Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Matrix metalloproteinases in arthritis: towards precision medicine

Abstract

Proteolysis of structural molecules of the extracellular matrix (ECM) is an irreversible post-translational modification in all arthropathies. Common joint disorders, including osteoarthritis and rheumatoid arthritis, have been associated with increased levels of matrix remodelling enzymes, including matrix metalloproteinases (MMPs). MMPs, in concert with other host proteinases and glycanases, destroy proteoglycans, collagens and other ECM molecules. MMPs may also control joint remodelling indirectly by signalling through cell-surface receptors or by proteolysis of cytokines and receptor molecules. After synthesis as pro-forms, MMPs can be activated by various types of post-translational modifications, including proteolysis. Once activated, MMPs are controlled by general and specific tissue inhibitors of metalloproteinases (TIMPs). In rheumatoid arthritis, proteolysis of the ECM results in so-called remnant epitopes that enhance and perpetuate autoimmune processes in susceptible hosts. In osteoarthritis, the considerable production of MMP-13 by chondrocytes, often concurrent with mechanical overload, is a key event. Hence, information about the regulation, timing, localization and activities of MMPs in specific disease phases and arthritic entities will help to develop better diagnostics. Insights into beneficial and detrimental effects of MMPs on joint tissue inflammation are also necessary to plan and execute (pre)clinical studies for better therapy and precision medicine with MMP inhibitors. With the advances in proteomics and single-cell transcriptomics, two critical points need attention: neglected neutrophil MMP biology, and the analysis of net proteolytic activities as the result of balances between MMPs and their inhibitors.

Key points

  • After activation of pro-matrix metalloproteinases (pro-MMPs) via various post-translational modifications, MMPs irreversibly digest structural proteins in joint tissues.

  • In rheumatoid arthritis, MMPs from neutrophils and pannus tissue cleave cartilage glycoproteins into remnant epitopes that enhance autoimmune processes and thereby contribute to rheumatoid arthritis pathogenesis in susceptible hosts.

  • MMPs from chondrocytes in concerted action with other metalloproteinases contribute to degenerative osteoarthritis.

  • Detection of proteoforms of MMPs from various cellular sources in blood and synovial fluids can inform the diagnosis of rheumatic diseases.

  • Clinical use of MMP inhibitors first requires firm proof of the causal effects of MMPs and knowledge about the cells and molecules involved in specific arthritis entities.

  • Development of precision diagnostics and therapeutics will be aided by the use of large data sets of analytes and patient cohorts and the integration of multi-omics data.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Timeline of MMP discoveries related to arthritis research.
Fig. 2: Comparison of major producer cell types, MMPs and TIMPs in normal, RA and OA synovium.
Fig. 3: Post-translational modifications as control of MMP activities in arthritis.

Similar content being viewed by others

References

  1. Barbour, K. E., Helmick, C. G., Boring, M. & Brady, T. J. Vital signs: prevalence of doctor-diagnosed arthritis and arthritis-attributable activity limitation – United States, 2013–2015. MMWR Morb. Mortal. Wkly. Rep. 66, 246–253 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  2. Gross, J. & Lapière, C. M. Collagenolytic activity in amphibian tissues: a tissue culture assay. Proc. Natl Acad. Sci. USA 48, 1014–1022 (1962).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Woessner, J. F. Jr. Matrix metalloproteinases and their inhibitors in connective tissue remodeling. FASEB J. 5, 2145–2154 (1991).

    Article  CAS  PubMed  Google Scholar 

  4. Massova, I., Kotra, L. P., Fridman, R. & Mobashery, S. Matrix metalloproteinases: structures, evolution, and diversification. FASEB J. 12, 1075–1095 (1998).

    Article  CAS  PubMed  Google Scholar 

  5. Colige, A. et al. Novel types of mutation responsible for the dermatosparactic type of Ehlers-Danlos syndrome (Type VIIC) and common polymorphisms in the ADAMTS2 gene. J. Invest. Dermatol. 123, 656–663 (2004).

    Article  CAS  PubMed  Google Scholar 

  6. Van Wart, H. E. & Birkedal-Hansen, H. The cysteine switch: a principle of regulation of metalloproteinase activity with potential applicability to the entire matrix metalloproteinase gene family. Proc. Natl Acad. Sci. USA 87, 5578–5582 (1990).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Hu, J., Van den Steen, P. E., Sang, Q. X. & Opdenakker, G. Matrix metalloproteinase inhibitors as therapy for inflammatory and vascular diseases. Nat. Rev. Drug Discov. 6, 480–498 (2007).

    Article  CAS  PubMed  Google Scholar 

  8. Boon, L., Ugarte-Berzal, E., Vandooren, J. & Opdenakker, G. Protease propeptide structures, mechanisms of activation, and functions. Crit. Rev. Biochem. Mol. Biol. 55, 111–165 (2020).

    Article  CAS  PubMed  Google Scholar 

  9. Vandooren, J., Geurts, N., Martens, E., Van den Steen, P. E. & Opdenakker, G. Zymography methods for visualizing hydrolytic enzymes. Nat. Methods 10, 211–220 (2013).

    Article  CAS  PubMed  Google Scholar 

  10. Rikimaru, A. et al. Establishment of an MT4-MMP-deficient mouse strain representing an efficient tracking system for MT4-MMP/MMP-17 expression in vivo using beta-galactosidase. Genes Cell 12, 1091–1100 (2007).

    Article  CAS  Google Scholar 

  11. Cheng, L. et al. Identification of novel compound heterozygous variants of MMP9 in fetus with metaphyseal anadysplasia type 2. Front. Genet. 13, 938457 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Boxhoorn, L. et al. Acute pancreatitis. Lancet 396, 726–734 (2020).

    Article  PubMed  Google Scholar 

  13. De Palma, A. M. et al. Inflammatory rather than infectious insults play a role in exocrine tissue damage in a mouse model for coxsackievirus B4-induced pancreatitis. J. Pathol. 217, 633–641 (2009).

    Article  PubMed  Google Scholar 

  14. Khokha, R., Murthy, A. & Weiss, A. Metalloproteinases and their natural inhibitors in inflammation and immunity. Nat. Rev. Immunol. 13, 649–665 (2013).

    Article  CAS  PubMed  Google Scholar 

  15. Yoshino, S. et al. Molecular form and concentration of serum α2-macroglobulin in diabetes. Sci. Rep. 9, 12927 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Vandooren, J. et al. Circular trimers of gelatinase B/matrix metalloproteinase-9 constitute a distinct population of functional enzyme molecules differentially regulated by tissue inhibitor of metalloproteinases-1. Biochem. J. 465, 259–270 (2015).

    Article  CAS  PubMed  Google Scholar 

  17. Serifova, X. et al. Homotrimeric MMP-9 is an active hitchhiker on α-2-macroglobulin partially escaping protease inhibition and internalization through LRP-1. Cell. Mol. Life Sci. 77, 3013–3026 (2020).

    Article  CAS  PubMed  Google Scholar 

  18. Vandooren, J. & Itoh, Y. α-2-macroglobulin in inflammation, immunity and infections. Front. Immunol. 12, 803244 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Opdenakker, G. et al. Gelatinase B functions as regulator and effector in leukocyte biology. J. Leukoc. Biol. 69, 851–859 (2001).

    Article  CAS  PubMed  Google Scholar 

  20. Ardi, V. C., Kupriyanova, T. A., Deryugina, E. I. & Quigley, J. P. Human neutrophils uniquely release TIMP-free MMP-9 to provide a potent catalytic stimulator of angiogenesis. Proc. Natl Acad. Sci. USA 104, 20262–20267 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Weiss, S. J., Peppin, G., Ortiz, X., Ragsdale, C. & Test, S. T. Oxidative autoactivation of latent collagenase by human neutrophils. Science 227, 747–749 (1985).

    Article  CAS  PubMed  Google Scholar 

  22. Peppin, G. J. & Weiss, S. J. Activation of the endogenous metalloproteinase, gelatinase, by triggered human neutrophils. Proc. Natl Acad. Sci. USA 83, 4322–4326 (1986).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Eeckhout, Y. & Vaes, G. Further studies on the activation of procollagenase, the latent precursor of bone collagenase. Effects of lysosomal cathepsin B, plasmin and kallikrein, and spontaneous activation. Biochem. J. 166, 21–31 (1977).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Werb, Z., Mainardi, C. L., Vater, C. A. & Harris, E. D. Jr Endogenous activation of latent collagenase by rheumatoid synovial cells. Evidence for a role of plasminogen activator. N. Engl. J. Med. 296, 1017–1023 (1977).

    Article  CAS  PubMed  Google Scholar 

  25. Barrett, A. J., Woessner, J. F. & Rawlings, N. D. Handbook of Proteolytic Enzymes Vol. 1 (Elsevier, 2012).

  26. Van den Steen, P. E. et al. Biochemistry and molecular biology of gelatinase B or matrix metalloproteinase-9 (MMP-9). Crit. Rev. Biochem. Mol. Biol. 37, 375–536 (2002).

    Article  PubMed  Google Scholar 

  27. Itoh, T. et al. The role of matrix metalloproteinase-2 and matrix metalloproteinase-9 in antibody-induced arthritis. J. Immunol. 169, 2643–2647 (2002).

    Article  CAS  PubMed  Google Scholar 

  28. Fearon, U., Canavan, M., Biniecka, M. & Veale, D. J. Hypoxia, mitochondrial dysfunction and synovial invasiveness in rheumatoid arthritis. Nat. Rev. Rheumatol. 12, 385–397 (2016).

    Article  CAS  PubMed  Google Scholar 

  29. Lazaro, S., Gamarra, D. & Del Val, M. Proteolytic enzymes involved in MHC class I antigen processing: a guerrilla army that partners with the proteasome. Mol. Immunol. 68, 72–76 (2015).

    Article  CAS  PubMed  Google Scholar 

  30. Rock, K. L., Reits, E. & Neefjes, J. Present yourself! By MHC class I and MHC class II molecules. Trends Immunol. 37, 724–737 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Opdenakker, G. & Damme, Van J. Cytokine-regulated proteases in autoimmune diseases. Immunol. Today 15, 103–107 (1994).

    Article  CAS  PubMed  Google Scholar 

  32. Opdenakker, G., Abu El-Asrar, A. & Van Damme, J. Remnant epitopes generating autoimmunity: from model to useful paradigm. Trends Immunol. 41, 367–378 (2020).

    Article  CAS  PubMed  Google Scholar 

  33. Oldstone, M. B. Molecular mimicry: its evolution from concept to mechanism as a cause of autoimmune diseases. Monoclon. Antib. Immunodiagn. Immunother. 33, 158–165 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Burrage, P. S., Mix, K. S. & Brinckerhoff, C. E. Matrix metalloproteinases: role in arthritis. Front. Biosci. 11, 529–543 (2006).

    Article  CAS  PubMed  Google Scholar 

  35. Van den Steen, P. E. et al. Generation of glycosylated remnant epitopes from human collagen type II by gelatinase B. Biochemistry 43, 10809–10816 (2004).

    Article  PubMed  Google Scholar 

  36. Van den Steen, P. E. et al. Cleavage of denatured natural collagen type II by neutrophil gelatinase B reveals enzyme specificity, post-translational modifications in the substrate, and the formation of remnant epitopes in rheumatoid arthritis. FASEB J. 16, 379–389 (2002).

    Article  PubMed  Google Scholar 

  37. Aimes, R. T. & Quigley, J. P. Matrix metalloproteinase-2 is an interstitial collagenase. Inhibitor-free enzyme catalyzes the cleavage of collagen fibrils and soluble native type I collagen generating the specific ¾- and ¼-length fragments. J. Biol. Chem. 270, 5872–5876 (1995).

    Article  CAS  PubMed  Google Scholar 

  38. Miller, M. C. et al. Membrane type 1 matrix metalloproteinase is a crucial promoter of synovial invasion in human rheumatoid arthritis. Arthritis Rheum. 60, 686–697 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Sabeh, F., Fox, D. & Weiss, S. J. Membrane-type I matrix metalloproteinase-dependent regulation of rheumatoid arthritis synoviocyte function. J. Immunol. 184, 6396–6406 (2010).

    Article  CAS  PubMed  Google Scholar 

  40. Minond, D., Lauer-Fields, J. L., Nagase, H. & Fields, G. B. Matrix metalloproteinase triple-helical peptidase activities are differentially regulated by substrate stability. Biochemistry 43, 11474–11481 (2004).

    Article  CAS  PubMed  Google Scholar 

  41. Ugarte-Berzal, E. et al. MMP-9/gelatinase B degrades Immune complexes in systemic lupus erythematosus. Front. Immunol. 10, 538 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Norga, K., Grillet, B., Masure, S., Paemen, L. & Opdenakker, G. Human gelatinase B, a marker enzyme in rheumatoid arthritis, is inhibited by D-penicillamine: anti-rheumatic activity by protease inhibition. Clin. Rheumatol. 15, 31–34 (1996).

    Article  CAS  PubMed  Google Scholar 

  43. Paemen, L. et al. The gelatinase inhibitory activity of tetracyclines and chemically modified tetracycline analogues as measured by a novel microtiter assay for inhibitors. Biochem. Pharmacol. 52, 105–111 (1996).

    Article  CAS  PubMed  Google Scholar 

  44. Metz, L. M. et al. Trial of minocycline in a clinically isolated syndrome of multiple sclerosis. N. Engl. J. Med. 376, 2122–2133 (2017).

    Article  CAS  PubMed  Google Scholar 

  45. Kaneko, K. et al. Selective inhibition of membrane type 1 matrix metalloproteinase abrogates progression of experimental inflammatory arthritis: synergy with tumor necrosis factor blockade. Arthritis Rheumatol. 68, 521–531 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Okada, Y., Nagase, H. & Harris, E. D. Jr Matrix metalloproteinases 1, 2, and 3 from rheumatoid synovial cells are sufficient to destroy joints. J. Rheumatol. 14, 41–42 (1987).

    CAS  PubMed  Google Scholar 

  47. Sasaki, S., Iwata, H., Ishiguro, N., Obata, K. & Miura, T. Detection of stromelysin in synovial fluid and serum from patients with rheumatoid arthritis and osteoarthritis. Clin. Rheumatol. 13, 228–233 (1994).

    Article  CAS  PubMed  Google Scholar 

  48. Whiting, P. F. et al. Systematic review: accuracy of anti-citrullinated peptide antibodies for diagnosing rheumatoid arthritis. Ann. Intern. Med. 152, 456–464 (2010).

    Article  PubMed  Google Scholar 

  49. Suzuki, K. et al. High diagnostic performance of ELISA detection of antibodies to citrullinated antigens in rheumatoid arthritis. Scand. J. Rheumatol. 32, 197–204 (2003).

    Article  CAS  PubMed  Google Scholar 

  50. Parekh, R. B. et al. Association of rheumatoid arthritis and primary osteoarthritis with changes in the glycosylation pattern of total serum IgG. Nature 316, 452–457 (1985).

    Article  CAS  PubMed  Google Scholar 

  51. Schellekens, G. A., de Jong, B. A., van den Hoogen, F. H., van de Putte, L. B. & van Venrooij, W. J. Citrulline is an essential constituent of antigenic determinants recognized by rheumatoid arthritis-specific autoantibodies. J. Clin. Invest. 101, 273–281 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Boon, L. et al. Citrullination as a novel posttranslational modification of matrix metalloproteinases. Matrix Biol. 95, 68–83 (2021).

    Article  CAS  PubMed  Google Scholar 

  53. Grillet, B. et al. Proteoform analysis of matrix metalloproteinase-9/gelatinase B and discovery of its citrullination in rheumatoid arthritis synovial fluids. Front. Immunol. 12, 763832 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Okada, Y., Nagase, H. & Harris, E. D. Jr A metalloproteinase from human rheumatoid synovial fibroblasts that digests connective tissue matrix components. Purification and characterization. J. Biol. Chem. 261, 14245–14255 (1986).

    Article  CAS  PubMed  Google Scholar 

  55. Hutchinson, N. I. et al. In vivo expression of stromelysin in synovium and cartilage of rabbits injected intraarticularly with interleukin-1β. Arthritis Rheum. 35, 1227–1233 (1992).

    Article  CAS  PubMed  Google Scholar 

  56. Ishiguro, N., Ito, T., Obata, K., Fujimoto, N. & Iwata, H. Determination of stromelysin-1, 72 and 92 kDa type IV collagenase, tissue inhibitor of metalloproteinase-1 (TIMP-1), and TIMP-2 in synovial fluid and serum from patients with rheumatoid arthritis. J. Rheumatol. 23, 1599–1604 (1996).

    CAS  PubMed  Google Scholar 

  57. Hirose, T. et al. Characterization of type V collagenase (gelatinase) in synovial fluid of patients with inflammatory arthritis. J. Rheumatol. 19, 593–599 (1992).

    CAS  PubMed  Google Scholar 

  58. Koolwijk, P. et al. Activated gelatinase-B (MMP-9) and urokinase-type plasminogen activator in synovial fluids of patients with arthritis. Correlation with clinical and experimental variables of inflammation. J. Rheumatol. 22, 385–393 (1995).

    CAS  PubMed  Google Scholar 

  59. Sopata, I. et al. Neutrophil gelatinase levels in plasma and synovial fluid of patients with rheumatic diseases. Rheumatol. Int. 15, 9–14 (1995).

    Article  CAS  PubMed  Google Scholar 

  60. Ahrens, D., Koch, A. E., Pope, R. M., Stein-Picarella, M. & Niedbala, M. J. Expression of matrix metalloproteinase 9 (96-kd gelatinase B) in human rheumatoid arthritis. Arthritis Rheum. 39, 1576–1587 (1996).

    Article  CAS  PubMed  Google Scholar 

  61. Gaudin, P. et al. A study of metalloproteinases in fifty joint fluid specimens. Rev. Rhum. Engl. Ed. 64, 375–381 (1997).

    CAS  PubMed  Google Scholar 

  62. Hsueh, M. F., Onnerfjord, P. & Kraus, V. B. Biomarkers and proteomic analysis of osteoarthritis. Matrix Biol. 39, 56–66 (2014).

    Article  CAS  PubMed  Google Scholar 

  63. Mahendran, S. M., Oikonomopoulou, K., Diamandis, E. P. & Chandran, V. Synovial fluid proteomics in the pursuit of arthritis mediators: an evolving field of novel biomarker discovery. Crit. Rev. Clin. Lab. Sci. 54, 495–505 (2017).

    Article  CAS  PubMed  Google Scholar 

  64. Stein-Picarella, M., Ahrens, D., Mase, C., Golden, H. & Niedbala, M. J. Localization and characterization of matrix metalloproteinase-9 in experimental rat adjuvant arthritis. Ann. N. Y. Acad. Sci. 732, 484–485 (1994).

    Article  CAS  PubMed  Google Scholar 

  65. Yoshino, S., Sasatomi, E. & Ohsawa, M. Bacterial lipopolysaccharide acts as an adjuvant to induce autoimmune arthritis in mice. Immunology 99, 607–614 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Chubinskaya, S. et al. Chondrocyte matrix metalloproteinase-8: up-regulation of neutrophil collagenase by interleukin-1β in human cartilage from knee and ankle joints. Lab. Invest. 74, 232–240 (1996).

    CAS  PubMed  Google Scholar 

  67. Wolfe, G. C. et al. Differential in vivo expression of collagenase messenger RNA in synovium and cartilage. Quantitative comparison with stromelysin messenger RNA levels in human rheumatoid arthritis and osteoarthritis patients and in two animal models of acute inflammatory arthritis. Arthritis Rheum. 36, 1540–1547 (1993).

    Article  CAS  PubMed  Google Scholar 

  68. Martel-Pelletier, J. et al. Excess of metalloproteases over tissue inhibitor of metalloprotease may contribute to cartilage degradation in osteoarthritis and rheumatoid arthritis. Lab. Invest. 70, 807–815 (1994).

    CAS  PubMed  Google Scholar 

  69. Nelimarkka, L. O., Nikkari, S. T., Ravanti, L. S., Kahari, V. M. & Jarvelainen, H. T. Collagenase-1, stromelysin-1 and 92 kDa gelatinase are associated with tumor necrosis factor-α induced morphological change of human endothelial cells in vitro. Matrix Biol. 17, 293–304 (1998).

    Article  CAS  PubMed  Google Scholar 

  70. Mitchell, P. G. et al. Cloning, expression, and type II collagenolytic activity of matrix metalloproteinase-13 from human osteoarthritic cartilage. J. Clin. Invest. 97, 761–768 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Wernicke, D., Seyfert, C., Hinzmann, B. & Gromnica-Ihle, E. Cloning of collagenase 3 from the synovial membrane and its expression in rheumatoid arthritis and osteoarthritis. J. Rheumatol. 23, 590–595 (1996).

    CAS  PubMed  Google Scholar 

  72. Konttinen, Y. T. et al. Collagenase-3 (MMP-13) and its activators in rheumatoid arthritis: localization in the pannus-hard tissue junction and inhibition by alendronate. Matrix Biol. 18, 401–412 (1999).

    Article  CAS  PubMed  Google Scholar 

  73. Little, C. B. et al. Matrix metalloproteinase 13-deficient mice are resistant to osteoarthritic cartilage erosion but not chondrocyte hypertrophy or osteophyte development. Arthritis Rheum. 60, 3723–3733 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Hu, Q. & Ecker, M. Overview of MMP-13 as a promising target for the treatment of osteoarthritis. Int. J. Mol. Sci. 22, 1742 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Xie, X. W., Wan, R. Z. & Liu, Z. P. Recent research advances in selective matrix metalloproteinase-13 inhibitors as anti-osteoarthritis agents. ChemMedChem 12, 1157–1168 (2017).

    Article  CAS  PubMed  Google Scholar 

  76. Yamamoto, K. et al. Inhibition of shedding of low-density lipoprotein receptor-related protein 1 reverses cartilage matrix degradation in osteoarthritis. Arthritis Rheumatol. 69, 1246–1256 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Rampart, M., Herman, A. G., Grillet, B., Opdenakker, G. & Van Damme, J. Development and application of a radioimmunoassay for interleukin-8: detection of interleukin-8 in synovial fluids from patients with inflammatory joint disease. Lab. Invest. 66, 512–518 (1992).

    CAS  PubMed  Google Scholar 

  78. Guilak, F., Nims, R. J., Dicks, A., Wu, C. L. & Meulenbelt, I. Osteoarthritis as a disease of the cartilage pericellular matrix. Matrix Biol. 71–72, 40–50 (2018).

    Article  PubMed  Google Scholar 

  79. Dozin, B., Malpeli, M., Camardella, L., Cancedda, R. & Pietrangelo, A. Response of young, aged and osteoarthritic human articular chondrocytes to inflammatory cytokines: molecular and cellular aspects. Matrix Biol. 21, 449–459 (2002).

    Article  CAS  PubMed  Google Scholar 

  80. Kamekura, S. et al. Osteoarthritis development in novel experimental mouse models induced by knee joint instability. Osteoarthritis Cartilage 13, 632–641 (2005).

    Article  CAS  PubMed  Google Scholar 

  81. Gilbert, S. J., Bonnet, C. S. & Blain, E. J. Mechanical cues: bidirectional reciprocity in the extracellular matrix drives mechano-signalling in articular cartilage. Int. J. Mol. Sci. 22, 13595 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Jay, G. D. & Waller, K. A. The biology of lubricin: near frictionless joint motion. Matrix Biol. 39, 17–24 (2014).

    Article  CAS  PubMed  Google Scholar 

  83. Opdenakker, G., Fibbe, W. E. & Van Damme, J. The molecular basis of leukocytosis. Immunol. Today 19, 182–189 (1998).

    Article  CAS  PubMed  Google Scholar 

  84. Vandooren, J. et al. Neutrophils and activated macrophages control mucosal immunity by proteolytic cleavage of antileukoproteinase. Front. Immunol. 9, 1154 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  85. Vandooren, J., Van den Steen, P. E. & Opdenakker, G. Biochemistry and molecular biology of gelatinase B or matrix metalloproteinase-9 (MMP-9): the next decade. Crit. Rev. Biochem. Mol. Biol. 48, 222–272 (2013).

    Article  CAS  PubMed  Google Scholar 

  86. Loos, T. et al. TLR ligands and cytokines induce CXCR3 ligands in endothelial cells: enhanced CXCL9 in autoimmune arthritis. Lab. Invest. 86, 902–916 (2006).

    Article  CAS  PubMed  Google Scholar 

  87. Lee, M. C. et al. CCL17 blockade as a therapy for osteoarthritis pain and disease. Arthritis Res. Ther. 20, 62 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  88. Scanzello, C. R. Chemokines and inflammation in osteoarthritis: insights from patients and animal models. J. Orthop. Res. 35, 735–739 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Sanchez-Lopez, E., Coras, R., Torres, A., Lane, N. E. & Guma, M. Synovial inflammation in osteoarthritis progression. Nat. Rev. Rheumatol. 18, 258–275 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  90. Chou, C. H. et al. Synovial cell cross-talk with cartilage plays a major role in the pathogenesis of osteoarthritis. Sci. Rep. 10, 10868 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Zhang, F. et al. Defining inflammatory cell states in rheumatoid arthritis joint synovial tissues by integrating single-cell transcriptomics and mass cytometry. Nat. Immunol. 20, 928–942 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  92. Anang, D. C., Balzaretti, G., van Kampen, A., de Vries, N. & Klarenbeek, P. L. The germinal center milieu in rheumatoid arthritis: the immunological drummer or dancer? Int. J. Mol. Sci. 22, 10514 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Meednu, N. et al. Dynamic spectrum of ectopic lymphoid B cell activation and hypermutation in the RA synovium characterized by NR4A nuclear receptor expression. Cell Rep. 39, 110766 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Grillet, B., Dequeker, J., Paemen, L., Van Damme, B. & Opdenakker, G. Gelatinase B in chronic synovitis: immunolocalization with a monoclonal antibody. Br. J. Rheumatol. 36, 744–747 (1997).

    Article  CAS  PubMed  Google Scholar 

  95. Malengier-Devlies, B. et al. Role for granulocyte colony-stimulating factor in neutrophilic extramedullary myelopoiesis in a murine model of systemic juvenile idiopathic arthritis. Arthritis Rheumatol. 74, 1257–1270 (2022).

    Article  CAS  PubMed  Google Scholar 

  96. Ahmadzadeh, K., Vanoppen, M., Rose, C. D., Matthys, P. & Wouters, C. H. Multinucleated giant cells: current insights in phenotype, biological activities, and mechanism of formation. Front. Cell Dev. Biol. 10, 873226 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  97. Zhu, L. et al. Proteolytic regulation of a galectin-3/Lrp1 axis controls osteoclast-mediated bone resorption. J. Cell Biol. 222, e202206121 (2023).

    Article  CAS  PubMed  Google Scholar 

  98. Fischer, A. et al. Neutrophils direct preexisting matrix to initiate repair in damaged tissues. Nat. Immunol. 23, 518–531 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Opdenakker, G., Masure, S., Grillet, B. & Van Damme, J. Cytokine-mediated regulation of human leukocyte gelatinases and role in arthritis. Lymphokine Cytokine Res. 10, 317–324 (1991).

    CAS  PubMed  Google Scholar 

  100. Downton, P. et al. Chronic inflammatory arthritis drives systemic changes in circadian energy metabolism. Proc. Natl Acad. Sci. USA 119, e2112781119 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Meehan, R. T. et al. Synovial fluid cytokines, chemokines and MMP levels in osteoarthritis patients with knee pain display a profile similar to many rheumatoid arthritis patients. J. Clin. Med. 10, 5027 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Rivellese, F. et al. Rituximab versus tocilizumab in rheumatoid arthritis: synovial biopsy-based biomarker analysis of the phase 4 R4RA randomized trial. Nat. Med. 28, 1256–1268 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Van Nies, J. A. et al. What is the evidence for the presence of a therapeutic window of opportunity in rheumatoid arthritis? A systematic literature review. Ann. Rheum. Dis. 73, 861–870 (2014).

    Article  PubMed  Google Scholar 

  104. Petrovska, N., Prajzlerova, K., Vencovsky, J., Senolt, L. & Filkova, M. The pre-clinical phase of rheumatoid arthritis: from risk factors to prevention of arthritis. Autoimmun. Rev. 20, 102797 (2021).

    Article  CAS  PubMed  Google Scholar 

  105. Koller-Smith, L. et al. Rheumatoid arthritis is a preventable disease: 11 ways to reduce your patients’ risk. Intern. Med. J. 52, 711–716 (2022).

    Article  PubMed  Google Scholar 

  106. Smolen, J. S. & Aletaha, D. Rheumatoid arthritis therapy reappraisal: strategies, opportunities and challenges. Nat. Rev. Rheumatol. 11, 276–289 (2015).

    Article  PubMed  Google Scholar 

  107. Allen, K. D., Thoma, L. M. & Golightly, Y. M. Epidemiology of osteoarthritis. Osteoarthritis Cartilage 30, 184–195 (2022).

    Article  CAS  PubMed  Google Scholar 

  108. Hu, J., Van den Steen, P. E., Dillen, C. & Opdenakker, G. Targeting neutrophil collagenase/matrix metalloproteinase-8 and gelatinase B/matrix metalloproteinase-9 with a peptidomimetic inhibitor protects against endotoxin shock. Biochem. Pharmacol. 70, 535–544 (2005).

    Article  CAS  PubMed  Google Scholar 

  109. Zankl, A. et al. Torg syndrome is caused by inactivating mutations in MMP2 and is allelic to NAO and Winchester syndrome. J. Bone Miner. Res. 22, 329–333 (2007).

    Article  CAS  PubMed  Google Scholar 

  110. Kröger, L. et al. A novel mutation in the matrix metallopeptidase 2 coding gene associated with intrafamilial variability of multicentric osteolysis, nodulosis, and arthropathy. Mol. Genet. Genom. Med. 7, e802 (2019).

    Google Scholar 

  111. Lausch, E. et al. Mutations in MMP9 and MMP13 determine the mode of inheritance and the clinical spectrum of metaphyseal anadysplasia. Am. J. Hum. Genet. 85, 168–178 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Sharony, R. et al. Prenatal course of metaphyseal anadysplasia associated with homozygous mutation in MMP9 identified by exome sequencing. Clin. Genet. 92, 645–648 (2017).

    Article  CAS  PubMed  Google Scholar 

  113. Bonilla-Fornès, S. et al. Early clinical and radiological improvement in a young boy with metaphyseal anadysplasia type 2. Eur. J. Med. Genet. 64, 104307 (2021).

    Article  PubMed  Google Scholar 

  114. de Vos, I., Wong, A. S. W., Welting, T. J. M., Coull, B. J. & van Steensel, M. A. M. Multicentric osteolytic syndromes represent a phenotypic spectrum defined by defective collagen remodeling. Am. J. Med. Genet. A. 179, 1652–1664 (2019).

    Article  PubMed  Google Scholar 

  115. Wang, S. K. et al. Novel KLK4 and MMP20 mutations discovered by whole-exome sequencing. J. Dent. Res. 92, 266–271 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Wang, S. K. et al. Dental malformations associated with biallelic MMP20 mutations. Mol. Genet. Genom. Med. 8, e1307 (2020).

    CAS  Google Scholar 

  117. Wang, S. K. et al. Phenotypic variability in LAMA3-associated amelogenesis imperfecta. Oral. Dis. https://doi.org/10.1111/odi.14425 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  118. Manicourt, D. H., Fujimoto, N., Obata, K. & Thonar, E. J. Levels of circulating collagenase, stromelysin-1, and tissue inhibitor of matrix metalloproteinases 1 in patients with rheumatoid arthritis. Relationship to serum levels of antigenic keratan sulfate and systemic parameters of inflammation. Arthritis Rheum. 38, 1031–1039 (1995).

    Article  CAS  PubMed  Google Scholar 

  119. Zucker, S. et al. Elevated plasma stromelysin levels in arthritis. J. Rheumatol. 21, 2329–2333 (1994).

    CAS  PubMed  Google Scholar 

  120. Garbisa, S. et al. Correlation of serum metalloproteinase levels with lung cancer metastasis and response to therapy. Cancer Res. 52, 4548–4549 (1992).

    CAS  PubMed  Google Scholar 

  121. Yoshihara, Y. et al. Matrix metalloproteinases and tissue inhibitors of metalloproteinases in synovial fluids from patients with rheumatoid arthritis or osteoarthritis. Ann. Rheum. Dis. 59, 455–461 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Gruber, B. L. et al. Markedly elevated serum MMP-9 (gelatinase B) levels in rheumatoid arthritis: a potentially useful laboratory marker. Clin. Immunol. Immunopathol. 78, 161–171 (1996).

    Article  CAS  PubMed  Google Scholar 

  123. Brennan, F. M., Chantry, D., Jackson, A., Maini, R. & Feldmann, M. Inhibitory effect of TNFα antibodies on synovial cell interleukin-1 production in rheumatoid arthritis. Lancet 2, 244–247 (1989).

    Article  CAS  PubMed  Google Scholar 

  124. Opdenakker, G., Van den Steen, P. E. & Van Damme, J. Gelatinase B: a tuner and amplifier of immune functions. Trends Immunol. 22, 571–579 (2001).

    Article  CAS  PubMed  Google Scholar 

  125. Van den Steen, P. E., Proost, P., Wuyts, A., Van Damme, J. & Opdenakker, G. Neutrophil gelatinase B potentiates interleukin-8 tenfold by aminoterminal processing, whereas it degrades CTAP-III, PF-4, and GRO-α and leaves RANTES and MCP-2 intact. Blood 96, 2673–2681 (2000).

    Article  PubMed  Google Scholar 

  126. Quigley, J. P., Ossowski, L. & Reich, E. Plasminogen, the serum proenzyme activated by factors from cells transformed by oncogenic viruses. J. Biol. Chem. 249, 4306–4311 (1974).

    Article  CAS  PubMed  Google Scholar 

  127. Stetler-Stevenson, W. G., Aznavoorian, S. & Liotta, L. A. Tumor cell interactions with the extracellular matrix during invasion and metastasis. Annu. Rev. Cell Biol. 9, 541–573 (1993).

    Article  CAS  PubMed  Google Scholar 

  128. Coussens, L. M., Fingleton, B. & Matrisian, L. M. Matrix metalloproteinase inhibitors and cancer: trials and tribulations. Science 295, 2387–2392 (2002).

    Article  CAS  PubMed  Google Scholar 

  129. Overall, C. M. & Kleifeld, O. Tumour microenvironment — opinion: validating matrix metalloproteinases as drug targets and anti-targets for cancer therapy. Nat. Rev. Cancer 6, 227–239 (2006).

    Article  CAS  PubMed  Google Scholar 

  130. Vilcek, J. & Feldmann, M. Historical review: cytokines as therapeutics and targets of therapeutics. Trends Pharmacol. Sci. 25, 201–209 (2004).

    Article  CAS  PubMed  Google Scholar 

  131. Renkiewicz, R. et al. Broad-spectrum matrix metalloproteinase inhibitor marimastat-induced musculoskeletal side effects in rats. Arthritis Rheum. 48, 1742–1749 (2003).

    Article  CAS  PubMed  Google Scholar 

  132. Ge, C. et al. Key interactions in the trimolecular complex consisting of the rheumatoid arthritis-associated DRB1*04:01 molecule, the major glycosylated collagen II peptide and the T-cell receptor. Ann. Rheum. Dis. 81, 480–489 (2022).

    Article  CAS  PubMed  Google Scholar 

  133. Fosang, A. J. et al. Neutrophil collagenase (MMP-8) cleaves at the aggrecanase site E373-A374 in the interglobular domain of cartilage aggrecan. Biochem. J. 304, 347–351 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Knäuper, V., Lopez-Otin, C., Smith, B., Knight, G. & Murphy, G. Biochemical characterization of human collagenase-3. J. Biol. Chem. 271, 1544–1550 (1996).

    Article  PubMed  Google Scholar 

  135. Knäuper, V., Smith, B., Lopez-Otin, C. & Murphy, G. Activation of progelatinase B (proMMP-9) by active collagenase-3 (MMP-13). Eur. J. Biochem. 248, 369–373 (1997).

    Article  PubMed  Google Scholar 

  136. Murphy, G. et al. Matrix metalloproteinases in arthritic disease. Arthritis Res. 4, S39–S49 (2002).

    Article  PubMed  PubMed Central  Google Scholar 

  137. Moon, J. S. et al. Cytotoxic CD8+ T cells target citrullinated antigens in rheumatoid arthritis. Nat. Commun. 14, 319 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Nelson, F. et al. Evidence for altered synthesis of type II collagen in patients with osteoarthritis. J. Clin. Invest. 102, 2115–2125 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Hollander, A. P. et al. Damage to type II collagen in ageing and osteoarthritis: starts at the articular surface, originates around chondrocytes and extends into the cartilage with progressive degeneration. J. Clin. Invest. 96, 2859–2869 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Gunja-Smith, Z., Nagase, H. & Woessner, J. F. J. Purification of the neutral proteoglycan-degrading metalloproteinase from human articular cartilage tissue and its identification as stromelysin matrix metalloproteinase-3. Biochem. J. 258, 115–119 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Billinghurst, R. C. et al. Enhanced cleavage of type II collagen by collagenases in osteoarthritic articular cartilage. J. Clin. Invest. 99, 1534–1545 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Reboul, P., Pelletier, J. P., Tardif, G., Cloutier, J. M. & Martel-Pelletier, J. The new collagenase, collagenase-3, is expressed and synthesized by human chondrocytes but not by synoviocytes. A role in osteoarthritis. J. Clin. Invest. 97, 2011–2019 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Verma, P. & Dalal, K. ADAMTS-4 and ADAMTS-5: key enzymes in osteoarthritis. J. Cell. Biochem. 112, 3507–3514 (2011).

    Article  CAS  PubMed  Google Scholar 

  144. Glasson, S. S. et al. Deletion of active ADAMTS5 prevents cartilage degradation in a murine model of osteoarthritis. Nature 434, 644–648 (2005).

    Article  CAS  PubMed  Google Scholar 

  145. Sandy, J. D., Flannery, C. R., Neame, P. J. & Lohmander, L. S. The structure of aggrecan fragments in human synovial fluid. Evidence for the involvement in osteoarthritis of a novel proteinase which cleaves the Glu 373-Ala 374 bond of the interglobular domain. J. Clin. Invest. 89, 1512–1516 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Dahlberg, L. et al. Collagenase-mediated cleavage of type II collagen is selectively enhanced in osteoarthritis cartilage and can be arrested with a synthetic inhibitor which spares collagenase-1 (MMP-1). Arthritis Rheum. 43, 673–682 (2000).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors apologize to those whose relevant work could not be cited and thank their research team members for longstanding collaborations and the reviewers for constructive comments.

Author information

Authors and Affiliations

Authors

Contributions

G.O., B.G., J.V.D. and P.P. researched data for the article. All authors made substantial contributions to discussion of the content, wrote the article and reviewed and/or edited the manuscript before submission.

Corresponding author

Correspondence to Ghislain Opdenakker.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Rheumatology thanks M. Goldring, Y. Itoh and Q.-X. Sang for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Glossary

Cysteine switch

Mechanism explaining the latency of matrix metalloproteinases by way of a cysteine residue in the pro-peptide; removal of the cysteine sulfhydryl from the zinc ion in the active site switches on the proteinase.

Glycoforms

Presentation of a protein with specific oligosaccharides attached, implying that any glycoprotein exists as a mixture of one protein backbone with different attached sugars.

Proteasome

Macromolecular complex with threonine proteinase activity, which cleaves misfolded intracellular proteins into short peptides that can be presented by MHC class I.

Proteoforms

Individual presentations of any protein, implying that all proteins exist as collections of variants with different post-translational modifications, such as phosphorylation, citrullination and truncations.

Remnant epitopes

Host-derived peptides after proteolytic processing by extracellular proteinases from the host or from invading microorganisms; these peptides can be altered by post-translational modifications and presented as autoantigens, mainly in MHC class II molecules.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grillet, B., Pereira, R.V.S., Van Damme, J. et al. Matrix metalloproteinases in arthritis: towards precision medicine. Nat Rev Rheumatol 19, 363–377 (2023). https://doi.org/10.1038/s41584-023-00966-w

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41584-023-00966-w

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing