Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Shared inflammatory pathways of rheumatoid arthritis and atherosclerotic cardiovascular disease

Abstract

The association between chronic inflammation and increased risk of cardiovascular disease in rheumatoid arthritis (RA) is well established. In the general population, inflammation is an established independent risk factor for cardiovascular disease, and much interest is placed on controlling inflammation to reduce cardiovascular events. As inflammation encompasses numerous pathways, the development of targeted therapies in RA provides an opportunity to understand the downstream effect of inhibiting specific pathways on cardiovascular risk. Data from these studies can inform cardiovascular risk management in patients with RA, and in the general population. This Review focuses on pro-inflammatory pathways targeted by existing therapies in RA and with mechanistic data from the general population on cardiovascular risk. Specifically, the discussions include the IL-1, IL-6 and TNF pathways, as well as the Janus kinase (JAK)–signal transducer and activator of transcription (STAT) signalling pathway, and the role of these pathways in RA pathogenesis in the joint alongside the development of atherosclerotic cardiovascular disease. Overall, some robust data support inhibition of IL-1 and IL-6 in decreasing the risk of cardiovascular disease, with growing data supporting IL-6 inhibition in both patients with RA and the general population to reduce the risk of cardiovascular disease.

Key points

  • Rheumatoid arthritis (RA) and atherosclerotic cardiovascular disease share pro-inflammatory pathways that promote the pathogenesis of both conditions, including the IL-1 and IL-6 pathways.

  • Inflammation encompasses numerous pathways, and data from studies of targeted therapies developed for RA can provide insight into the potential effects of these therapies on cardiovascular risk.

  • Targeting IL-6 is considered more effective in controlling RA disease activity than targeting IL-1 and robust data also suggest that this therapy can reduce atherosclerotic cardiovascular disease risk in the general population.

  • Targeting some pro-inflammatory pathway(s), such as the TNF pathway, might be more beneficial than targeting others, such as JAK–STAT signalling, in reducing cardiovascular risk.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Shared inflammatory pathways of rheumatoid arthritis and atherosclerosis.

References

  1. McInnes, I. B. & Schett, G. The pathogenesis of rheumatoid arthritis. N. Engl. J. Med. 365, 2205–2219 (2011).

    Article  CAS  PubMed  Google Scholar 

  2. Smolen, J. S., Aletaha, D. & McInnes, I. B. Rheumatoid arthritis. Lancet 388, 2023–2038 (2016).

    Article  CAS  PubMed  Google Scholar 

  3. England, B. R. et al. Update of the American College of Rheumatology Recommended Rheumatoid Arthritis Disease Activity Measures. Arthritis Care Res. 71, 1540–1555 (2019).

    Article  Google Scholar 

  4. Arnett, D. K. et al. ACC/AHA Guideline on the primary prevention of cardiovascular disease: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. J. Am. Coll. Cardiol. 74, e177–e232 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Dawber, T. R., Moore, F. E. & Mann, G. V. II Coronary heart disease in the Framingham Study. Am. J. Public Health Nations Health 47, 4–24 (1957).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Ridker, P. M. et al. Antiinflammatory therapy with canakinumab for atherosclerotic disease. N. Engl. J. Med. 377, 1119–1131 (2017).

    Article  CAS  PubMed  Google Scholar 

  7. Tardif, J.-C. et al. Efficacy and safety of low-dose colchicine after myocardial infarction. N. Engl. J. Med. 381, 2497–2505 (2019).

    Article  CAS  PubMed  Google Scholar 

  8. Solomon, D. H. et al. Cardiovascular morbidity and mortality in women diagnosed with rheumatoid arthritis. Circulation 107, 1303–1307 (2003).

    Article  PubMed  Google Scholar 

  9. Aviña-Zubieta, J. A. et al. Risk of cardiovascular mortality in patients with rheumatoid arthritis: a meta-analysis of observational studies. Arthritis Rheum. 59, 1690–1697 (2008).

    Article  PubMed  Google Scholar 

  10. del Rincón, I., Freeman, G. L., Haas, R. W., O’Leary, D. H. & Escalante, A. Relative contribution of cardiovascular risk factors and rheumatoid arthritis clinical manifestations to atherosclerosis. Arthritis Rheum. 52, 3413–3423 (2005).

    Article  PubMed  Google Scholar 

  11. Myasoedova, E. et al. The role of rheumatoid arthritis (RA) flare and cumulative burden of RA severity in the risk of cardiovascular disease. Ann. Rheum. Dis. 75, 560–565 (2016).

    Article  CAS  PubMed  Google Scholar 

  12. del Rincón, I. et al. Systemic inflammation and cardiovascular risk factors predict rapid progression of atherosclerosis in rheumatoid arthritis. Ann. Rheum. Dis. 74, 1118–1123 (2015).

    Article  PubMed  Google Scholar 

  13. Yu, Z. et al. Association between inflammation and systolic blood pressure in RA compared to patients without RA. Arthritis Res. Ther. 20, 107 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Hansson, G. K., Robertson, A.-K. L. & Söderberg-Nauclér, C. Inflammation and atherosclerosis. Annu. Rev. Pathol. 1, 297–329 (2006).

    Article  CAS  PubMed  Google Scholar 

  15. Libby, P. Inflammation in atherosclerosis. Arterioscler. Thromb. Vasc. Biol. 32, 2045–2051 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Libby, P. et al. Atherosclerosis. Nat. Rev. Dis. Prim. 5, 56 (2019).

    Article  PubMed  Google Scholar 

  17. Provan, S. A. et al. The impact of newer biological disease modifying anti-rheumatic drugs on cardiovascular risk factors: a 12-month longitudinal study in rheumatoid arthritis patients treated with rituximab, abatacept and tocilizumab. PLoS One 10, e0130709 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Singh, S. et al. Comparative risk of cardiovascular events with biologic and synthetic disease-modifying antirheumatic drugs in patients with rheumatoid arthritis: a systematic review and meta-analysis. Arthritis Care Res. 72, 561–576 (2020).

    Article  CAS  Google Scholar 

  19. Solomon, D. H. et al. Explaining the cardiovascular risk associated with rheumatoid arthritis: traditional risk factors versus markers of rheumatoid arthritis severity. Ann. Rheum. Dis. 69, 1920–1925 (2010).

    Article  PubMed  Google Scholar 

  20. Ytterberg, S. R. et al. Cardiovascular and cancer risk with tofacitinib in rheumatoid arthritis. N. Engl. J. Med. 386, 316–326 (2022).

    Article  CAS  PubMed  Google Scholar 

  21. Dayer, J.-M., Oliviero, F. & Punzi, L. A brief history of IL-1 and IL-1 Ra in rheumatology. Front. Pharmacol. 8, 00293 (2017).

    Article  Google Scholar 

  22. Dayer, J. M., Graham, R., Russell, G. & Krane, S. M. Collagenase production by rheumatoid synovial cells: stimulation by a human lymphocyte factor. Science 195, 181–183 (1977).

    Article  CAS  PubMed  Google Scholar 

  23. Chan, A. H. & Schroder, K. Inflammasome signaling and regulation of interleukin-1 family cytokines. J. Exp. Med. 217, e20190314 (2019).

    Article  PubMed Central  Google Scholar 

  24. Akitsu, A. et al. IL-1 receptor antagonist-deficient mice develop autoimmune arthritis due to intrinsic activation of IL-17-producing CCR2+Vγ6+γδ T cells. Nat. Commun. 6, 7464 (2015).

    Article  CAS  PubMed  Google Scholar 

  25. Fraenkel, L. et al. American College of Rheumatology guideline for the treatment of rheumatoid arthritis. Arthritis Rheumatol. 73, 1108–1123 (2021).

    Article  PubMed  Google Scholar 

  26. Singh, J. A. et al. A network meta-analysis of randomized controlled trials of biologics for rheumatoid arthritis: a Cochrane overview. CMAJ 181, 787–796 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Choe, J.-Y., Crain, B., Wu, S. R. & Corr, M. Interleukin 1 receptor dependence of serum transferred arthritis can be circumvented by toll-like receptor 4 signaling. J. Exp. Med. 197, 537–542 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Wei, S., Kitaura, H., Zhou, P., Ross, F. P. & Teitelbaum, S. L. IL-1 mediates TNF-induced osteoclastogenesis. J. Clin. Invest. 115, 282–290 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Jh, K. et al. The mechanism of osteoclast differentiation induced by IL-1. J. Immunol. 183, 1862–1870 (2009).

    Article  Google Scholar 

  30. Schönbeck, U., Mach, F. & Libby, P. Generation of biologically active IL-1 β by matrix metalloproteinases: a novel caspase-1-independent pathway of IL-1 β processing. J. Immunol. 161, 3340–3346 (1998).

    Article  PubMed  Google Scholar 

  31. Ito, A. et al. Degradation of interleukin 1β by matrix metalloproteinases*. J. Biol. Chem. 271, 14657–14660 (1996).

    Article  CAS  PubMed  Google Scholar 

  32. Schiff, M. H. Role of interleukin 1 and interleukin 1 receptor antagonist in the mediation of rheumatoid arthritis. Ann. Rheum. Dis. 59, i103–i108 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Eastgate, J. et al. Correlation of plasma interleukin 1 levels with disease activity in rheumatoid arthritis. Lancet 332, 706–709 (1988).

    Article  Google Scholar 

  34. Abbate, A. et al. Interleukin-1 and the inflammasome as therapeutic targets in cardiovascular disease. Circ. Res. 126, 1260–1280 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Libby, P., Warner, S. J. & Friedman, G. B. Interleukin 1: a mitogen for human vascular smooth muscle cells that induces the release of growth-inhibitory prostanoids. J. Clin. Invest. 81, 487–498 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Bevilacqua, M. P., Pober, J. S., Wheeler, M. E., Cotran, R. S. & Gimbrone, M. A. Interleukin-1 activation of vascular endothelium. Effects on procoagulant activity and leukocyte adhesion. Am. J. Pathol. 121, 394–403 (1985).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Tanaka, T., Narazaki, M. & Kishimoto, T. IL-6 in inflammation, immunity, and disease. Cold Spring Harb. Perspect. Biol. 6, a016295 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Libby, P. Collagenases and cracks in the plaque. J. Clin. Invest. 123, 3201–3203 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Loppnow, H. & Libby, P. Proliferating or interleukin 1-activated human vascular smooth muscle cells secrete copious interleukin 6. J. Clin. Invest. 85, 731–738 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Vromman, A. et al. Stage-dependent differential effects of interleukin-1 isoforms on experimental atherosclerosis. Eur. Heart J. 40, 2482–2491 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Suzuki, K. et al. Overexpression of interleukin-1 receptor antagonist provides cardioprotection against ischemia-reperfusion injury associated with reduction in apoptosis. Circulation https://doi.org/10.1161/circ.104.suppl_1.I-308 (2001).

    Article  PubMed  Google Scholar 

  42. Del Buono, M. G. et al. Effect of interleukin-1 blockade with anakinra on leukocyte count in patients with ST-segment elevation acute myocardial infarction. Sci. Rep. 12, 1254 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Harouki, N. et al. The IL-1β antibody gevokizumab limits cardiac remodeling and coronary dysfunction in rats with heart failure. JACC Basic. Transl. Sci. 2, 418–430 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Morton, A. C. et al. The effect of interleukin-1 receptor antagonist therapy on markers of inflammation in non-ST elevation acute coronary syndromes: the MRC-ILA Heart Study. Eur. Heart J. 36, 377–384 (2015).

    Article  CAS  PubMed  Google Scholar 

  45. Abbate, A. et al. Interleukin-1 blockade with anakinra to prevent adverse cardiac remodeling after acute myocardial infarction (Virginia Commonwealth University Anakinra Remodeling Trial [VCU-ART] Pilot study). Am. J. Cardiol. 105, 1371–1377.e1 (2010).

    Article  CAS  PubMed  Google Scholar 

  46. Abbate, A. et al. Effects of interleukin-1 blockade with anakinra on adverse cardiac remodeling and heart failure after acute myocardial infarction [from the Virginia Commonwealth University-Anakinra Remodeling Trial (2) (VCU-ART2) pilot study]. Am. J. Cardiol. 111, 1394–1400 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Abbate, A. et al. Interleukin-1 blockade inhibits the acute inflammatory response in patients with ST-segment-elevation myocardial infarction. J. Am. Heart Assoc. 9, e014941 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Samsonov, M., Bogin, V., Van Tassell, B. W. & Abbate, A. Interleukin-1 blockade with RPH-104 in patients with acute ST-elevation myocardial infarction: study design and rationale. J. Transl. Med. 19, 169 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Abbate, A. et al. Comparative safety of interleukin-1 blockade with anakinra in patients with ST-segment elevation acute myocardial infarction (from the VCU-ART and VCU-ART2 pilot studies). Am. J. Cardiol. 115, 288–292 (2015).

    Article  CAS  PubMed  Google Scholar 

  50. Food and Drug Administration (FDA). KINERET® (anakinra) injection, for subcutaneous use https://www.accessdata.fda.gov/drugsatfda_docs/label/2020/103950s5189lbl.pdf (2020).

  51. McDermott, M. F. Rilonacept in the treatment of chronic inflammatory disorders. Drugs Today 45, 423–430 (2009).

    Article  CAS  Google Scholar 

  52. Alten, R. et al. Efficacy and safety of the human anti-IL-1β monoclonal antibody canakinumab in rheumatoid arthritis: results of a 12-week, phase II, dose-finding study. BMC Musculoskelet. Disord. 12, 153 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Ridker, P. M. et al. Antiinflammatory therapy with canakinumab for atherosclerotic disease. N. Engl. J. Med. 377, 1119–1131 (2017).

    Article  CAS  PubMed  Google Scholar 

  54. Ridker, P. M. et al. Relationship of C-reactive protein reduction to cardiovascular event reduction following treatment with canakinumab: a secondary analysis from the CANTOS randomised controlled trial. Lancet 391, 319–328 (2018).

    Article  CAS  PubMed  Google Scholar 

  55. Kishimoto, T. Factors affecting B-cell growth and differentiation. Annu. Rev. Immunol. 3, 133–157 (1985).

    Article  CAS  PubMed  Google Scholar 

  56. Kishimoto, T. The biology of interleukin-6. Blood 74, 1–10 (1989).

    Article  CAS  PubMed  Google Scholar 

  57. Hirano, T. et al. Complementary DNA for a novel human interleukin (BSF-2) that induces B lymphocytes to produce immunoglobulin. Nature 324, 73–76 (1986).

    Article  CAS  PubMed  Google Scholar 

  58. Boe, A., Baiocchi, M., Carbonatto, M., Papoian, R. & Serlupi-Crescenzi, O. Interleukin 6 knock-out mice are resistant to antigen-induced experimental arthritis. Cytokine 11, 1057–1064 (1999).

    Article  CAS  PubMed  Google Scholar 

  59. Kopf, M. et al. Impaired immune and acute-phase responses in interleukin-6-deficient mice. Nature 368, 339–342 (1994).

    Article  CAS  PubMed  Google Scholar 

  60. Tamura, T. et al. Soluble interleukin-6 receptor triggers osteoclast formation by interleukin 6. Proc. Natl Acad. Sci. USA 90, 11924–11928 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Heink, S. et al. Trans-presentation of IL-6 by dendritic cells is required for the priming of pathogenic TH17 cells. Nat. Immunol. 18, 74–85 (2017).

    Article  CAS  PubMed  Google Scholar 

  62. Jones, S. A. & Rose-John, S. The role of soluble receptors in cytokine biology: the agonistic properties of the sIL-6R/IL-6 complex. Biochim. Biophys. Acta Mol. Cell Res. 1592, 251–263 (2002).

    Article  CAS  Google Scholar 

  63. Madhok, R., Crilly, A., Watson, J. & Capell, H. A. Serum interleukin 6 levels in rheumatoid arthritis: correlations with clinical and laboratory indices of disease activity. Ann. Rheum. Dis. 52, 232–234 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Sack, U. et al. Interleukin-6 in synovial fluid is closely associated with chronic synovitis in rheumatoid arthritis. Rheumatol. Int. 13, 45–51 (1993).

    Article  CAS  PubMed  Google Scholar 

  65. Srirangan, S. & Choy, E. H. The role of interleukin 6 in the pathophysiology of rheumatoid arthritis. Ther. Adv. Musculoskelet. Dis. 2, 247–256 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Feng, W. et al. Combination of IL-6 and sIL-6R differentially regulate varying levels of RANKL-induced osteoclastogenesis through NF-κB, ERK and JNK signaling pathways. Sci. Rep. 7, 41411 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Kotake, S. et al. Interleukin-6 and soluble interleukin-6 receptors in the synovial fluids from rheumatoid arthritis patients are responsible for osteoclast-like cell formation. J. Bone Min. Res. 11, 88–95 (2009).

    Article  Google Scholar 

  68. Food and Drug Administration (FDA). Sarilumab FDA https://www.accessdata.fda.gov/drugsatfda_docs/nda/2017/761037orig1s000medr.pdf (2017).

  69. Food and Drug Administration (FDA). Toclizumab FDA https://www.accessdata.fda.gov/drugsatfda_docs/label/2017/125276s114lbl.pdf (2017).

  70. Weber, B. et al. Relationship between risk of atherosclerotic cardiovascular disease, inflammation, and coronary microvascular dysfunction in rheumatoid arthritis. J. Am. Heart Assoc. 11, e025467 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  71. Davies, R. et al. The role of interleukin-6 trans-signalling on cardiovascular dysfunction in inflammatory arthritis. Rheumatology 60, 2852–2861 (2021).

    Article  CAS  PubMed  Google Scholar 

  72. Souto, A. et al. Lipid profile changes in patients with chronic inflammatory arthritis treated with biologic agents and tofacitinib in randomized clinical trials: a systematic review and meta-analysis. Arthritis Rheumatol. 67, 117–127 (2015).

    Article  CAS  PubMed  Google Scholar 

  73. McInnes, I. B. et al. Effect of interleukin-6 receptor blockade on surrogates of vascular risk in rheumatoid arthritis: MEASURE, a randomised, placebo-controlled study. Ann. Rheum. Dis. 74, 694–702 (2015).

    Article  CAS  PubMed  Google Scholar 

  74. Albers, J. J., Slee, A., Fleg, J. L., O’Brien, K. D. & Marcovina, S. M. Relationship of baseline HDL subclasses, small dense LDL and LDL triglyceride to cardiovascular events in the AIM-HIGH clinical trial. Atherosclerosis 251, 454–459 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Pierini, F. S. et al. Effect of tocilizumab on LDL and HDL characteristics in patients with rheumatoid arthritis. An observational study. Rheumatol. Ther. 8, 803–815 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  76. Giles, J. T. et al. Cardiovascular safety of tocilizumab versus etanercept in rheumatoid arthritis: a randomized controlled trial. Arthritis Rheumatol. 72, 31–40 (2020).

    Article  CAS  PubMed  Google Scholar 

  77. Ridker, P. M. et al. Modulation of the interleukin-6 signalling pathway and incidence rates of atherosclerotic events and all-cause mortality: analyses from the Canakinumab Anti-Inflammatory Thrombosis Outcomes Study (CANTOS). Eur. Heart J. 39, 3499–3507 (2018).

    Article  CAS  PubMed  Google Scholar 

  78. Kleveland, O. et al. Effect of a single dose of the interleukin-6 receptor antagonist tocilizumab on inflammation and troponin T release in patients with non-ST-elevation myocardial infarction: a double-blind, randomized, placebo-controlled phase 2 trial. Eur. Heart J. 37, 2406–2413 (2016).

    Article  CAS  PubMed  Google Scholar 

  79. Broch, K. et al. Randomized trial of interleukin-6 receptor inhibition in patients with acute ST-segment elevation myocardial infarction. J. Am. Coll. Cardiol. 77, 1845–1855 (2021).

    Article  CAS  PubMed  Google Scholar 

  80. Ferreira, R. C. et al. Functional IL6R 358Ala allele impairs classical IL-6 receptor signaling and influences risk of diverse inflammatory diseases. PLoS Genet. 9, e1003444 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. IL6R Genetics Consortium Emerging Risk Factors Collaboration. et al. Interleukin-6 receptor pathways in coronary heart disease: a collaborative meta-analysis of 82 studies. Lancet 379, 1205–1213 (2012).

    Article  PubMed Central  Google Scholar 

  82. Ridker, P. M. & Rane, M. Interleukin-6 signaling and anti-interleukin-6 therapeutics in cardiovascular disease. Circ. Res. 128, 1728–1746 (2021).

    Article  CAS  PubMed  Google Scholar 

  83. Levin, M. G. et al. A missense variant in the IL-6 receptor and protection from peripheral artery disease. Circ. Res. 129, 968–970 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Interleukin-6 Receptor Mendelian Randomisation Analysis (IL6R MR) Consortium. et al. The interleukin-6 receptor as a target for prevention of coronary heart disease: a mendelian randomisation analysis. Lancet 379, 1214–1224 (2012).

    Article  Google Scholar 

  85. Cai, T. et al. Association of interleukin 6 receptor variant with cardiovascular disease effects of interleukin 6 receptor blocking therapy: a phenome-wide association study. JAMA Cardiol. 3, 849–857 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  86. Taylor, N.P. FDA panel snubs Johnson & Johnson’s rheumatoid arthritis drug sirukumab, citing worries about trial deaths https://www.fiercebiotech.com/biotech/fda-panel-snubs-johnson-johnson-s-rheumatoid-arthritis-drug-sirukumab-citing-worries-about (2017).

  87. Ridker, P. M. et al. IL-6 inhibition with ziltivekimab in patients at high atherosclerotic risk (RESCUE): a double-blind, randomised, placebo-controlled, phase 2 trial. Lancet 397, 2060–2069 (2021).

    Article  CAS  PubMed  Google Scholar 

  88. Aletaha, D. et al. Efficacy and safety of sirukumab in patients with active rheumatoid arthritis refractory to anti-TNF therapy (SIRROUND-T): a randomised, double-blind, placebo-controlled, parallel-group, multinational, phase 3 study. Lancet 389, 1206–1217 (2017).

    Article  CAS  PubMed  Google Scholar 

  89. Takeuchi, T. et al. Sirukumab for rheumatoid arthritis: the phase III SIRROUND-D study. Ann. Rheum. Dis. 76, 2001–2008 (2017).

    Article  CAS  PubMed  Google Scholar 

  90. Bartoli, F., Bae, S., Cometi, L., Matucci Cerinic, M. & Furst, D. E. Sirukumab for the treatment of rheumatoid arthritis: update on sirukumab, 2018. Expert. Rev. Clin. Immunol. 14, 539–547 (2018).

    Article  CAS  PubMed  Google Scholar 

  91. Ridker, P. M. et al. IL-6 inhibition with ziltivekimab in patients at high atherosclerotic risk (RESCUE): a double-blind, randomised, placebo-controlled, phase 2 trial. Lancet 397, 2060–2069 (2021).

    Article  CAS  PubMed  Google Scholar 

  92. Ridker, P. M. From RESCUE to ZEUS: will interleukin-6 inhibition with ziltivekimab prove effective for cardiovascular event reduction? Cardiovasc. Res. 117, e138–e140 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Gough, P. & Myles, I. A. Tumor necrosis factor receptors: pleiotropic signaling complexes and their differential effects. Front. Immunol. 11, 585880 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Yang, S., Wang, J., Brand, D. D. & Zheng, S. G. Role of TNF–TNF receptor 2 signal in regulatory T cells and its therapeutic implications. Front. Immunol. 9, 784 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  95. Smolen, J. S. et al. EULAR recommendations for the management of rheumatoid arthritis with synthetic and biological disease-modifying antirheumatic drugs: 2019 update. Ann. Rheum. Dis. 79, 685–699 (2020).

    Article  CAS  PubMed  Google Scholar 

  96. Li, P. & Schwarz, E. M. The TNF-α transgenic mouse model of inflammatory arthritis. Springe. Semin. Immunopathol. 25, 19–33 (2003).

    Article  Google Scholar 

  97. Keffer, J. et al. Transgenic mice expressing human tumour necrosis factor: a predictive genetic model of arthritis. EMBO J. 10, 4025–4031 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Feldmann, M., Brennan, F. M. & Maini, R. N. Rheumatoid arthritis. Cell 85, 307–310 (1996).

    Article  CAS  PubMed  Google Scholar 

  99. Brennan, F. M. & McInnes, I. B. Evidence that cytokines play a role in rheumatoid arthritis. J. Clin. Invest. 118, 3537–3545 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Dayer, J. M., Beutler, B. & Cerami, A. Cachectin/tumor necrosis factor stimulates collagenase and prostaglandin E2 production by human synovial cells and dermal fibroblasts. J. Exp. Med. 162, 2163–2168 (1985).

    Article  CAS  PubMed  Google Scholar 

  101. Bertolini, D. R., Nedwin, G. E., Bringman, T. S., Smith, D. D. & Mundy, G. R. Stimulation of bone resorption and inhibition of bone formation in vitro by human tumour necrosis factors. Nature 319, 516–518 (1986).

    Article  CAS  PubMed  Google Scholar 

  102. Nadkarni, S., Mauri, C. & Ehrenstein, M. R. Anti-TNF-α therapy induces a distinct regulatory T cell population in patients with rheumatoid arthritis via TGF-β. J. Exp. Med. 204, 33–39 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Ehrenstein, M. R. et al. Compromised function of regulatory T cells in rheumatoid arthritis and reversal by anti-TNFα therapy. J. Exp. Med. 200, 277–285 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Elliott, M. J. et al. Treatment of rheumatoid arthritis with chimeric monoclonal antibodies to tumor necrosis factor α. Arthritis Rheum. 36, 1681–1690 (1993).

    Article  CAS  PubMed  Google Scholar 

  105. Elliott, M. J. et al. Randomised double-blind comparison of chimeric monoclonal antibody to tumour necrosis factor α (cA2) versus placebo in rheumatoid arthritis. Lancet 344, 1105–1110 (1994).

    Article  CAS  PubMed  Google Scholar 

  106. Bathon, J. M. et al. A comparison of etanercept and methotrexate in patients with early rheumatoid arthritis. N. Engl. J. Med. 343, 1586–1593 (2000).

    Article  CAS  PubMed  Google Scholar 

  107. Weinblatt, M. E. et al. A trial of etanercept, a recombinant tumor necrosis factor receptor:Fc fusion protein, in patients with rheumatoid arthritis receiving methotrexate. N. Engl. J. Med. 340, 253–259 (1999).

    Article  CAS  PubMed  Google Scholar 

  108. van de Putte, L. B. A. et al. Efficacy and safety of adalimumab as monotherapy in patients with rheumatoid arthritis for whom previous disease modifying antirheumatic drug treatment has failed. Ann. Rheum. Dis. 63, 508–516 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  109. Keystone, E. C. et al. Golimumab, a human antibody to tumour necrosis factor α given by monthly subcutaneous injections, in active rheumatoid arthritis despite methotrexate therapy: the GO-FORWARD Study. Ann. Rheum. Dis. 68, 789–796 (2009).

    Article  CAS  PubMed  Google Scholar 

  110. Kirkham, B. W. et al. Effects of golimumab, an anti-tumour necrosis factor-α human monoclonal antibody, on lipids and markers of inflammation. Ann. Rheum. Dis. 73, 161–169 (2014).

    Article  CAS  PubMed  Google Scholar 

  111. Keystone, E. et al. Certolizumab pegol plus methotrexate is significantly more effective than placebo plus methotrexate in active rheumatoid arthritis: findings of a fifty-two-week, phase III, multicenter, randomized, double-blind, placebo-controlled, parallel-group study. Arthritis Rheum. 58, 3319–3329 (2008).

    Article  CAS  PubMed  Google Scholar 

  112. Barnabe, C., Martin, B.-J. & Ghali, W. A. Systematic review and meta-analysis: anti-tumor necrosis factor α therapy and cardiovascular events in rheumatoid arthritis. Arthritis Care Res. 63, 522–529 (2011).

    Article  CAS  Google Scholar 

  113. Dixon, W. G. et al. Reduction in the incidence of myocardial infarction in patients with rheumatoid arthritis who respond to anti–tumor necrosis factor α therapy: results from the British Society for Rheumatology Biologics Register. Arthritis Rheum. 56, 2905–2912 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Solomon, D. H. et al. The relationship of cardiovascular risk in rheumatoid arthritis comparing TNFα blockade with non-biologic DMARDs. Am. J. Med. 126, 730.e9–730.e17 (2013).

    Article  CAS  PubMed  Google Scholar 

  115. Low, A. S. L. et al. Relationship between exposure to tumour necrosis factor inhibitor therapy and incidence and severity of myocardial infarction in patients with rheumatoid arthritis. Ann. Rheum. Dis. 76, 654–660 (2017).

    Article  CAS  PubMed  Google Scholar 

  116. Solomon, D. H. et al. Reducing cardiovascular risk with immunomodulators: a randomised active comparator trial among patients with rheumatoid arthritis. Ann. Rheum. Dis. 82, 324–330 (2023).

    Article  CAS  PubMed  Google Scholar 

  117. Zhang, H. et al. Role of TNF-α in vascular dysfunction. Clin. Sci. 116, 219–230 (2009).

    Article  CAS  Google Scholar 

  118. Ridker, P. M. et al. Elevation of tumor necrosis factor-α and increased risk of recurrent coronary events after myocardial infarction. Circulation https://doi.org/10.1161/01.CIR.101.18.2149 (2000).

    Article  PubMed  Google Scholar 

  119. Hegewisch, S., Weh, H.-J. & Hossfeld, D. K. TNF-induced cardiomyopathy. Lancet 335, 294–295 (1990).

    Article  CAS  PubMed  Google Scholar 

  120. Yoshizumi, M., Perrella, M. A., Burnett, J. C. & Lee, M. E. Tumor necrosis factor downregulates an endothelial nitric oxide synthase mRNA by shortening its half-life. Circ. Res. 73, 205–209 (1993).

    Article  CAS  PubMed  Google Scholar 

  121. Goodwin, B. L., Pendleton, L. C., Levy, M. M., Solomonson, L. P. & Eichler, D. C. Tumor necrosis factor-alpha reduces argininosuccinate synthase expression and nitric oxide production in aortic endothelial cells. Am. J. Physiol. Heart Circ. Physiol. 293, H1115–H1121 (2007).

    Article  CAS  PubMed  Google Scholar 

  122. Hansson, G. K. & Libby, P. The immune response in atherosclerosis: a double-edged sword. Nat. Rev. Immunol. 6, 508–519 (2006).

    Article  CAS  PubMed  Google Scholar 

  123. Canault, M. et al. Exclusive expression of transmembrane TNF-alpha in mice reduces the inflammatory response in early lipid lesions of aortic sinus. Atherosclerosis 172, 211–218 (2004).

    Article  CAS  PubMed  Google Scholar 

  124. Ohta, H. et al. Disruption of tumor necrosis factor-α gene diminishes the development of atherosclerosis in ApoE-deficient mice. Atherosclerosis 180, 11–17 (2005).

    Article  CAS  PubMed  Google Scholar 

  125. Schreyer, S. A., Peschon, J. J. & LeBoeuf, R. C. Accelerated atherosclerosis in mice lacking tumor necrosis factor receptor p55. J. Biol. Chem. 271, 26174–26178 (1996).

    Article  CAS  PubMed  Google Scholar 

  126. Oberoi, R. et al. Anti-tumor necrosis factor-α therapy increases plaque burden in a mouse model of experimental atherosclerosis. Atherosclerosis 277, 80–89 (2018).

    Article  CAS  PubMed  Google Scholar 

  127. Chung, E. S. et al. Randomized, double-blind, placebo-controlled, pilot trial of infliximab, a chimeric monoclonal antibody to tumor necrosis factor-α, in patients with moderate-to-severe heart failure: results of the anti-TNF Therapy Against Congestive Heart Failure (ATTACH) trial. Circulation 107, 3133–3140 (2003).

    Article  CAS  PubMed  Google Scholar 

  128. Mann, D. L. et al. Targeted anticytokine therapy in patients with chronic heart failure: results of the randomized etanercept worldwide evaluation (RENEWAL). Circulation 109, 1594–1602 (2004).

    Article  CAS  PubMed  Google Scholar 

  129. Yokoyama, T. et al. Cellular basis for the negative inotropic effects of tumor necrosis factor-α in the adult mammalian heart. J. Clin. Invest. 92, 2303–2312 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Mann, D. L., Bozkurt, B., Torre-Amione, G., Soran, O. Z. & Sivasubramanian, N. Effect of the soluble TNF-antagonist etanercept on tumor necrosis factor bioactivity and stability. Clin. Transl. Sci. 1, 142–145 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. O’Shea, J. L. et al. The JAK-STAT pathway: impact on human disease and therapeutic intervention. Annu. Rev. Med. 66, 311–328 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  132. Seif, F. et al. The role of JAK-STAT signaling pathway and its regulators in the fate of T helper cells. Cell Commun. Signal. 15, 23 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  133. Hu, X., Li, J., Fu, M., Zhao, X. & Wang, W. The JAK/STAT signaling pathway: from bench to clinic. Sig. Transduct. Target. Ther. 6, 1–33 (2021).

    Article  Google Scholar 

  134. Malemud, C. J. Negative regulators of JAK/STAT signaling in rheumatoid arthritis and osteoarthritis. Int. J. Mol. Sci. 18, E484 (2017).

    Article  Google Scholar 

  135. Tanaka, Y., Luo, Y., O’Shea, J. J. & Nakayamada, S. Janus kinase-targeting therapies in rheumatology: a mechanisms-based approach. Nat. Rev. Rheumatol. 18, 133–145 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Taylor, N.P. FDA rejects Gilead’s would-be blockbuster filgotinib over toxicity concerns https://www.fiercebiotech.com/biotech/fda-rejects-gilead-s-would-be-blockbuster-filgotinib-over-toxicity-concerns (2020).

  137. Traves, P. G. et al. JAK selectivity and the implications for clinical inhibition of pharmacodynamic cytokine signalling by filgotinib, upadacitinib, tofacitinib and baricitinib. Ann. Rheum. Dis. 80, 865–875 (2021).

    Article  CAS  PubMed  Google Scholar 

  138. Burmester, G. R. et al. Tofacitinib (CP-690,550) in combination with methotrexate in patients with active rheumatoid arthritis with an inadequate response to tumour necrosis factor inhibitors: a randomised phase 3 trial. Lancet 381, 451–460 (2013).

    Article  CAS  PubMed  Google Scholar 

  139. Lee, E. B. et al. Tofacitinib versus methotrexate in rheumatoid arthritis. N. Engl. J. Med. 370, 2377–2386 (2014).

    Article  PubMed  Google Scholar 

  140. van Vollenhoven, R. F. et al. Tofacitinib or adalimumab versus placebo in rheumatoid arthritis. N. Engl. J. Med. 367, 508–519 (2012).

    Article  PubMed  Google Scholar 

  141. Burmester, G. R. et al. Safety and efficacy of upadacitinib in patients with rheumatoid arthritis and inadequate response to conventional synthetic disease-modifying anti-rheumatic drugs (SELECT-NEXT): a randomised, double-blind, placebo-controlled phase 3 trial. Lancet 391, 2503–2512 (2018).

    Article  CAS  PubMed  Google Scholar 

  142. Genovese, M. C. et al. Safety and efficacy of upadacitinib in patients with active rheumatoid arthritis refractory to biologic disease-modifying anti-rheumatic drugs (SELECT-BEYOND): a double-blind, randomised controlled phase 3 trial. Lancet 391, 2513–2524 (2018).

    Article  CAS  PubMed  Google Scholar 

  143. Charles-Schoeman, C. et al. Risk of major adverse cardiovascular events with tofacitinib versus tumour necrosis factor inhibitors in patients with rheumatoid arthritis with or without a history of atherosclerotic cardiovascular disease: a post hoc analysis from ORAL Surveillance. Ann. Rheum. Dis. 82, 119–129 (2023).

    Article  CAS  PubMed  Google Scholar 

  144. Kremer, J. et al. Tofacitinib in combination with nonbiologic disease-modifying antirheumatic drugs in patients with active rheumatoid arthritis. Ann. Intern. Med. 159, 253–261 (2013).

    Article  PubMed  Google Scholar 

  145. Kume, K. et al. Tofacitinib improves atherosclerosis despite up-regulating serum cholesterol in patients with active rheumatoid arthritis: a cohort study. Rheumatol. Int. 37, 2079–2085 (2017).

    Article  CAS  PubMed  Google Scholar 

  146. Charles‐Schoeman, C. et al. Potential mechanisms leading to the abnormal lipid profile in patients with rheumatoid arthritis versus healthy volunteers and reversal by tofacitinib. Arthritis Rheumatol. 67, 616–625 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  147. Charles-Schoeman, C. et al. Cardiovascular safety findings in patients with rheumatoid arthritis treated with tofacitinib, an oral Janus kinase inhibitor. Semin. Arthritis Rheum. 46, 261–271 (2016).

    Article  CAS  PubMed  Google Scholar 

  148. Xie, W. et al. Impact of Janus kinase inhibitors on risk of cardiovascular events in patients with rheumatoid arthritis: systematic review and meta-analysis of randomised controlled trials. Ann. Rheum. Dis. 78, 1048–1054 (2019).

    Article  CAS  PubMed  Google Scholar 

  149. Khosrow-Khavar, F., Kim, S. C., Lee, H., Lee, S. B. & Desai, R. J. Tofacitinib and risk of cardiovascular outcomes: results from the Safety of TofAcitinib in Routine care patients with Rheumatoid Arthritis (STAR-RA) study. Ann. Rheum. Dis. 81, 798–804 (2022).

    Article  CAS  PubMed  Google Scholar 

  150. Winthrop, K. L. & Cohen, S. B. Oral surveillance and JAK inhibitor safety: the theory of relativity. Nat. Rev. Rheumatol. 18, 301–304 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Misra, D. P., Pande, G. & Agarwal, V. Cardiovascular risks associated with Janus kinase inhibitors: peering outside the black box. Clin. Rheumatol. 42, 621–632 (2023).

    Article  PubMed  Google Scholar 

  152. Garbers, C., Aparicio-Siegmund, S. & Rose-John, S. The IL-6/gp130/STAT3 signaling axis: recent advances towards specific inhibition. Curr. Opin. Immunol. 34, 75–82 (2015).

    Article  CAS  PubMed  Google Scholar 

  153. Ivashkiv, L. B. IFNγ: signalling, epigenetics and roles in immunity, metabolism, disease and cancer immunotherapy. Nat. Rev. Immunol. 18, 545–558 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Hilfiker-Kleiner, D. et al. Signal transducer and activator of transcription 3 is required for myocardial capillary growth, control of interstitial matrix deposition, and heart protection from ischemic injury. Circ. Res. 95, 187–195 (2004).

    Article  CAS  PubMed  Google Scholar 

  155. Yue, H., Li, W., Desnoyer, R. & Karnik, S. S. Role of nuclear unphosphorylated STAT3 in angiotensin II type 1 receptor-induced cardiac hypertrophy. Cardiovasc. Res. 85, 90–99 (2010).

    Article  CAS  PubMed  Google Scholar 

  156. Krishnamurthy, P. et al. IL-10 inhibits inflammation and attenuates left ventricular remodeling after myocardial infarction via activation of STAT-3 and suppression of HuR. Circ. Res. 104, e9–e18 (2009).

    Article  CAS  PubMed  Google Scholar 

  157. Plens-Galaska, M. et al. Genome-wide inhibition of pro-atherogenic gene expression by multi-STAT targeting compounds as a novel treatment strategy of CVDs. Front. Immunol. 9, 2141 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  158. Weinblatt, M. E. Methotrexate in rheumatoid arthritis: a quarter century of development. Trans. Am. Clin. Climatol. Assoc. 124, 16–25 (2013).

    PubMed  PubMed Central  Google Scholar 

  159. Cronstein, B. N. & Aune, T. M. Methotrexate and its mechanisms of action in inflammatory arthritis. Nat. Rev. Rheumatol. 16, 145–154 (2020).

    Article  CAS  PubMed  Google Scholar 

  160. Bobillo, S. et al. Prophylaxis with intrathecal or high-dose methotrexate in diffuse large B-cell lymphoma and high risk of CNS relapse. Blood Cancer J. 11, 1–6 (2021).

    Article  Google Scholar 

  161. Morgan, S. L. et al. Supplementation with folic acid during methotrexate therapy for rheumatoid arthritis. A double-blind, placebo-controlled trial. Ann. Intern. Med. 121, 833–841 (1994).

    Article  CAS  PubMed  Google Scholar 

  162. Everett, B. M. et al. Rationale and design of the cardiovascular inflammation reduction trial (CIRT): a test of the inflammatory hypothesis of atherothrombosis. Am. Heart J. 166, 199–207.e15 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  163. Black, R. L. et al. Methotrexate therapy in psoriatic arthritis; double-blind study on 21 patients. J. Am. Med. Assoc. 189, 743–747 (1964).

    Article  CAS  Google Scholar 

  164. Weinblatt, M. E. et al. Efficacy of low-dose methotrexate in rheumatoid arthritis. N. Engl. J. Med. 312, 818–822 (1985).

    Article  CAS  PubMed  Google Scholar 

  165. Thompson, R. N., Watts, C., Edelman, J., Esdaile, J. & Russell, A. S. A controlled two-centre trial of parenteral methotrexate therapy for refractory rheumatoid arthritis. J. Rheumatol. 11, 760–763 (1984).

    CAS  PubMed  Google Scholar 

  166. Weinblatt, M. E. Methotrexate: who would have predicted its importance in rheumatoid arthritis? Arthritis Res. Ther. 20, 103 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  167. Charles-Schoeman, C. et al. Improvement of high-density lipoprotein function in patients with early rheumatoid arthritis treated with methotrexate monotherapy or combination therapies in a randomized controlled trial. Arthritis Rheumatol. 69, 46–57 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Ristić, G. G. et al. Rheumatoid arthritis is an independent risk factor for increased carotid intima-media thickness: impact of anti-inflammatory treatment. Rheumatology 49, 1076–1081 (2010).

    Article  PubMed  Google Scholar 

  169. Micha, R. et al. Systematic review and meta-analysis of methotrexate use and risk of cardiovascular disease. Am. J. Cardiol. 108, 1362–1370 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Ridker, P. M. et al. Antiinflammatory therapy with canakinumab for atherosclerotic disease. N. Engl. J. Med. 377, 1119–1131 (2017).

    Article  CAS  PubMed  Google Scholar 

  171. Ridker, P. M. et al. Low-dose methotrexate for the prevention of atherosclerotic events. N. Engl. J. Med. 380, 752–762 (2019).

    Article  CAS  PubMed  Google Scholar 

  172. Desai, R. J., Dejene, S., Jin, Y., Liu, J. & Kim, S. C. Comparative risk of diabetes mellitus in patients with rheumatoid arthritis treated with biologic or targeted synthetic disease-modifying drugs: a cohort study. ACR Open Rheumatol. 2, 222–231 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  173. Kang, E. H. et al. Comparative cardiovascular risk of abatacept and tumor necrosis factor inhibitors in patients with rheumatoid arthritis with and without diabetes mellitus: a multidatabase cohort study. J. Am. Heart Assoc. 7, e007393 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  174. Grebe, A., Hoss, F. & Latz, E. NLRP3 inflammasome and the IL-1 pathway in atherosclerosis. Circ. Res. 122, 1722–1740 (2018).

    Article  CAS  PubMed  Google Scholar 

  175. Duewell, P. et al. NLRP3 inflammasomes are required for atherogenesis and activated by cholesterol crystals. Nature 464, 1357–1361 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Lamkanfi, M. & Dixit, V. M. Mechanisms and functions of inflammasomes. Cell 157, 1013–1022 (2014).

    Article  CAS  PubMed  Google Scholar 

  177. Leung, Y. Y., Yao Hui, L. L. & Kraus, V. B. Colchicine — update on mechanisms of action and therapeutic uses. Semin. Arthritis Rheum. 45, 341–350 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Nidorf, S. M. et al. Colchicine in patients with chronic coronary disease. N. Engl. J. Med. 383, 1838–1847 (2020).

    Article  CAS  PubMed  Google Scholar 

  179. Weber, B. N. & Blankstein, R. Something old, something new: a paradigm for considering immune therapies for cardiovascular disease. Cardiovasc. Res. 116, e51–e53 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Clark, W., Jobanputra, P., Barton, P. & Burls, A. The clinical and cost-effectiveness of anakinra for the treatment of rheumatoid arthritis in adults: a systematic review and economic analysis. Health Technol. Assess. 8, 1–105 (2004).

    Article  Google Scholar 

  181. Libby, P. & Rocha, V. Z. All roads lead to IL-6: a central hub of cardiometabolic signaling. Int. J. Cardiol. 259, 213–215 (2018).

    Article  PubMed  Google Scholar 

  182. Ikonomidis, I. et al. Differential effects of inhibition of interleukin 1 and 6 on myocardial, coronary and vascular function. Clin. Res. Cardiol. 108, 1093–1101 (2019).

    Article  CAS  PubMed  Google Scholar 

  183. Gencer, S., Evans, B. R., van der Vorst, E. P. C., Döring, Y. & Weber, C. Inflammatory chemokines in atherosclerosis. Cells 10, 226 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Carroll, M. B., Haller, C. & Smith, C. Short-term application of tocilizumab during myocardial infarction (STAT-MI). Rheumatol. Int. 38, 59–66 (2018).

    Article  CAS  PubMed  Google Scholar 

  185. Kleveland, O. et al. Interleukin-6 receptor inhibition with tocilizumab induces a selective and substantial increase in plasma IP-10 and MIP-1β in non-ST-elevation myocardial infarction. Int. J. Cardiol. 271, 1–7 (2018).

    Article  PubMed  Google Scholar 

  186. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT05350592 (2023).

Download references

Acknowledgements

The authors would like to acknowledge the following grant funding support: BNW, National Institutes of Health (NIH) K23 HL159276-01 and the American Heart Association 21CDA851511; KPL NIH R01 HL127118, the Harold and DuVal Bowen Fund and the Be Brave Fund.

Author information

Authors and Affiliations

Authors

Contributions

K.P.L. and B.N.W. researched data for the article. All authors contributed substantially to discussion of the content, wrote the article and reviewed and/or edited the manuscript before submission.

Corresponding author

Correspondence to Katherine P. Liao.

Ethics declarations

Competing interests

J.T.G. has consulted for AbbVie, Bristol Myers Squibb, Eli Lilly, Gilead, Novartis, Pfizer and UCB. J.T.G. served as a co-author on secondary analyses for studies from the ORAL Surveillance study for which he received no compensation. B.N.W. has consulted for Horizon Therapeutics, Kinisika and NovoNordisk. K.P.L. declares no competing interests.

Peer review

Peer review information

Nature Reviews Rheumatology thanks M. Nurmohamed, D. Misra and P. Dessein for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Weber, B.N., Giles, J.T. & Liao, K.P. Shared inflammatory pathways of rheumatoid arthritis and atherosclerotic cardiovascular disease. Nat Rev Rheumatol 19, 417–428 (2023). https://doi.org/10.1038/s41584-023-00969-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41584-023-00969-7

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing