Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The clinical benefits of sodium–glucose cotransporter type 2 inhibitors in people with gout

Abstract

Gout is the most common form of inflammatory arthritis worldwide and is characterized by painful recurrent flares of inflammatory arthritis that are associated with a transiently increased risk of adverse cardiovascular events. Furthermore, gout is associated with multiple cardiometabolic–renal comorbidities such as type 2 diabetes, chronic kidney disease and cardiovascular disease. These comorbidities, potentially combined with gout flare-related inflammation, contribute to persistent premature mortality in gout, independently of serum urate concentrations and traditional cardiovascular risk factors. Although better implementation of standard gout care could improve gout outcomes, deliberate efforts to address the cardiovascular risk in patients with gout are likely to be required to reduce mortality. Sodium–glucose cotransporter type 2 (SGLT2) inhibitors are approved for multiple indications owing to their ability to lower the risk of all-cause and cardiovascular death, hospitalizations for heart failure and chronic kidney disease progression, making them an attractive treatment option for gout. These medications have also been shown to lower serum urate concentrations, the causal culprit in gout risk, and are associated with a reduced risk of incident and recurrent gout, potentially owing to their purported anti-inflammatory effects. Thus, SGLT2 inhibition could simultaneously address both the symptoms of gout and its comorbidities.

Key points

  • Sodium-glucose cotransporter type 2 (SGLT2) inhibitors have revolutionized the management of type 2 diabetes, heart failure and chronic kidney disease and have been incorporated into multiple subspecialty management guidelines.

  • SGLT2 inhibitors hold promise as an attractive multi-purpose treatment option for patients with gout to simultaneously address cardiometabolic–renal comorbidities and gout-related morbidity.

  • SGLT2 inhibitors have been shown to lower serum urate concentrations and the risk of incident and recurrent gout flares without apparently increasing the risk of paradoxical gout flares.

  • The exact mechanisms underlying the urate-lowering and anti-gout effects of SGLT2 inhibitors remain under active investigation but might involve enhanced uricosuria and anti-inflammatory pathways.

  • Although additional research is required to determine the role of SGLT2 inhibitors in gout management, available evidence suggests that these drugs have the potential to improve outcomes among patients with gout.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Potential urate-lowering and anti-inflammatory effects of SGLT2 inhibitors.

Similar content being viewed by others

References

  1. Choi, H. K., Mount, D. B. & Reginato, A. M. Pathogenesis of gout. Ann. Intern. Med. 143, 499–516 (2005).

    Article  CAS  PubMed  Google Scholar 

  2. Yokose, C. et al. Trends in prevalence of gout among US Asian adults, 2011–2018. JAMA Netw. Open 6, e239501 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  3. Xia, Y. et al. Global, regional and national burden of gout, 1990–2017: a systematic analysis of the Global Burden of Disease Study. Rheumatology 59, 1529–1538 (2020).

    Article  CAS  PubMed  Google Scholar 

  4. Elfishawi, M. M. et al. The rising incidence of gout and the increasing burden of comorbidities: a population-based study over 20 years. J. Rheumatol. 45, 574–579 (2018).

    Article  PubMed  Google Scholar 

  5. Safiri, S. et al. Prevalence, incidence, and years lived with disability due to gout and its attributable risk factors for 195 countries and territories 1990–2017: a systematic analysis of the global burden of disease study 2017. Arthritis Rheumatol. 72, 1916–1927 (2020).

    Article  CAS  PubMed  Google Scholar 

  6. Dehlin, M., Jacobsson, L. & Roddy, E. Global epidemiology of gout: prevalence, incidence, treatment patterns and risk factors. Nat. Rev. Rheumatol. 16, 380–390 (2020).

    Article  PubMed  Google Scholar 

  7. Edwards, N. L. Quality of care in patients with gout: why is management suboptimal and what can be done about it? Curr. Rheumatol. Rep. 13, 154–159 (2011).

    Article  PubMed  Google Scholar 

  8. Sarawate, C. A. et al. Gout medication treatment patterns and adherence to standards of care from a managed care perspective. Mayo Clin. Proc. 81, 925–934 (2006).

    Article  PubMed  Google Scholar 

  9. Neogi, T., Hunter, D. J., Chaisson, C. E., Allensworth-Davies, D. & Zhang, Y. Frequency and predictors of inappropriate management of recurrent gout attacks in a longitudinal study. J. Rheumatol. 33, 104–109 (2006).

    PubMed  Google Scholar 

  10. Chock, Y. P., Ross, J. S., Suter, L. G. & Rhee, T. G. Gout treatment in the USA from 2009 to 2016: a repeated cross-sectional analysis. J. Gen. Intern. Med. 36, 1134–1136 (2021).

    Article  PubMed  Google Scholar 

  11. Singh, J. A. & Cleveland, J. D. Time trends in opioid use disorder hospitalizations in gout, rheumatoid arthritis, fibromyalgia, osteoarthritis, and low back pain. J. Rheumatol. 48, 775–784 (2021).

    Article  PubMed  Google Scholar 

  12. Dalal, D. S. et al. Prescription opioid use among patients with acute gout discharged from the emergency department. Arthritis care Res. 72, 1163–1168 (2020).

    Article  Google Scholar 

  13. Jinno, S., Hasegawa, K., Neogi, T., Goto, T. & Dubreuil, M. Trends in emergency department visits and charges for gout in the United States between 2006 and 2012. J. Rheumatol. 43, 1589–1592 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Garg, R. et al. Gout-related health care utilization in US emergency departments, 2006 through 2008. Arthritis care Res. 65, 571–577 (2013).

    Article  Google Scholar 

  15. Lim, S. Y. et al. Trends in gout and rheumatoid arthritis hospitalizations in the United States, 1993–2011. J. Am. Med. Assoc. 315, 2345–2347 (2016).

    Article  CAS  Google Scholar 

  16. Rai, S. K. et al. Trends in gout and rheumatoid arthritis hospitalizations in Canada From 2000 to 2011. Arthritis care Res. 69, 758–762 (2017).

    Article  Google Scholar 

  17. Russell, M. D. et al. Rising incidence of acute hospital admissions due to gout. J. Rheumatol. 47, 619–623 (2020).

    Article  CAS  PubMed  Google Scholar 

  18. Dehlin, M. & Jacobsson, L. T. H. Trends in gout hospitalization in Sweden. J. Rheumatol. 45, 145–146 (2018).

    Article  PubMed  Google Scholar 

  19. Cipolletta, E. et al. Association Between gout flare and subsequent cardiovascular events among patients with gout. J. Am. Med. Assoc. 328, 440–450 (2022).

    Article  Google Scholar 

  20. Choi, H. K. & McCormick, N. Beyond joint pain, could each gout flare lead to heart attack? Nat. Rev. Rheumatol. 18, 619–620 (2022).

    Article  PubMed  Google Scholar 

  21. Zhu, Y., Pandya, B. J. & Choi, H. K. Comorbidities of gout and hyperuricemia in the US general population: NHANES 2007–2008. Am. J. Med. 125, 679–687.e1 (2012).

    Article  PubMed  Google Scholar 

  22. Kuo, C. F., Grainge, M. J., Mallen, C., Zhang, W. & Doherty, M. Comorbidities in patients with gout prior to and following diagnosis: case-control study. Ann. Rheum. Dis. 75, 210–217 (2016).

    Article  PubMed  Google Scholar 

  23. Choi, H. K. & Curhan, G. Independent impact of gout on mortality and risk for coronary heart disease. Circulation 116, 894–900 (2007).

    Article  PubMed  Google Scholar 

  24. Abbott, R. D., Brand, F. N., Kannel, W. B. & Castelli, W. P. Gout and coronary heart disease: the Framingham Study. J. Clin. Epidemiol. 41, 237–242 (1988).

    Article  CAS  PubMed  Google Scholar 

  25. Gupta, S. et al. The risk of cardiovascular disease among male and female participants treated for gout in the Multi-Ethnic Study of Atherosclerosis (MESA). Gout Urate Cryst. Depos. Dis. 1, 89–98 (2023).

    Article  Google Scholar 

  26. Bardin, T., Letavernier, E. & Correas, J.-M. The gouty kidney: a reappraisal. Gout Urate Cryst. Depos. Dis. 1, 25–36 (2023).

    Article  Google Scholar 

  27. Disveld, I. J. M. et al. Crystal-proven gout patients have an increased mortality due to cardiovascular diseases, cancer, and infectious diseases especially when having tophi and/or high serum uric acid levels: a prospective cohort study. Clin. Rheumatol. 38, 1385–1391 (2019).

    Article  PubMed  Google Scholar 

  28. Kuo, C. F. et al. Gout: an independent risk factor for all-cause and cardiovascular mortality. Rheumatology 49, 141–146 (2010).

    Article  PubMed  Google Scholar 

  29. Fisher, M. C., Rai, S. K., Lu, N., Zhang, Y. & Choi, H. K. The unclosing premature mortality gap in gout: a general population-based study. Ann. Rheum. Dis. 76, 1289–1294 (2017).

    Article  PubMed  Google Scholar 

  30. Marty-Ane, A. et al. Crystal deposition measured with dual-energy computed tomography: association with mortality and cardiovascular risks in gout. Rheumatology 60, 4855–4860 (2021).

    Article  CAS  PubMed  Google Scholar 

  31. McCormick, N. et al. Persistent premature mortality in gout: nationwide prospective cohort study [Abstract]. Ann. Rheum. Dis. 82, 436 (2023).

    Google Scholar 

  32. FitzGerald, J. D. et al. American College of Rheumatology guideline for the management of gout. Arthritis Care Res. 72, 744–760 (2020).

    Article  Google Scholar 

  33. Richette, P. et al. 2016 updated EULAR evidence-based recommendations for the management of gout. Ann. Rheum. Dis. 76, 29–42 (2017).

    Article  CAS  PubMed  Google Scholar 

  34. Doherty, M. et al. Nurse-led care versus general practitioner care of people with gout: a UK community-based randomised controlled trial. Ann. Rheum. Dis. https://doi.org/10.2139/ssrn.3221414 (2018).

  35. Becker, M. A., Schumacher, H. R., MacDonald, P. A., Lloyd, E. & Lademacher, C. Clinical efficacy and safety of successful longterm urate lowering with febuxostat or allopurinol in subjects with gout. J. Rheumatol. 36, 1273–1282 (2009).

    Article  CAS  PubMed  Google Scholar 

  36. Schumacher, H. R. Jr, Becker, M. A., Lloyd, E., MacDonald, P. A. & Lademacher, C. Febuxostat in the treatment of gout: 5-yr findings of the FOCUS efficacy and safety study. Rheumatology 48, 188–194 (2009).

    Article  CAS  PubMed  Google Scholar 

  37. Doherty, M. et al. Efficacy and cost-effectiveness of nurse-led care involving education and engagement of patients and a treat-to-target urate-lowering strategy versus usual care for gout: a randomised controlled trial. Lancet 392, 1403–1412 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Choi, H. K., McCormick, N. & Yokose, C. Excess comorbidities in gout: the causal paradigm and pleiotropic approaches to care. Nat. Rev. Rheumatol. 18, 97–111 (2022).

    Article  PubMed  Google Scholar 

  39. Mackenzie, I. S. et al. Long-term cardiovascular safety of febuxostat compared with allopurinol in patients with gout (FAST): a multicentre, prospective, randomised, open-label, non-inferiority trial. Lancet 396, 1745–1757 (2020).

    Article  CAS  PubMed  Google Scholar 

  40. Badve, S. V. et al. Effects of allopurinol on the progression of chronic kidney disease. N. Engl. J. Med. 382, 2504–2513 (2020).

    Article  CAS  PubMed  Google Scholar 

  41. Doria, A. et al. Serum urate lowering with allopurinol and kidney function in type 1 diabetes. N. Engl. J. Med. 382, 2493–2503 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. US Food and Drug Administration. FDA adds Boxed Warning for increased risk of death with gout medicine Uloric (febuxostat). https://www.fda.gov/drugs/drug-safety-and-availability/fda-adds-boxed-warning-increased-risk-death-gout-medicine-uloric-febuxostat (21 February 2019).

  43. McMullan, C. J., Borgi, L., Fisher, N., Curhan, G. & Forman, J. Effect of uric acid lowering on renin-angiotensin-system activation and ambulatory BP: a randomized controlled trial. Clin. J. Am. Soc. Nephrol. 12, 807–816 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Gaffo, A. L. et al. Effect of serum urate lowering with allopurinol on blood pressure in young adults: a randomized, controlled, crossover trial. Arthritis Rheumatol. 73, 1514–1522 (2021).

    Article  CAS  PubMed  Google Scholar 

  45. White, W. B. et al. Cardiovascular safety of febuxostat or allopurinol in patients with gout. N. Engl. J. Med. 378, 1200–1210 (2018).

    Article  CAS  PubMed  Google Scholar 

  46. Hare, J. M. et al. Impact of oxypurinol in patients with symptomatic heart failure. Results of the OPT-CHF study. J. Am. Coll. Cardiol. 51, 2301–2309 (2008).

    Article  CAS  PubMed  Google Scholar 

  47. Givertz, M. M. et al. Effects of xanthine oxidase inhibition in hyperuricemic heart failure patients: the xanthine oxidase inhibition for hyperuricemic heart failure patients (EXACT-HF) study. Circulation 131, 1763–1771 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Scheen, A. J. Sodium-glucose cotransporter type 2 inhibitors for the treatment of type 2 diabetes mellitus. Nat. Rev. Endocrinol. 16, 556–577 (2020).

    Article  PubMed  Google Scholar 

  49. Khunti, K. SGLT2 inhibitors in people with and without T2DM. Nat. Rev. Endocrinol. 17, 75–76 (2021).

    Article  CAS  PubMed  Google Scholar 

  50. ElSayed, N. A. et al. 9. pharmacologic approaches to glycemic treatment: standards of care in diabetes — 2023. Diabetes Care 46, S140–S157 (2023).

    Article  CAS  PubMed  Google Scholar 

  51. Davies, M. J. et al. Management of hyperglycemia in type 2 diabetes, 2018. a consensus report by the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD). Diabetes Care 41, 2669–2701 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  52. Kidney Disease: Improving Global Outcomes (KDGIO) Diabetes Work Group. KDIGO 2022 Clinical Practice Guideline for Diabetes Management in Chronic Kidney Disease. Kidney Int. 102, S1–S127 (2022).

    Article  Google Scholar 

  53. de Boer, I. H. et al. Diabetes management in chronic kidney disease: a consensus report by the American Diabetes Association (ADA) and Kidney Disease: Improving Global Outcomes (KDIGO). Diabetes Care 45, 3075–3090 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  54. Heidenreich, P. A. et al. AHA/ACC/HFSA guideline for the management of heart failure: a report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines. J. Am. Coll. Cardiol. 2022, e263–e421 (2022).

    Article  Google Scholar 

  55. Arnett, D. K. et al. ACC/AHA guideline on the primary prevention of cardiovascular disease: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. J. Am. Coll. Cardiol. 2019, e177–e232 (2019).

    Article  Google Scholar 

  56. US Food and Drug Administration. Highlights of Prescribing Information — Invokana. https://www.accessdata.fda.gov/drugsatfda_docs/label/2023/204042s040lbl.pdf (2023).

  57. US Food and Drug Administration. Highlights of Prescribing Information — Farxiga. https://www.accessdata.fda.gov/drugsatfda_docs/label/2023/202293s026lbl.pdf (2023).

  58. US Food and Drug Administration. Highlights of Prescribing Information — Jardiance. https://www.accessdata.fda.gov/drugsatfda_docs/label/2023/204629s040lbl.pdf (2023).

  59. Zhao, Y. et al. Effects of sodium-glucose co-transporter 2 (SGLT2) inhibitors on serum uric acid level: a meta-analysis of randomized controlled trials. Diabetes Obes. Metab. 20, 458–462 (2018).

    Article  CAS  PubMed  Google Scholar 

  60. Yip, A. S. Y. et al. Effect of sodium-glucose cotransporter-2 (SGLT2) inhibitors on serum urate levels in patients with and without diabetes: a systematic review and meta-regression of 43 randomized controlled trials. Ther. Adv. Chronic Dis. 13, 20406223221083509 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Hu, X. et al. Effects of sodium-glucose cotransporter 2 inhibitors on serum uric acid in patients with type 2 diabetes mellitus: a systematic review and network meta-analysis. Diabetes Obes. Metab. 24, 228–238 (2022).

    Article  CAS  PubMed  Google Scholar 

  62. Xin, Y. et al. Effects of sodium glucose cotransporter-2 inhibitors on serum uric acid in type 2 diabetes mellitus: a systematic review with an indirect comparison meta-analysis. Saudi J. Biol. Sci. 26, 421–426 (2019).

    Article  CAS  PubMed  Google Scholar 

  63. Doehner, W. et al. Uric acid and sodium-glucose cotransporter-2 inhibition with empagliflozin in heart failure with reduced ejection fraction: the EMPEROR-reduced trial. Eur. Heart J. 43, 3435–3446 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Packer, M. et al. Cardiovascular and renal outcomes with empagliflozin in heart failure. N. Engl. J. Med. 383, 1413–1424 (2020).

    Article  CAS  PubMed  Google Scholar 

  65. McMurray, J. J. V. et al. Dapagliflozin in patients with heart failure and reduced ejection fraction. N. Engl. J. Med. 381, 1995–2008 (2019).

    Article  CAS  PubMed  Google Scholar 

  66. McDowell, K. et al. Dapagliflozin reduces uric acid concentration, an independent predictor of adverse outcomes in DAPA-HF. Eur. J. Heart Fail. 24, 1066–1076 (2022).

    Article  CAS  PubMed  Google Scholar 

  67. Ferreira, J. P. et al. Empagliflozin and uric acid metabolism in diabetes: a post hoc analysis of the EMPA-REG OUTCOME trial. Diabetes Obes. Metab. 24, 135–141 (2022).

    Article  CAS  PubMed  Google Scholar 

  68. Zinman, B. et al. Empagliflozin, cardiovascular outcomes, and mortality in type 2 diabetes. N. Engl. J. Med. 373, 2117–2128 (2015).

    Article  CAS  PubMed  Google Scholar 

  69. Li, J. et al. The effects of canagliflozin on gout in type 2 diabetes: a post-hoc analysis of the CANVAS Program. Lancet Rheumatol. 1, e220–e228 (2019).

    Article  PubMed  Google Scholar 

  70. Neal, B. et al. Canagliflozin and cardiovascular and renal events in type 2 diabetes. N. Engl. J. Med. 377, 644–657 (2017).

    Article  CAS  PubMed  Google Scholar 

  71. Stack, A. G. et al. Dapagliflozin added to verinurad plus febuxostat further reduces serum uric acid in hyperuricemia: the QUARTZ Study. J. Clin. Endocrinol. Metab. 106, e2347–e2356 (2021).

    Article  PubMed  Google Scholar 

  72. Yokose C et al. Serum urate change among gout patients initiating sodium-glucose cotransporter type 2 inhibitors (SGLT2i) vs. sulfonylureas: a comparative effectiveness analysis [Abstract]. Arthritis Rheumatol. 2023;75.

  73. Vargas-Santos AB, Peloquin C, Kim SC, Neogi T. Sodium-glucose co-transporter-2 inhibitors and the risk for gout — a comparison among canagliflozin, dapagliflozin and empagliflozin [Abstract]. Arthritis Rheumatol. 2020;72.

  74. Butt, J. H. et al. Association of dapagliflozin use with clinical outcomes and the introduction of uric acid-lowering therapy and colchicine in patients with heart failure with and without gout: a patient-level pooled meta-analysis of DAPA-HF and DELIVER. JAMA Cardiol. 8, 386–393 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  75. Neogi, T. et al. 2015 Gout classification criteria: an American College of Rheumatology/European League Against Rheumatism collaborative initiative. Ann. Rheum. Dis. 74, 1789–1798 (2015).

    Article  CAS  PubMed  Google Scholar 

  76. Gaffo, A. L. et al. Brief Report: validation of a definition of flare in patients with established gout. Arthritis Rheumatol. 70, 462–467 (2018).

    Article  PubMed  Google Scholar 

  77. Fralick, M., Chen, S. K., Patorno, E. & Kim, S. C. Assessing the risk for gout with sodium-glucose cotransporter-2 inhibitors in patients with type 2 diabetes: a population-based cohort study. Ann. Intern. Med. 172, 186–194 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  78. Lund, L. C., Hojlund, M., Henriksen, D. P., Hallas, J. & Kristensen, K. B. Sodium-glucose cotransporter-2 inhibitors and the risk of gout: a Danish population based cohort study and symmetry analysis. Pharmacoepidemiol. Drug. Saf. 30, 1391–1395 (2021).

    Article  CAS  PubMed  Google Scholar 

  79. Chung, M. C. et al. Association of sodium-glucose transport protein 2 inhibitor use for type 2 diabetes and incidence of gout in Taiwan. JAMA Netw. Open 4, e2135353 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  80. Zhou, J. et al. Lower risk of gout in sodium glucose cotransporter 2 (SGLT2) inhibitors versus dipeptidyl peptidase-4 (DPP4) inhibitors in type-2 diabetes. Rheumatology 62, 1501–1510 (2023).

    Article  PubMed  Google Scholar 

  81. Yokose, C. et al. Risk of incident gout associated with initiation of sodium-glucose cotransporter-2 inhibitors versus other second-line agents among metformin users with type 2 diabetes [Abstract]. Ann. Rheum. Dis. 2023:171.

  82. Banerjee, M., Pal, R. & Mukhopadhyay, S. Can SGLT2 inhibitors prevent incident gout? A systematic review and meta-analysis. Acta Diabetol. 59, 783–791 (2022).

    Article  CAS  PubMed  Google Scholar 

  83. Bailey, C. J. Uric acid and the cardio-renal effects of SGLT2 inhibitors. Diabetes Obes. Metab. 21, 1291–1298 (2019).

    Article  CAS  PubMed  Google Scholar 

  84. Qaseem, A., Harris, R. P. & Forciea, M. A. Management of acute and recurrent gout: a clinical practice guideline from the American College of Physicians. Ann. Intern. Med. 166, 58–68 (2017).

    Article  PubMed  Google Scholar 

  85. McCormick, N. et al. Comparative effectiveness of sodium-glucose cotransporter-2 inhibitors for recurrent gout flares and gout-primary emergency department visits and hospitalizations : a general population cohort study. Ann. Intern. Med. 176, 1067–1080 (2023).

    Article  PubMed  Google Scholar 

  86. Choi, H. K., Zhang, Y. & Dalbeth, N. When underlying biology threatens the randomization principle - initial gout flares of urate-lowering therapy. Nat. Rev. Rheumatol. 18, 543–549 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  87. Wei, J. et al. Gout flares and mortality after sodium-glucose cotransporter-2 inhibitor treatment for gout and type 2 diabetes. JAMA Netw. Open 6, e2330885 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  88. Cowie, M. R. & Fisher, M. SGLT2 inhibitors: mechanisms of cardiovascular benefit beyond glycaemic control. Nat. Rev. Cardiol. 17, 761–772 (2020).

    Article  CAS  PubMed  Google Scholar 

  89. Zannad, F. et al. Effect of empagliflozin on circulating proteomics in heart failure: mechanistic insights into the EMPEROR programme. Eur. Heart J. 43, 4991–5002 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Ahmadieh, H. & Azar, S. Effects of sodium glucose cotransporter-2 inhibitors on serum uric acid in type 2 diabetes mellitus. Diabetes Technol. Ther. 19, 507–512 (2017).

    Article  CAS  PubMed  Google Scholar 

  91. Vallon, V. & Thomson, S. C. The tubular hypothesis of nephron filtration and diabetic kidney disease. Nat. Rev. Nephrol. 16, 317–336 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Nespoux, J. & Vallon, V. Renal effects of SGLT2 inhibitors: an update. Curr. Opin. Nephrol. Hypertens. 29, 190–198 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Dalbeth, N. et al. Gout. Nat. Rev. Dis. Primers 5, 69 (2019).

    Article  PubMed  Google Scholar 

  94. Novikov, A. et al. SGLT2 inhibition and renal urate excretion: role of luminal glucose, GLUT9, and URAT1. Am. J. Physiol. Renal Physiol. 316, F173–F185 (2019).

    Article  CAS  PubMed  Google Scholar 

  95. Quinones Galvan, A. et al. Effect of insulin on uric acid excretion in humans. Am. J. Physiol. 268, E1–E5 (1995).

    CAS  PubMed  Google Scholar 

  96. Cherney, D. Z., Odutayo, A., Aronson, R., Ezekowitz, J. & Parker, J. D. Sodium glucose cotransporter-2 inhibition and cardiorenal protection: JACC Review Topic of the Week. J. Am. Coll. Cardiol. 74, 2511–2524 (2019).

    Article  CAS  PubMed  Google Scholar 

  97. Muscelli, E. et al. Effect of insulin on renal sodium and uric acid handling in essential hypertension. Am. J. Hypertens. 9, 746–752 (1996).

    Article  CAS  PubMed  Google Scholar 

  98. Ter Maaten, J. C. et al. Renal handling of urate and sodium during acute physiological hyperinsulinaemia in healthy subjects. Clin. Sci. 92, 51–58 (1997).

    Article  Google Scholar 

  99. Facchini, F., Chen, Y. D., Hollenbeck, C. B. & Reaven, G. M. Relationship between resistance to insulin-mediated glucose uptake, urinary uric acid clearance, and plasma uric acid concentration. J. Am. Med. Assoc. 266, 3008–3011 (1991).

    Article  CAS  Google Scholar 

  100. McCormick, N. et al. Assessing the causal relationships between insulin resistance and hyperuricemia and gout using bidirectional mendelian randomization. Arthritis Rheumatol. 73, 2096–2104 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Elrakaybi, A., Laubner, K., Zhou, Q., Hug, M. J. & Seufert, J. Cardiovascular protection by SGLT2 inhibitors — do anti-inflammatory mechanisms play a role? Mol. Metab. 64, 101549 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Mancini, S. J. et al. Canagliflozin inhibits interleukin-1β-stimulated cytokine and chemokine secretion in vascular endothelial cells by AMP-activated protein kinase-dependent and -independent mechanisms. Sci. Rep. 8, 5276 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  103. Maayah, Z. H., Ferdaoussi, M., Takahara, S., Soni, S. & Dyck, J. R. B. Empagliflozin suppresses inflammation and protects against acute septic renal injury. Inflammopharmacology 29, 269–279 (2021).

    Article  CAS  PubMed  Google Scholar 

  104. Hawley, S. A. et al. The Na+/glucose cotransporter inhibitor canagliflozin activates AMPK by inhibiting mitochondrial function and increasing cellular AMP levels. Diabetes 65, 2784–2794 (2016).

    Article  CAS  PubMed  Google Scholar 

  105. Xu, J., Kitada, M., Ogura, Y., Liu, H. & Koya, D. Dapagliflozin restores impaired autophagy and suppresses inflammation in high glucose-treated HK-2 cells. Cells 10, 1457 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Theofilis, P. et al. The impact of SGLT2 inhibitors on inflammation: a systematic review and meta-analysis of studies in rodents. Int. Immunopharmacol. 111, 109080 (2022).

    Article  CAS  PubMed  Google Scholar 

  107. Scisciola, L. et al. Anti-inflammatory role of SGLT2 inhibitors as part of their anti-atherosclerotic activity: data from basic science and clinical trials. Front. Cardiovasc. Med. 9, 1008922 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Heerspink, H. J. L. et al. Canagliflozin reduces inflammation and fibrosis biomarkers: a potential mechanism of action for beneficial effects of SGLT2 inhibitors in diabetic kidney disease. Diabetologia 62, 1154–1166 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Byrne, N. J. et al. Empagliflozin blunts worsening cardiac dysfunction associated with reduced NLRP3 (Nucleotide-Binding Domain-Like Receptor Protein 3) inflammasome activation in heart failure. Circ. Heart Fail. 13, e006277 (2020).

    Article  CAS  PubMed  Google Scholar 

  110. Kim, S. R. et al. SGLT2 inhibition modulates NLRP3 inflammasome activity via ketones and insulin in diabetes with cardiovascular disease. Nat. Commun. 11, 2127 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Banerjee, M., Pal, R., Maisnam, I., Chowdhury, S. & Mukhopadhyay, S. Serum uric acid lowering and effects of sodium-glucose cotransporter-2 inhibitors on gout: a meta-analysis and meta-regression of randomized controlled trials. Diabetes Obes. Metab. 25, 2697–2703 (2023).

    Article  CAS  PubMed  Google Scholar 

  112. Zinman, B., Lachin, J. M. & Inzucchi, S. E. Empagliflozin, cardiovascular outcomes, and mortality in type 2 diabetes. N. Engl. J. Med. 374, 1094 (2016).

    PubMed  Google Scholar 

  113. Wanner, C., Inzucchi, S. E. & Zinman, B. Empagliflozin and progression of kidney disease in type 2 diabetes. N. Engl. J. Med. 375, 1801–1802 (2016).

    Article  PubMed  Google Scholar 

  114. Wiviott, S. D. et al. Dapagliflozin and cardiovascular outcomes in type 2 diabetes. N. Engl. J. Med. 380, 347–357 (2019).

    Article  CAS  PubMed  Google Scholar 

  115. Heerspink, H. J. L. et al. Dapagliflozin in patients with chronic kidney disease. N. Engl. J. Med. 383, 1436–1446 (2020).

    Article  CAS  PubMed  Google Scholar 

  116. Group, E.-K. C. et al. Empagliflozin in patients with chronic kidney disease. N. Engl. J. Med. 388, 117–127 (2022).

    Google Scholar 

  117. Anker, S. D. et al. Empagliflozin in heart failure with a preserved ejection fraction. N. Engl. J. Med. 385, 1451–1461 (2021).

    Article  CAS  PubMed  Google Scholar 

  118. Solomon, S. D. et al. Dapagliflozin in heart failure with mildly reduced or preserved ejection fraction. N. Engl. J. Med. 387, 1089–1098 (2022).

    Article  PubMed  Google Scholar 

  119. European Medicines Agency. Jardiance : EPAR - Product Information. https://www.ema.europa.eu/en/medicines/human/EPAR/jardiance#ema-inpage-item-product-info (accessed 29 January 2024).

  120. European Medicines Agency. Forxiga. https://www.ema.europa.eu/en/medicines/human/EPAR/forxiga (accessed 29 January 2024).

  121. European Medicines Agency. Invokana. https://www.ema.europa.eu/en/medicines/human/EPAR/invokana (accessed 29 January 2024).

  122. Roughley, M. J., Belcher, J., Mallen, C. D. & Roddy, E. Gout and risk of chronic kidney disease and nephrolithiasis: meta-analysis of observational studies. Arthritis Res. Ther. 17, 90 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  123. Liu, J. et al. Effects of SGLT2 inhibitors on UTIs and genital infections in type 2 diabetes mellitus: a systematic review and meta-analysis. Sci. Rep. 7, 2824 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  124. Gomez-Peralta, F. et al. Practical approach to initiating SGLT2 inhibitors in type 2 diabetes. Diabetes Ther. 8, 953–962 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Nauck, M. A. Update on developments with SGLT2 inhibitors in the management of type 2 diabetes. Drug. Des. Devel Ther. 8, 1335–1380 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  126. Vardeny, O. & Vaduganathan, M. Practical guide to prescribing sodium-glucose cotransporter 2 inhibitors for cardiologists. JACC Heart Fail. 7, 169–172 (2019).

    Article  PubMed  Google Scholar 

  127. Scheen, A. J. An update on the safety of SGLT2 inhibitors. Expert. Opin. Drug. Saf. 18, 295–311 (2019).

    Article  CAS  PubMed  Google Scholar 

  128. Banerjee, M., Maisnam, I., Pal, R. & Mukhopadhyay, S. Mineralocorticoid receptor antagonists with sodium-glucose co-transporter-2 inhibitors in heart failure: a meta-analysis. Eur. Heart J. 44, 3686–3696 (2023).

    Article  CAS  PubMed  Google Scholar 

  129. Chan, Y. H. et al. Association of acute increases in serum creatinine with subsequent outcomes in patients with type 2 diabetes mellitus treated with sodium-glucose cotransporter 2 inhibitor or dipeptidyl peptidase-4 inhibitor. Eur. Heart J. Qual. Care Clin. Outcomes 9, 397–407 (2023).

    PubMed  Google Scholar 

  130. US Food and Drug Administration. FDA drug safety communication: FDA confirms increased risk of leg and foot amputations with the diabetes medicine canagliflozin (Invokana, Invokamet, Invokamet XR). https://www.fda.gov/drugs/drug-safety-and-availability/fda-drug-safety-communication-fda-confirms-increased-risk-leg-and-foot-amputations-diabetes-medicine (accessed 4 May 2023).

  131. US Food and Drug Administration. FDA drug safety communication: FDA removes Boxed Warning about risk of leg and foot amputations for the diabetes medicine canagliflozin (Invokana, Invokamet, Invokamet XR). https://www.fda.gov/drugs/drug-safety-and-availability/fda-removes-boxed-warning-about-risk-leg-and-foot-amputations-diabetes-medicine-canagliflozin (accessed 4 May 4 2023).

  132. Rashid, N. et al. Patient and clinical characteristics associated with gout flares in an integrated healthcare system. Rheumatol. Int. 35, 1799–1807 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  133. Adhikari, R. et al. National trends in use of sodium-glucose cotransporter-2 inhibitors and glucagon-like peptide-1 receptor agonists by cardiologists and other specialties, 2015 to 2020. J. Am. Heart Assoc. 11, e023811 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Doehner, W. & Packer, M. Sodium-glucose cotransporter 2 inhibitor treatment lowers serum uric acid in patients with heart failure with reduced ejection fraction — lessons from clinical trials. Letter regarding the article ‘Dapagliflozin reduces uric acid concentration, an independent predictor of adverse outcomes in DAPA-HF’. Eur. J. Heart Fail. 24, 1993–1994 (2022).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank S. Tanikella for assistance in generating the figures included in this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

C.Y. and N.M. researched data for the article. C.Y. wrote the article. All authors contributed substantially to discussion of the content and reviewed and/or edited the manuscript before submission.

Corresponding author

Correspondence to Chio Yokose.

Ethics declarations

Competing interests

N.D. has received consulting fees, speaker fees or grants from Arthrosi, AstraZeneca, Dyve Biosciences, Hikma, Horizon, JPI, JW Pharmaceutical Corporation, LG Chem, Novartis, PK Med, Protalix, PTC Therapeutics, Selecta and Unlocked Labs, outside the submitted work. F.L. has received consulting fees from Horizon Biosciences, Mayoly Spindler, Novartis, Olatec and SOBI-Selecta, and unrestricted grants for the European Crystal Network workshops from Arthrosi, AstraZeneca, Dyve Biosciences, Horizon Biosciences, Mayoly Spindler and Olatec, outside the submitted work. A.G has served as consultant SOBI, PK Med and serves on a data monitoring committee for Atom Bioscience. J.L.J. is a Trustee of the American College of Cardiology and a board member of Imbria Pharmaceuticals; has received grant support from Abbott Diagnostics, Applied Therapeutics, HeartFlow, Innolife and Novartis; has received consulting income from Abbott Diagnostics, AstraZeneca, Beckman Coulter, Jana Care, Janssen, Novartis, Prevencio, Quidel and Roche Diagnostics; and participates in clinical end point committees/data safety monitoring boards for AbbVie, Abbott, Bayer, Siemens, Pfizer and Takeda, outside the submitted work. R.T. has served or serves as a consultant for Acquist Therapeutics, Allena, AstraZeneca, Atom Bioscience, Fortress/Urica, Generate Biomedicines, Horizon Therapeutics, LG Chem, Selecta Biosciences and Synlogic, and was a previous recipient of a research grant from AstraZeneca. R.T. serves as the non-salaried President of the G-CAN (Gout, Hyperuricemia and Crystal-Associated Disease Network) research society; over its 9 years of existence, G-CAN annually has received unrestricted arms-length grant support from pharma donors. D.J.W. serves on a data monitoring committee for Novo Nordisk, outside the submitted work. H.K.C. reports research support from Ironwood and Horizon, and consulting fees from Horizon, Ironwood, Kowa, Selecta, Takeda and Vaxart. M.E.S. receives research funding from AbbVie, Angion, Cabaletta, EMD-Serono, Gilead, Novartis, Otsuka and Roche; serves on scientific advisory boards for Calliditas, Mallinckrodt, Novartis, Travere and Vera; and serves as a DSMB member for Alpine Immunosciences. T.P. has received consulting and speaker fees from Novartis and consulting and research grants from Horizon Pharmaceuticals. C.Y., J.F., N.M. and A.A. declare no competing interests.

Peer review

Peer review information

Nature Reviews Rheumatology thanks Mainak Banerjee and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yokose, C., McCormick, N., Abhishek, A. et al. The clinical benefits of sodium–glucose cotransporter type 2 inhibitors in people with gout. Nat Rev Rheumatol 20, 216–231 (2024). https://doi.org/10.1038/s41584-024-01092-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41584-024-01092-x

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing