebollada, J. Protein hydrogels: the Swiss army knife for enhanced mechanical and bioactive properties of biomaterials. Nanomaterials 11, 1656 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  104. Fu, L. et al. Cartilage-like protein hydrogels engineered via entanglement. Nature 618, 740–747 (2023).

    Article  CAS  PubMed  Google Scholar 

  105. Athanasiou, K. A., Eswaramoorthy, R., Hadidi, P. & Hu, J. C. Self-organization and the self-assembling process in tissue engineering. Annu. Rev. Biomed. Eng. 15, 115–136 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Zhang, L. et al. Chondrogenic differentiation of human mesenchymal stem cells: a comparison between micromass and pellet culture systems. Biotechnol. Lett. 32, 1339–1346 (2010).

    Article  CAS  PubMed  Google Scholar 

  107. Ullah, M., Hamouda, H., Stich, S., Sittinger, M. & Ringe, J. A reliable protocol for the isolation of viable, chondrogenically differentiated human mesenchymal stem cells from high-density pellet cultures. Biores. Open Access 1, 297–305 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Zhang, Z., McCaffery, J. M., Spencer, R. G. & Francomano, C. A. Hyaline cartilage engineered by chondrocytes in pellet culture: histological, immunohistochemical and ultrastructural analysis in comparison with cartilage explants. J. Anat. 205, 229–237 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  109. Griffith, L. A., Arnold, K. M., Sengers, B. G., Tare, R. S. & Houghton, F. D. A scaffold-free approach to cartilage tissue generation using human embryonic stem cells. Sci. Rep. 11, 18921 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Grigull, N. P. et al. Chondrogenic potential of pellet culture compared to high-density culture on a bacterial cellulose hydrogel. Int. J. Mol. Sci. 21, 2785 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Zheng, K. et al. Co-culture pellet of human Wharton’s jelly mesenchymal stem cells and rat costal chondrocytes as a candidate for articular cartilage regeneration: in vitro and in vivo study. Stem Cell Res. Ther. 13, 386 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Thorp, H., Kim, K., Kondo, M., Grainger, D. W. & Okano, T. Fabrication of hyaline-like cartilage constructs using mesenchymal stem cell sheets. Sci. Rep. 10, 20869 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Takao, T. et al. A novel chondrocyte sheet fabrication using human-induced pluripotent stem cell-derived expandable limb-bud mesenchymal cells. Stem Cell Res. Ther. 14, 34 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Maehara, M. et al. Characterization of polydactyly-derived chondrocyte sheets versus adult chondrocyte sheets for articular cartilage repair. Inflamm. Regen. 37, 22 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  115. Kondo, M. et al. Safety and efficacy of human juvenile chondrocyte-derived cell sheets for osteochondral defect treatment. NPJ Regen. Med. 6, 65 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Huang, B. J., Brown, W. E., Keown, T., Hu, J. C. & Athanasiou, K. A. Overcoming challenges in engineering large, scaffold-free neocartilage with functional properties. Tissue Eng. Part. A 24, 1652–1662 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Brown, W. E., Huang, B. J., Hu, J. C. & Athanasiou, K. A. Engineering large, anatomically shaped osteochondral constructs with robust interfacial shear properties. NPJ Regen. Med. 6, 42 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Vapniarsky, N. et al. Adult dermal stem cells for scaffold-free cartilage tissue engineering: exploration of strategies. Tissue Eng. Part C Methods 26, 598–607 (2020).

    Article  CAS  PubMed  Google Scholar 

  119. Vapniarsky, N. et al. Tissue engineering of canine cartilage from surgically debrided osteochondritis dissecans fragments. Ann. Biomed. Eng. 50, 56–77 (2022).

    Article  PubMed  Google Scholar 

  120. Bielajew, B. J. et al. Proteomic, mechanical, and biochemical development of tissue-engineered neocartilage. Biomater. Res. 26, 34 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Griffin, T. M. & Scanzello, C. R. Innate inflammation and synovial macrophages in osteoarthritis pathophysiology. Clin. Exp. Rheumatol. 37, 57–63 (2019).

    PubMed  PubMed Central  Google Scholar 

  122. Chen, Y. et al. Macrophages in osteoarthritis: pathophysiology and therapeutics. Am. J. Transl. Res. 12, 261–268 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Kesharwani, D., Paliwal, R., Satapathy, T. & Das Paul, S. Rheumatiod arthritis: an updated overview of latest therapy and drug delivery. J. Pharmacopuncture 22, 210–224 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  124. Klimak, M. et al. Immunoengineering the next generation of arthritis therapies. Acta Biomater. 133, 74–86 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Jüni, P. et al. Intra‐articular corticosteroid for knee osteoarthritis. Cochrane Database Syst. Rev. 10, CD005328 (2015).

    Google Scholar 

  126. Ansboro, S., Roelofs, A. J. & De Bari, C. Mesenchymal stem cells for the management of rheumatoid arthritis: immune modulation, repair or both? Curr. Opin. Rheumatol. 29, 201–207 (2017).

    Article  CAS  PubMed  Google Scholar 

  127. Mautner, K. et al. Cell-based versus corticosteroid injections for knee pain in osteoarthritis: a randomized phase 3 trial. Nat. Med. 29, 3120–3126 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. McBride, D. A., Jones, R. M., Bottini, N. & Shah, N. J. The therapeutic potential of immunoengineering for systemic autoimmunity. Nat. Rev. Rheumatol. 20, 203–215 (2024).

    Article  PubMed  Google Scholar 

  129. Zhou, F. et al. Silk fibroin-chondroitin sulfate scaffold with immuno-inhibition property for articular cartilage repair. Acta Biomater. 63, 64–75 (2017).

    Article  CAS  PubMed  Google Scholar 

  130. Tian, G. et al. Cell-free decellularized cartilage extracellular matrix scaffolds combined with interleukin 4 promote osteochondral repair through immunomodulatory macrophages: in vitro and in vivo preclinical study. Acta Biomater. 127, 131–145 (2021).

    Article  CAS  PubMed  Google Scholar 

  131. Ziadlou, R. et al. Optimization of hyaluronic acid-tyramine/silk-fibroin composite hydrogels for cartilage tissue engineering and delivery of anti-inflammatory and anabolic drugs. Mater. Sci. Eng. C 120, 111701 (2021).

    Article  CAS  Google Scholar 

  132. McWhorter, F. Y., Wang, T., Nguyen, P., Chung, T. & Liu, W. F. Modulation of macrophage phenotype by cell shape. Proc. Natl Acad. Sci. USA 110, 17253–17258 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Wang, T., Luu, T. U., Chen, A., Khine, M. & Liu, W. F. Topographical modulation of macrophage phenotype by shrink-film multi-scale wrinkles. Biomater. Sci. 4, 948–952 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Luu, T. U., Gott, S. C., Woo, B. W. K., Rao, M. P. & Liu, W. F. Micro- and nanopatterned topographical cues for regulating macrophage cell shape and phenotype. ACS Appl. Mater. Interfaces 7, 28665–28672 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Badylak, S. F., Valentin, J. E., Ravindra, A. K., McCabe, G. P. & Stewart-Akers, A. M. Macrophage phenotype as a determinant of biologic scaffold remodeling. Tissue Eng. Part A 14, 1835–1842 (2008).

    Article  CAS  PubMed  Google Scholar 

  136. Hsieh, J. Y. et al. Differential regulation of macrophage inflammatory activation by fibrin and fibrinogen. Acta Biomater. 47, 14–24 (2017).

    Article  CAS  PubMed  Google Scholar 

  137. Cha, B.-H. et al. Integrin-mediated interactions control macrophage polarization in 3D hydrogels. Adv. Healthc. Mater. 6, 1700289 (2017).

    Article  Google Scholar 

  138. Donahue, R. P. et al. Stiffness- and bioactive factor-mediated protection of self-assembled cartilage against macrophage challenge in a novel co-culture system. Cartilage 13, 19476035221081464 (2022).

    Article  Google Scholar 

  139. Glass, K. A. et al. Tissue-engineered cartilage with inducible and tunable immunomodulatory properties. Biomaterials 35, 5921–5931 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Moutos, F. T. et al. Anatomically shaped tissue-engineered cartilage with tunable and inducible anticytokine delivery for biological joint resurfacing. Proc. Natl Acad. Sci. USA 113, E4513–E4522 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Nims, R. J. et al. A synthetic mechanogenetic gene circuit for autonomous drug delivery in engineered tissues. Sci. Adv. 7, 9858–9885 (2021).

    Article  Google Scholar 

  142. US Food and Drug Administration. Guidance for Industry: preparation of IDEs and INDs for products intended to repair or replace knee cartilage. fda.gov https://www.fda.gov/regulatory-information/search-fda-guidance-documents/preparation-ides-and-inds-products-intended-repair-or-replace-knee-cartilage (2011).

  143. Hurtig, M. B. et al. Preclinical studies for cartilage repair: recommendations from the international cartilage repair society. Cartilage 2, 137–152 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  144. US Food and Drug Administration. Guidance for industry product development under the animal rule. fda.gov https://www.fda.gov/regulatory-information/search-fda-guidance-documents/product-development-under-animal-rule (2015).

  145. Wai, K. M., Leng, T. & Goldberg, J. National Institutes of Health. Putting stem cell-based therapies in context. nih.gov https://www.nih.gov/about-nih/what-we-do/science-health-public-trust/perspectives/putting-stem-cell-based-therapies-context (2022).

  146. US Department of Health and Human Services. Guidance for industry, investigators, and reviewers exploratory IND studies. fda.gov https://www.fda.gov/media/72325/download (2006).

  147. US Food and Drug Administration. CFR - Code of Federal Regulations Title 21. fda.gov https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfcfr/cfrsearch.cfm (2023).

  148. European Medicines Agency. ICH harmonised tripartite guideline: derivation and characterisation of cell substrates used for production of biotechnological/biological products Q5D. ema.europa.eu https://www.ema.europa.eu/en/ich-q5d-derivation-characterisation-cell-substrates-used-production-biotechnological-biological-products-scientific-guideline (1997).

  149. No authors listed. FDA Report: Guidance for industry: guidance for human somatic cell therapy and gene therapy. Hum. Gene Ther. 9, 1513–1524 (1998).

    Article  Google Scholar 

  150. Federal Register. Medical devices; quality system regulation amendments. federalregister.gov https://www.federalregister.gov/documents/2022/02/23/2022-03227/medical-devices-quality-system-regulation-amendments (2022).

  151. CIRM. CLIN1: Late stage preclinical projects. cirm.ca.gov https://www.cirm.ca.gov/our-funding/research-rfas/late-stage-preclinical-projects/ (2022).

  152. Orbach, M.; CTECH. Biomed company CartiHeal acquired by Smith & Nephew for up to $330 million. calcalistech.com https://www.calcalistech.com/ctechnews/article/b19u54oet (2023).

  153. Kim, J., Park, J., Song, S.-Y. & Kim, E. Advanced therapy medicinal products for autologous chondrocytes and comparison of regulatory systems in target countries. Regen. Ther. 20, 126–137 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Moon-hee, C. Korea’s drug ministry cancels Kolon Life Sciences’ Invossa license. Business Korea https://www.businesskorea.co.kr/news/articleView.html?idxno=32318 (2019).

  155. MEDIPOST. MEDIPOST clears product approval renewal of CARTISTEM by the Ministry of Food and Drug Safety (MFDS). medi-post.co.kr https://en.medi-post.co.kr/stem-cell-therapeutic/2019/03/36443/ (2019).

  156. J-TEC. What was gained through the re-examination of JACC. jpte.co.jp https://www.jpte.co.jp/en/columns/details/367 (2022).

  157. UMIN. Multicenter parallel group comparative study of autologous cultured cartilage ACC-01 with intra-articular injection treatment using sodium hyaluronate preparation for knee osteoarthritis. https://rctportal-niph-go-jp.translate.goog/s/detail/um?trial_id=UMIN000034801&_x_tr_sl=ja&_x_tr_tl=en&_x_tr_hl=en&_x_tr_pto=sc (2018).

  158. PR Newswire. FDA approves CartiHeal’s implant for the treatment of cartilage and osteochondral defects. prnewswire.com https://www.prnewswire.com/in/news-releases/fda-approves-cartiheal-s-implant-for-the-treatment-of-cartilage-and-osteochondral-defects-833871872.html#:~:Text=KFAR%20SABA%2C%20Israel%2C%20March%2030,its%20Agili%2DC%E2%84%A2%20implant (2022).

  159. Ocugen. Ocugen provides business update with fourth quarter and full year 2022 financial results. ocugen.com https://ir.ocugen.com/news-releases/news-release-details/ocugen-provides-business-update-fourth-quarter-and-full-year-0 (2023).

  160. Arzi, B. et al. Cartilage immunoprivilege depends on donor source and lesion location. Acta Biomater. 23, 72–81 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Vapniarsky, N. et al. Tissue engineering toward temporomandibular joint disc regeneration. Sci. Transl. Med. 10, eaaq1802 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  162. Chen, D. et al. Tissue engineered autologous cartilage-bone grafts for temporomandibular joint regeneration. Sci. Transl. Med. 12, eabb6683 (2020).

    Article  CAS  PubMed  Google Scholar 

  163. O’Leary, S. A. et al. Facet joints of the spine: structure–function relationships, problems and treatments, and the potential for regeneration. Annu. Rev. Biomed. Eng. 20, 145–170 (2018).

    Article  PubMed  Google Scholar 

  164. Nordberg, R. C. et al. Biochemical and biomechanical characterization of the cervical, thoracic, and lumbar facet joint cartilage in the Yucatan minipig. J. Biomech. 142, 111238 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  165. Murab, S. et al. Tissue engineering strategies for treating avascular necrosis of the femoral head. Bioengineering 8, 200 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Athanasiou, K. A., Rosenwasser, M. P., Buckwalter, J. A., Malinin, T. I. & Mow, V. C. Interspecies comparisons of in situ intrinsic mechanical properties of distal femoral cartilage. J. Orthop. Res. 9, 330–340 (1991).

    Article  CAS  PubMed  Google Scholar 

  167. Kohn, M. D., Sassoon, A. A. & Fernando, N. D. Classifications in brief: Kellgren–Lawrence classification of osteoarthritis. Clin. Orthop. Relat. Res. 474, 1886–1893 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  168. Kellgren, J. H. & Lawrence, J. S. Radiological assessment of osteo-arthrosis. Ann. Rheum. Dis. 16, 494–502 (1957).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Bothe, F. et al. Treatment of focal cartilage defects in minipigs with zonal chondrocyte/mesenchymal progenitor cell constructs. Int. J. Mol. Sci. 20, 653 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Steele, J. A. M. et al. In vitro and in vivo investigation of a zonal microstructured scaffold for osteochondral defect repair. Biomaterials 286, 121548 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Kutaish, H. et al. Articular cartilage repair after implantation of hyaline cartilage beads engineered from adult dedifferentiated chondrocytes: cartibeads preclinical efficacy study in a large animal model. Am. J. Sports Med. 51, 237–249 (2023).

    Article  PubMed  Google Scholar 

  172. Ruvinov, E., Tavor Re’em, T., Witte, F. & Cohen, S. Articular cartilage regeneration using acellular bioactive affinity-binding alginate hydrogel: a 6-month study in a mini-pig model of osteochondral defects. J. Orthop. Transl. 16, 40–52 (2019).

    Google Scholar 

  173. Brown, B. N. et al. Inductive remodeling of extracellular matrix scaffolds in the temporomandibular joint of pigs. Tissue Eng. Part A 28, 447–457 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Zhang, Y. et al. Human umbilical cord Wharton’s jelly mesenchymal stem cells combined with an acellular cartilage extracellular matrix scaffold improve cartilage repair compared with microfracture in a caprine model. Osteoarthr. Cartil. 26, 954–965 (2018).

    Article  CAS  Google Scholar 

  175. Wei, X. et al. Mesenchymal stem cell-loaded porous tantalum integrated with biomimetic 3D collagen-based scaffold to repair large osteochondral defects in goats. Stem Cell Res. Ther. 10, 72 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Rothrauff, B. B. et al. Point-of-care procedure for enhancement of meniscal healing in a goat model utilizing infrapatellar fat pad-derived stromal vascular fraction cells seeded in photocrosslinkable hydrogel. Am. J. Sports Med. 47, 3396–3405 (2019).

    Article  PubMed  Google Scholar 

  177. Critchley, S. et al. 3D printing of fibre-reinforced cartilaginous templates for the regeneration of osteochondral defects. Acta Biomater. 113, 130–143 (2020).

    Article  CAS  PubMed  Google Scholar 

  178. Jia, S. et al. Multilayered scaffold with a compact interfacial layer enhances osteochondral defect repair. ACS Appl. Mater. Interfaces 10, 20296–20305 (2018).

    Article  CAS  PubMed  Google Scholar 

  179. Cunniffe, G. M. et al. Tissue-specific extracellular matrix scaffolds for the regeneration of spatially complex musculoskeletal tissues. Biomaterials 188, 63–73 (2019).

    Article  CAS  PubMed  Google Scholar 

  180. Browe, D. C. et al. Promoting endogenous articular cartilage regeneration using extracellular matrix scaffolds. Mater. Today Bio 16, 100343 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Vukasovic, A. et al. Bioreactor-manufactured cartilage grafts repair acute and chronic osteochondral defects in large animal studies. Cell Prolif. 52, e12653 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  182. Keller, L. et al. Preclinical safety study of a combined therapeutic bone wound dressing for osteoarticular regeneration. Nat. Commun. 10, 2156 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  183. Patel, J. M., Ghodbane, S. A., Brzezinski, A., Gatt, C. J. J. & Dunn, M. G. Tissue-engineered total meniscus replacement with a fiber-reinforced scaffold in a 2-year ovine model. Am. J. Sports Med. 46, 1844–1856 (2018).

    Article  PubMed  Google Scholar 

  184. Yang, Z. et al. Microenvironmentally optimized 3D-printed TGFβ-functionalized scaffolds facilitate endogenous cartilage regeneration in sheep. Acta Biomater. 150, 181–198 (2022).

    Article  CAS  PubMed  Google Scholar 

  185. Mancini, I. A. D. et al. A composite hydrogel-3D printed thermoplast osteochondral anchor as example for a zonal approach to cartilage repair: in vivo performance in a long-term equine model. Biofabrication 12, 35028 (2020).

    Article  CAS  Google Scholar 

  186. Abe, K. et al. Engraftment of allogeneic iPS cell-derived cartilage organoid in a primate model of articular cartilage defect. Nat. Commun. 14, 804 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Matsushita, T. et al. A phase I/IIa clinical trial of third-generation autologous chondrocyte implantation (IK-01) for focal cartilage injury of the knee. Asia Pac. J. Sports Med. Arthrosc. Rehabil. Technol. 28, 6–12 (2022).

    PubMed  PubMed Central  Google Scholar 

  188. Copp, G., Robb, K. P. & Viswanathan, S. Culture-expanded mesenchymal stromal cell therapy: does it work in knee osteoarthritis? A pathway to clinical success. Cell Mol. Immunol. 20, 626–650 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Han, J.-Y. Medipost completes first dose of Cartistem in phase 3 clinical trials in Japan. Korea Economic Daily https://www.kedglobal.com/bio-pharma/newsView/ked202301170002 (2023).

  190. Buntz, B. Why medipost is upbeat about its stem cell-based treatment of osteoarthritis. Drug Discovery & Development https://www.drugdiscoverytrends.com/why-medipost-is-upbeat-about-stem-cell-based-treatment-of-osteoarthritis/ (2022).

  191. Medipost. MEDIPOST speeds up its global commercialization of CARTISTEM by requesting official product approval in Malaysia. medi-post.co.kr https://en.medi-post.co.kr/stem-cell-therapeutic/2021/03/36889/ (2021).

  192. Choi, N.-Y. et al. Gel-type autologous chondrocyte (Chondron) implantation for treatment of articular cartilage defects of the knee. BMC Musculoskelet. Disord. 11, 103 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  193. Kedage, V. V., Sanghavi, S. Y., Badnre, A. & Desai, N. S. Autologous chondrocyte implantation (ACI): an innovative technique for articular cartilage defects. J. Clin. Orthop. Trauma. 1, 33–36 (2010).

    Article  Google Scholar 

  194. J-TEC. Re-examination of autologous cultured cartilage “JACC”. jpte.co.jp https://www.jpte.co.jp/sys/upload/save/63378210962c394272708b.pdf (2022).

  195. Sternberg, C. Vericel shares accelerated launch timeline for MACI arthroscopic program. Orthopedic Design & Technology https://www.odtmag.com/contents/view_breaking-news/2023-01-11/vericel-shares-accelerated-launch-timeline-for-maci-arthroscopic-program/ (2023).

  196. Orthocell. OrthoACI. Autologous chondrocyte implantation. orthocell.com https://orthocell.com/wp-content/uploads/2023/02/OrthoACI-Consumer-Medicines-Information-IFU-0000116.pdf (2023).

  197. European Medicines Agency. Spherox: EPAR product information. ema.europa.eu https://www.ema.europa.eu/en/documents/product-information/spherox-epar-product-information_en.pdf (2017).

  198. Niemeyer, P. et al. A prospective, randomized, open-label, multicenter, phase III noninferiority trial to compare the clinical efficacy of matrix-associated autologous chondrocyte implantation with spheroid technology versus arthroscopic microfracture for cartilage defects. Orthop. J. Sports Med. 7, 2325967119854442 (2019).

    PubMed  PubMed Central  Google Scholar 

  199. Hoburg, A. et al. Matrix-associated autologous chondrocyte implantation with spheroid technology is superior to arthroscopic microfracture at 36 months regarding activities of daily living and sporting activities after treatment. Cartilage 13, 437S–448S (2021).

    Article  CAS  PubMed  Google Scholar 

  200. European Medicines Agency. Spherox: summary of the risk management plan. ema.europa.eu https://www.ema.europa.eu/en/documents/rmp-summary/spherox-epar-risk-management-plan-summary_en.pdf (2017).

  201. US Food and Drug Administration. PMA P210034: summary of safety and effectiveness data. fda.gov https://www.accessdata.fda.gov/cdrh_docs/pdf21/P210034B.pdf (2022).

  202. CartiHeal. CartiHeal receives FDA “Breakthrough Device Designation” for the novel Agili-C implant. CartiHeal.com https://www.cartiheal.com/bioventus-makes-15-million-equity-investment-in-cartiheal-with-an-agreed-option-structure-to-acquire-company-upon-milestone-achievements-https-ca-finance-yahoo-com-news-bioventus-makes-15-million-2/ (2020).

  203. US Food and Drug Administration. Premarket approval (PMA). fda.gov https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfpma/pma.cfm?id=P150017 (2016).

  204. Wang, L. et al. Key considerations on the development of biodegradable biomaterials for clinical translation of medical devices: With cartilage repair products as an example. Bioact. Mater. 9, 332–342 (2022).

    CAS  PubMed  Google Scholar 

  205. Geistlich. Chondro-Gide® articular cartilage cover: FDA approval as a breakthrough device. GeistlichPharma.com https://www.geistlich-pharma.com/about-us/news/news-detail/chondro-gider-articular-cartilage-cover-fda-approval-as-a-breakthrough-device (2021).

  206. Geistlich. AMIC® chondro-gide®. GeistlichPharma.com https://www.geistlich-pharma.com/orthopedic/cartilage-regeneration/amic-chondro-gide (2024).

  207. Anika. Anika completes enrollment in Hyalofast® U.S. pivotal phase III study achieving key milestone. anika.com https://ir.anika.com/2023-05-30-Anika-Completes-Enrollment-in-Hyalofast-R-U-S-Pivotal-Phase-III-Study-Achieving-Key-Milestone (2023).

  208. MiMedx. MIMEDX reports top-line data from two late-stage musculoskeletal trials with proprietary amniotic tissue technology. MiMedx.gcs-web.com https://mimedx.gcs-web.com/news-releases/news-release-details/mimedx-reports-top-line-data-two-late-stage-musculoskeletal (2021).

  209. Clavé, A. et al. Third-generation autologous chondrocyte implantation versus mosaicplasty for knee cartilage injury: 2-year randomized trial. J. Orthop. Res. 34, 658–665 (2016).

    Article  PubMed  Google Scholar 

  210. Chugai Pharmaceutical Co. Ltd. Chugai and TWOCELLS announce the decision of the termination of license agreement on investigational regenerative cellular medicine for knee chondrogenesis (gMSC®1). chugal-pharm.co.jp https://www.chugai-pharm.co.jp/english/news/detail/20230413150000_979.html (2023).

  211. Shahryari, A. et al. in Comprehensive Pharmacology (ed. Kenakin, T.) 2.16. 326–368 (Elsevier, 2022).

  212. Evans, C. H., Ghivizzani, S. C. & Robbins, P. D. Orthopaedic gene therapy twenty-five years on. JBJS Rev. 9, e20.00220 (2021).

    Article  Google Scholar 

  213. Cherian, J. J. et al. Preliminary results of a phase II randomized study to determine the efficacy and safety of genetically engineered allogeneic human chondrocytes expressing TGF-β1 in patients with grade 3 chronic degenerative joint disease of the knee. Osteoarthr. Cartil. 23, 2109–2118 (2015).

    Article  CAS  Google Scholar 

  214. Kim, K.-I. et al. Clinical efficacy and safety of the intra-articular injection of autologous adipose-derived mesenchymal stem cells for knee osteoarthritis: a phase III, randomized, double-blind, placebo-controlled trial. Am. J. Sports Med. 51, 2243–2253 (2023).

    Article  PubMed  Google Scholar 

  215. Han-soo, L.; Korea Biomedical Review. Regulators give final rejection for nature cell’s jointstem. Korea Biomed. Rev. https://www.koreabiomed.com/news/articleView.html?idxno=21443 (2023).

  216. Gomoll, A. H. et al. Safety and efficacy of an amniotic suspension allograft injection over 12 months in a single-blinded, randomized controlled trial for symptomatic osteoarthritis of the knee. Arthroscopy 37, 2246–2257 (2021).

    Article  PubMed  Google Scholar 

  217. Wolf, M. T. et al. Two-year follow-up and remodeling kinetics of ChonDux hydrogel for full-thickness cartilage defect repair in the knee. Cartilage 11, 447–457 (2020).

    Article  CAS  PubMed  Google Scholar 

  218. Bajuri, M. Y., Sabri, S., Mazli, N., Sarifulnizam, F. A. & Mohd Apandi, H. Osteochondral injury of the talus treated with cell-free hyaluronic acid-based scaffold (Hyalofast®) - a reliable solution. Cureus 13, e17928 (2021).

    PubMed  PubMed Central  Google Scholar 

  219. Anderson, D. E., Gridley, A. & Crawford, D. C. Next generation cartilage repair and the pre-arthroplasty patient. Oper. Tech. Sports Med. 30, 150956 (2022).

    Article  Google Scholar 

  220. Ocugen. Press release. Ocugen announces phase 3 confirmatory clinical trial agreement for Neocart®. occugen.com https://ir.ocugen.com/news-releases/news-release-details/ocugen-announces-phase-3-confirmatory-clinical-trial-agreement (2022).

Download references

Acknowledgements

This work was supported by the US National Institutes of Health (NIH) R01 AR067821 (K.A.A.), NIH R01 AR078389 (K.A.A.), NIH TL1 TR001415 (R.C.N.) and NIH F32 DE032896 (B.J.B.). The content is solely the responsibility of the authors and does not necessarily represent the official views of the NIH.

Author information

Authors and Affiliations

Authors

Contributions

R.C.N., B.J.B., T.T. and S.D. researched data for the article. All authors contributed substantially to discussion of the content. All authors wrote the article. R.C.N., B.J.B., J.C.H. and K.A.A reviewed and/or edited the manuscript before submission.

Corresponding author

Correspondence to Kyriacos A. Athanasiou.

Ethics declarations

Competing interests

K.A.A. and J.C.H. have an equity interest in Cartilage, Inc. Their relationship with Cartilage, Inc. has been reviewed and approved by the University of California, Irvine in accordance with its conflict-of-interest policies. The remaining authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Rheumatology thanks Adetola Adesida, who co-reviewed with Hilda Ma; Elizabeth Vinod; and the other, anonymous, reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

ARS Arthro Bioteknology: https://arsarthro.com.tr/en/products/cares/for-the-patients/

Australian Government Department of Health and Aged Care Therapeutic Goods Administration: https://www.tga.gov.au/products/australian-register-therapeutic-goods-artg

clinicaltrials.gov: https://clinicaltrials.gov

International Council for Harmonisation: https://www.ich.org/page/quality-guidelines

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nordberg, R.C., Bielajew, B.J., Takahashi, T. et al. Recent advancements in cartilage tissue engineering innovation and translation. Nat Rev Rheumatol 20, 323–346 (2024). https://doi.org/10.1038/s41584-024-01118-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41584-024-01118-4

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research