Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Treatment of lupus nephritis: consensus, evidence and perspectives

Abstract

Despite the continuing development of immunomodulatory agents and supportive care, the prognosis associated with lupus nephritis (LN) has not improved substantially in the past decade, with end-stage kidney disease still developing in 5–30% of patients within 10 years of LN diagnosis. Moreover, inter-ethnic variation in the tolerance of, clinical response to and level of evidence regarding various therapeutic regimens for LN has led to variation in treatment prioritization in different international recommendations. Modalities that better preserve kidney function and reduce the toxicities of concomitant glucocorticoids are unmet needs in the development of therapeutics for LN. In addition to the conventional recommended therapies for LN, there are newly approved treatments as well as investigational drugs in the pipeline, including the newer generation calcineurin inhibitors and biologic agents. In view of the heterogeneity of LN in terms of clinical presentation and prognosis, the choice of therapies depends on a number of clinical considerations. Molecular profiling, gene-signature fingerprints and urine proteomic panels might enhance the accuracy of patient stratification for treatment personalization in the future.

Key points

  • The development of novel therapeutics to improve the efficacy-to-toxicity balance for lupus nephritis (LN) has unmet needs.

  • Inter-ethnic variation in tolerance to, efficacy of and evidence level for various conventional treatment regimens for LN has led to differences in prioritization in national and international guidelines.

  • Belimumab and voclosporin are the two most recently approved drugs for the treatment of LN in most parts of the world.

  • New-generation anti-CD20 biologic agents, type I interferon antagonists and rituximab–belimumab combination regimens show promise for the treatment of LN.

  • Molecular profiling, gene-signature fingerprints and urine proteomic panels could enhance the accuracy of patient stratification for treatment personalization.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Immunological targets of novel therapeutic agents in systemic lupus erythematosus and lupus nephritis.

Similar content being viewed by others

Hans-Joachim Anders, Ramesh Saxena, … Chandra Mohan

References

  1. Mok, C. C. Towards new avenues in the management of lupus glomerulonephritis. Nat. Rev. Rheumatol. 12, 221–234 (2016).

    Article  CAS  PubMed  Google Scholar 

  2. Mok, C. C., Kwok, R. C. L. & Yip, P. S. F. Effect of renal disease on the standardized mortality ratio and life expectancy of patients with systemic lupus erythematosus. Arthritis Rheum. 65, 2154–2160 (2013).

    Article  CAS  PubMed  Google Scholar 

  3. Kandane-Rathnayake, R. et al. Longitudinal associations of active renal disease with irreversible organ damage accrual in systemic lupus erythematosus. Lupus 28, 1669–1677 (2019).

    Article  CAS  PubMed  Google Scholar 

  4. Kharawala, S. et al. Health-related quality of life, fatigue and health utilities in lupus nephritis: a systematic literature review. Lupus https://doi.org/10.1177/09612033221100910 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Jolly, M. et al. Disease-specific quality of life in patients with lupus nephritis. Lupus 27, 257–264 (2018).

    Article  CAS  PubMed  Google Scholar 

  6. Mok, C. C. & Tang, S. S. K. Incidence and predictors of renal disease in Chinese patients with systemic lupus erythematosus. Am. J. Med. 117, 791–795 (2004).

    Article  PubMed  Google Scholar 

  7. Lewis, M. J. & Jawad, A. S. The effect of ethnicity and genetic ancestry on the epidemiology, clinical features and outcome of systemic lupus erythematosus. Rheumatology 56, i67–i77 (2017).

    CAS  PubMed  Google Scholar 

  8. Parikh, S. V., Almaani, S., Brodsky, S. & Rovin, B. H. Update on lupus nephritis: core curriculum 2020. Am. J. Kidney Dis. 76, 265–281 (2020).

    Article  PubMed  Google Scholar 

  9. Tanaka, Y., O’Neill, S., Li, M., Tsai, I.-C. & Yang, Y.-W. Systemic lupus erythematosus: targeted literature review of the epidemiology, current treatment, and disease burden in the Asia Pacific Region. Arthritis Care Res. 74, 187–198 (2022).

    Article  CAS  Google Scholar 

  10. Jakes, R. W. et al. Systematic review of the epidemiology of systemic lupus erythematosus in the Asia-Pacific region: prevalence, incidence, clinical features, and mortality. Arthritis Care Res. 64, 159–168 (2012).

    Article  Google Scholar 

  11. Sexton, D. J. et al. ESRD from lupus nephritis in the United States, 1995–2010. Clin. J. Am. Soc. Nephrol. 10, 251–259 (2015).

    Article  PubMed  Google Scholar 

  12. Gómez-Puerta, J. A. et al. Racial and ethnic differences in mortality and cardiovascular events among patients with end-stage renal disease due to lupus nephritis. Arthritis Care Res. 67, 1453–1462 (2015).

    Article  Google Scholar 

  13. Nee, R. et al. Survival disparity of African American versus Non-African American patients with ESRD due to SLE. Am. J. Kidney Dis. 66, 630–637 (2015).

    Article  PubMed  Google Scholar 

  14. Iwamoto, T. & Niewold, T. B. Genetics of human lupus nephritis. Clin. Immunol. 185, 32–39 (2017).

    Article  CAS  PubMed  Google Scholar 

  15. Freedman, B. I. et al. End-stage renal disease in African Americans with lupus nephritis is associated with APOL1. Arthritis Rheumatol. 66, 390–396 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Portalatin, G. M., Gebreselassie, S. K. & Bobart, S. A. Lupus nephritis — an update on disparities affecting African Americans. J. Natl Med. Assoc. 114, S34–S42 (2022).

    PubMed  Google Scholar 

  17. Jordan, J., Thompson, N. J., Dunlop-Thomas, C., Lim, S. S. & Drenkard, C. Relationships among organ damage, social support, and depression in African American women with systemic lupus erythematosus. Lupus 28, 253–260 (2019).

    Article  CAS  PubMed  Google Scholar 

  18. Kumar, K. et al. Beliefs about medicines in patients with rheumatoid arthritis and systemic lupus erythematosus: a comparison between patients of South Asian and White British origin. Rheumatology 47, 690–697 (2008).

    Article  CAS  PubMed  Google Scholar 

  19. Hoi, A. Asian lupus in a multi-ethnic society: what can be learnt? Int. J. Rheum. Dis. 18, 113–116 (2015).

    Article  PubMed  Google Scholar 

  20. Rodríguez-Almaraz, E. et al. Something new about prognostic factors for lupus nephritis? A systematic review. Lupus 30, 2256–2267 (2021).

    Article  PubMed  Google Scholar 

  21. Moroni, G. et al. Changing patterns in clinical-histological presentation and renal outcome over the last five decades in a cohort of 499 patients with lupus nephritis. Ann. Rheum. Dis. 77, 1318–1325 (2018).

    Article  CAS  PubMed  Google Scholar 

  22. Jorge, A. et al. All-cause and cause-specific mortality trends of end-stage renal disease due to lupus nephritis from 1995 to 2014. Arthritis Rheumatol. 71, 403–410 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Tektonidou, M. G., Dasgupta, A. & Ward, M. M. Risk of end-stage renal disease in patients with lupus nephritis, 1971–2015: a systematic review and Bayesian meta-analysis. Arthritis Rheumatol. 68, 1432–1441 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Anders, H.-J. et al. The management of lupus nephritis as proposed by EULAR/ERA 2019 versus KDIGO 2021. Nephrol. Dial. Transpl. https://doi.org/10.1093/ndt/gfab351 (2021).

    Article  Google Scholar 

  25. Fanouriakis, A. et al. 2019 update of the Joint European League Against Rheumatism and European Renal Association-European Dialysis and Transplant Association (EULAR/ERA-EDTA) recommendations for the management of lupus nephritis. Ann. Rheum. Dis. 79, 713–723 (2020).

    Article  CAS  PubMed  Google Scholar 

  26. Mok, C. C. et al. The Asia-Pacific League of Associations for Rheumatology consensus statements on the management of systemic lupus erythematosus. Lancet Rheumatol. 3, e517–e531 (2021).

    Article  CAS  Google Scholar 

  27. Rovin, B. H. et al. Executive summary of the KDIGO 2021 Guideline for the management of glomerular diseases. Kidney Int. 100, 753–779 (2021).

    Article  PubMed  Google Scholar 

  28. Hahn, B. H. et al. American College of Rheumatology guidelines for screening, treatment, and management of lupus nephritis. Arthritis Care Res. 64, 797–808 (2012).

    Article  Google Scholar 

  29. Houssiau, F. A. et al. The 10-year follow-up data of the Euro-Lupus Nephritis trial comparing low-dose and high-dose intravenous cyclophosphamide. Ann. Rheum. Dis. 69, 61–64 (2010).

    Article  CAS  PubMed  Google Scholar 

  30. Rathi, M. et al. Comparison of low-dose intravenous cyclophosphamide with oral mycophenolate mofetil in the treatment of lupus nephritis. Kidney Int. 89, 235–242 (2016).

    Article  CAS  PubMed  Google Scholar 

  31. Hsu, C.-Y. et al. Cumulative immunosuppressant exposure is associated with diversified cancer risk among 14 832 patients with systemic lupus erythematosus: a nested case-control study. Rheumatology 56, 620–628 (2017).

    PubMed  Google Scholar 

  32. Mok, C. C., Lau, C. S. & Wong, R. W. Risk factors for ovarian failure in patients with systemic lupus erythematosus receiving cyclophosphamide therapy. Arthritis Rheum. 41, 831–837 (1998).

    Article  CAS  PubMed  Google Scholar 

  33. Mok, C. C. Mycophenolate mofetil for lupus nephritis: an update. Expert. Rev. Clin. Immunol. 11, 1353–1364 (2015).

    Article  CAS  PubMed  Google Scholar 

  34. Mok, C. C. et al. Long-term outcome of a randomised controlled trial comparing tacrolimus with mycophenolate mofetil as induction therapy for active lupus nephritis. Ann. Rheum. Dis. 79, 1070–1076 (2020).

    Article  PubMed  Google Scholar 

  35. Liu, Z. et al. Multitarget therapy for induction treatment of lupus nephritis: a randomized trial. Ann. Intern. Med. 162, 18–26 (2015).

    Article  PubMed  Google Scholar 

  36. Mok, C. C. et al. Tacrolimus versus mycophenolate mofetil for induction therapy of lupus nephritis: a randomised controlled trial and long-term follow-up. Ann. Rheum. Dis. 75, 30–36 (2016).

    Article  PubMed  Google Scholar 

  37. Austin, H. A., Illei, G. G., Braun, M. J. & Balow, J. E. Randomized, controlled trial of prednisone, cyclophosphamide, and cyclosporine in lupus membranous nephropathy. J. Am. Soc. Nephrol. 20, 901–911 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Merrill, J. T. et al. Efficacy and safety of rituximab in moderately-to-severely active systemic lupus erythematosus: the randomized, double-blind, phase II/III systemic lupus erythematosus evaluation of rituximab trial. Arthritis Rheum. 62, 222–233 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Rovin, B. H. et al. Efficacy and safety of rituximab in patients with active proliferative lupus nephritis: the Lupus Nephritis Assessment with Rituximab study. Arthritis Rheum. 64, 1215–1226 (2012).

    Article  CAS  PubMed  Google Scholar 

  40. Díaz-Lagares, C. et al. Efficacy of rituximab in 164 patients with biopsy-proven lupus nephritis: pooled data from European cohorts. Autoimmun. Rev. 11, 357–364 (2012).

    Article  PubMed  Google Scholar 

  41. Terrier, B. et al. Safety and efficacy of rituximab in systemic lupus erythematosus: results from 136 patients from the French Autoimmunity and Rituximab registry. Arthritis Rheum. 62, 2458–2466 (2010).

    Article  CAS  PubMed  Google Scholar 

  42. Rydén-Aulin, M. et al. Off-label use of rituximab for systemic lupus erythematosus in Europe. Lupus Sci. Med. 3, e000163 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Navarra, S. V. et al. Efficacy and safety of belimumab in patients with active systemic lupus erythematosus: a randomised, placebo-controlled, phase 3 trial. Lancet 377, 721–731 (2011).

    Article  CAS  PubMed  Google Scholar 

  44. Furie, R. et al. A phase III, randomized, placebo-controlled study of belimumab, a monoclonal antibody that inhibits B lymphocyte stimulator, in patients with systemic lupus erythematosus. Arthritis Rheum. 63, 3918–3930 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Stohl, W. et al. Efficacy and safety of subcutaneous belimumab in systemic lupus erythematosus: a fifty-two-week randomized, double-blind, placebo-controlled study. Arthritis Rheumatol. 69, 1016–1027 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Zhang, F. et al. A pivotal phase III, randomised, placebo-controlled study of belimumab in patients with systemic lupus erythematosus located in China, Japan and South Korea. Ann. Rheum. Dis. 77, 355–363 (2018).

    Article  CAS  PubMed  Google Scholar 

  47. Brunner, H. I. et al. Safety and efficacy of intravenous belimumab in children with systemic lupus erythematosus: results from a randomised, placebo-controlled trial. Ann. Rheum. Dis. 79, 1340–1348 (2020).

    Article  CAS  PubMed  Google Scholar 

  48. Doria, A. et al. Efficacy and safety of subcutaneous belimumab in anti-double-stranded DNA-positive, hypocomplementemic patients with systemic lupus erythematosus. Arthritis Rheumatol. 70, 1256–1264 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Maslen, T. et al. Efficacy of belimumab in two serologically distinct high disease activity subgroups of patients with systemic lupus erythematosus: post-hoc analysis of data from the phase III programme. Lupus Sci. Med. 8, e000459 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  50. Tesar, V. & Hruskova, Z. Belimumab in the management of systemic lupus erythematosus — an update. Expert. Opin. Biol. Ther. 17, 901–908 (2017).

    Article  CAS  PubMed  Google Scholar 

  51. Iaccarino, L. et al. Clinical predictors of response and discontinuation of belimumab in patients with systemic lupus erythematosus in real life setting. Results of a large, multicentric, nationwide study. J. Autoimmun. 86, 1–8 (2018).

    Article  CAS  PubMed  Google Scholar 

  52. Fanouriakis, A. et al. Low disease activity-irrespective of serologic status at baseline-associated with reduction of corticosteroid dose and number of flares in patients with systemic lupus erythematosus treated with belimumab: a real-life observational study. Semin. Arthritis Rheum. 48, 467–474 (2018).

    Article  CAS  PubMed  Google Scholar 

  53. Fanouriakis, A. et al. 2019 update of the EULAR recommendations for the management of systemic lupus erythematosus. Ann. Rheum. Dis. 78, 736–745 (2019).

    Article  CAS  PubMed  Google Scholar 

  54. Ugarte-Gil, M. F. et al. Impact of glucocorticoids on the incidence of lupus-related major organ damage: a systematic literature review and meta-regression analysis of longitudinal observational studies. Lupus Sci. Med. 8, e000590 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  55. Yurkovich, M., Vostretsova, K., Chen, W. & Aviña-Zubieta, J. A. Overall and cause-specific mortality in patients with systemic lupus erythematosus: a meta-analysis of observational studies. Arthritis Care Res. 66, 608–616 (2014).

    Article  Google Scholar 

  56. Mok, C. C., Ho, L. Y., Chan, K. L., Tse, S. M. & To, C. H. Trend of survival of a cohort of Chinese patients with systemic lupus erythematosus over 25 years. Front. Med. 7, 552 (2020).

    Article  Google Scholar 

  57. van Vollenhoven, R. F. et al. 2021 DORIS definition of remission in SLE: final recommendations from an international task force. Lupus Sci. Med. 8, e000538 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  58. Rovin, B. H. et al. A randomized, controlled double-blind study comparing the efficacy and safety of dose-ranging voclosporin with placebo in achieving remission in patients with active lupus nephritis. Kidney Int. 95, 219–231 (2019).

    Article  CAS  PubMed  Google Scholar 

  59. Rovin, B. H. et al. Efficacy and safety of voclosporin versus placebo for lupus nephritis (AURORA 1): a double-blind, randomised, multicentre, placebo-controlled, phase 3 trial. Lancet 397, 2070–2080 (2021).

    Article  CAS  PubMed  Google Scholar 

  60. Furie, R. A. et al. B-cell depletion with obinutuzumab for the treatment of proliferative lupus nephritis: a randomised, double-blind, placebo-controlled trial. Ann. Rheum. Dis. 81, 100–107 (2022).

    Article  CAS  PubMed  Google Scholar 

  61. Mok, C. C. et al. Overview of lupus nephritis management guidelines and perspective from Asia. Int. J. Rheum. Dis. 16, 625–636 (2013).

    Article  CAS  PubMed  Google Scholar 

  62. Yap, D. Y. H., Ma, M. K. M., Mok, M. M. Y., Tang, C. S. O. & Chan, T. M. Long-term data on corticosteroids and mycophenolate mofetil treatment in lupus nephritis. Rheumatology 52, 480–486 (2013).

    Article  CAS  PubMed  Google Scholar 

  63. Tse, S. M. & Mok, C. C. Time trend and risk factors of avascular bone necrosis in patients with systemic lupus erythematosus. Lupus 26, 715–722 (2017).

    Article  CAS  PubMed  Google Scholar 

  64. Kunyakham, W., Foocharoen, C., Mahakkanukrauh, A., Suwannaroj, S. & Nanagara, R. Prevalence and risk factor for symptomatic avascular necrosis development in Thai systemic lupus erythematosus patients. Asian Pac. J. Allergy Immunol. 30, 152–157 (2012).

    PubMed  Google Scholar 

  65. Condon, M. B. et al. Prospective observational single-centre cohort study to evaluate the effectiveness of treating lupus nephritis with rituximab and mycophenolate mofetil but no oral steroids. Ann. Rheum. Dis. 72, 1280–1286 (2013).

    Article  CAS  PubMed  Google Scholar 

  66. Mathian, A. et al. Withdrawal of low-dose prednisone in SLE patients with a clinically quiescent disease for more than 1 year: a randomised clinical trial. Ann. Rheum. Dis. 79, 339–346 (2020).

    Article  CAS  PubMed  Google Scholar 

  67. Kasitanon, N., Fine, D. M., Haas, M., Magder, L. S. & Petri, M. Hydroxychloroquine use predicts complete renal remission within 12 months among patients treated with mycophenolate mofetil therapy for membranous lupus nephritis. Lupus 15, 366–370 (2006).

    Article  CAS  PubMed  Google Scholar 

  68. Pons-Estel, G. J. et al. Protective effect of hydroxychloroquine on renal damage in patients with lupus nephritis: LXV, data from a multiethnic US cohort. Arthritis Rheum. 61, 830–839 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Dima, A., Jurcut, C., Chasset, F., Felten, R. & Arnaud, L. Hydroxychloroquine in systemic lupus erythematosus: overview of current knowledge. Ther. Adv. Musculoskelet. Dis. 14, 1759720×211073001 (2022).

    Article  PubMed Central  Google Scholar 

  70. Lenfant, T. et al. Risk factors for hydroxychloroquine retinopathy in systemic lupus erythematosus: a case-control study with hydroxychloroquine blood-level analysis. Rheumatology 59, 3807–3816 (2020).

    Article  CAS  PubMed  Google Scholar 

  71. Melles, R. B. & Marmor, M. F. The risk of toxic retinopathy in patients on long-term hydroxychloroquine therapy. JAMA Ophthalmol. 132, 1453–1460 (2014).

    Article  PubMed  Google Scholar 

  72. Dooley, M. A. et al. Mycophenolate versus azathioprine as maintenance therapy for lupus nephritis. N. Engl. J. Med. 365, 1886–1895 (2011).

    Article  CAS  PubMed  Google Scholar 

  73. Tamirou, F. et al. Long-term follow-up of the MAINTAIN Nephritis trial, comparing azathioprine and mycophenolate mofetil as maintenance therapy of lupus nephritis. Ann. Rheum. Dis. 75, 526–531 (2016).

    Article  CAS  PubMed  Google Scholar 

  74. Moroni, G. et al. A randomized pilot trial comparing cyclosporine and azathioprine for maintenance therapy in diffuse lupus nephritis over four years. Clin. J. Am. Soc. Nephrol. 1, 925–932 (2006).

    Article  CAS  PubMed  Google Scholar 

  75. Argolini, L. M. et al. Multicentric study comparing cyclosporine, mycophenolate mofetil and azathioprine in the maintenance therapy of lupus nephritis: 8 years follow up. J. Nephrol. 34, 389–398 (2021).

    Article  CAS  PubMed  Google Scholar 

  76. Takeuchi, T., Wakasugi, N., Uno, S. & Makino, H. Long-term safety and effectiveness of tacrolimus in patients with lupus nephritis: 5-year interim postmarketing surveillance study in Japan (TRUST). J. Rheumatol. 48, 74–81 (2021).

    Article  CAS  PubMed  Google Scholar 

  77. Fu, Q. et al. Leflunomide versus azathioprine for maintenance therapy of lupus nephritis: a prospective, multicentre, randomised trial and long-term follow-up. Ann. Rheum. Dis. https://doi.org/10.1136/ard-2022-222486 (2022).

    Article  PubMed  Google Scholar 

  78. Jourde-Chiche, N. et al. Weaning of maintenance immunosuppressive therapy in lupus nephritis (WIN-Lupus): results of a multicentre randomised controlled trial. Ann. Rheum. Dis. 81, 1420–1427 (2022).

    Article  CAS  PubMed  Google Scholar 

  79. Wang, G. et al. Association of urinary matrix metalloproteinase 7 levels with incident renal flare in lupus nephritis. Arthritis Rheumatol. 73, 265–275 (2021).

    Article  CAS  PubMed  Google Scholar 

  80. Mejia-Vilet, J. M. et al. Association between urinary epidermal growth factor and renal prognosis in lupus nephritis. Arthritis Rheumatol. 73, 244–254 (2021).

    Article  CAS  PubMed  Google Scholar 

  81. Mejia-Vilet, J. M., Malvar, A., Arazi, A. & Rovin, B. H. The lupus nephritis management renaissance. Kidney Int. 101, 242–255 (2022).

    Article  CAS  PubMed  Google Scholar 

  82. Mok, C. C. & Mohan, C. Urinary biomarkers in lupus nephritis: are we there yet? Arthritis Rheumatol. 73, 194–196 (2021).

    Article  PubMed  Google Scholar 

  83. Tamirou, F. et al. A proteinuria cut-off level of 0.7 g/day after 12 months of treatment best predicts long-term renal outcome in lupus nephritis: data from the MAINTAIN nephritis trial. Lupus Sci. Med. 2, e000123 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  84. Dall’Era, M. et al. Predictors of long-term renal outcome in lupus nephritis trials: lessons learned from the Euro-lupus nephritis cohort. Arthritis Rheumatol. 67, 1305–1313 (2015).

    Article  PubMed  Google Scholar 

  85. Malvar, A. et al. Histologic versus clinical remission in proliferative lupus nephritis. Nephrol. Dial. Transpl. 32, 1338–1344 (2017).

    Article  CAS  Google Scholar 

  86. Alvarado, A. S. et al. The value of repeat kidney biopsy in quiescent Argentinian lupus nephritis patients. Lupus 23, 840–847 (2014).

    Article  CAS  PubMed  Google Scholar 

  87. Wakasugi, D. et al. Frequency of class III and IV nephritis in systemic lupus erythematosus without clinical renal involvement: an analysis of predictive measures. J. Rheumatol. 39, 79–85 (2012).

    Article  CAS  PubMed  Google Scholar 

  88. Zabaleta-Lanz, M. E. et al. Further description of early clinically silent lupus nephritis. Lupus 15, 845–851 (2006).

    Article  CAS  PubMed  Google Scholar 

  89. Chedid, A. et al. Low-level proteinuria in systemic lupus erythematosus. Kidney Int. Rep. 5, 2333–2340 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  90. Zickert, A., Sundelin, B., Svenungsson, E. & Gunnarsson, I. Role of early repeated renal biopsies in lupus nephritis. Lupus Sci. Med. 1, e000018 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Parodis, I. et al. Per-protocol repeat kidney biopsy portends relapse and long-term outcome in incident cases of proliferative lupus nephritis. Rheumatology 59, 3424–3434 (2020).

    Article  CAS  PubMed  Google Scholar 

  92. Parodis, I., Tamirou, F. & Houssiau, F. A. Treat-to-target in lupus nephritis. what is the role of the repeat kidney biopsy? Arch. Immunol. Ther. Exp. 70, 8 (2022).

    Article  Google Scholar 

  93. Malvar, A. et al. Kidney biopsy-based management of maintenance immunosuppression is safe and may ameliorate flare rate in lupus nephritis. Kidney Int. 97, 156–162 (2020).

    Article  CAS  PubMed  Google Scholar 

  94. Zhang, H. et al. Multitarget therapy for maintenance treatment of lupus nephritis. J. Am. Soc. Nephrol. 28, 3671–3678 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Saxena, A., Teng, Y. K. O., Collins, C., England, N. & Leher, H. Voclosporin lupus nephritis: results two-year AURORA 2 continuation study. Ann. Rheum. Dis. 81, 325 (2022).

    Article  Google Scholar 

  96. Furie, R. et al. Two-year, randomized, controlled trial of belimumab in lupus nephritis. N. Engl. J. Med. 383, 1117–1128 (2020).

    Article  CAS  PubMed  Google Scholar 

  97. Rovin, B. H. et al. A secondary analysis of the Belimumab International Study in Lupus Nephritis trial examined effects of belimumab on kidney outcomes and preservation of kidney function in patients with lupus nephritis. Kidney Int. 101, 403–413 (2022).

    Article  CAS  PubMed  Google Scholar 

  98. Miyazaki, Y. et al. Efficacy and safety of belimumab during maintenance therapy in patients with systemic lupus erythematosus. Rheumatology 61, 3614–3636 (2022).

    Article  PubMed  Google Scholar 

  99. Urowitz, M. B. et al. Impact of belimumab on organ damage in systemic lupus erythematosus. Arthritis Care Res. 74, 1822–1828 (2022).

    Article  CAS  Google Scholar 

  100. van Vollenhoven, R. F. et al. Long-term safety and limited organ damage in patients with systemic lupus erythematosus treated with belimumab: a phase III study extension. Rheumatology 59, 281–291 (2020).

    Article  PubMed  Google Scholar 

  101. van Vollenhoven, R. et al. Conceptual framework for defining disease modification in systemic lupus erythematosus: a call for formal criteria. Lupus Sci. Med. 9, e000634 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  102. Md Yusof, M. Y. et al. Predicting and managing primary and secondary non-response to rituximab using B-cell biomarkers in systemic lupus erythematosus. Ann. Rheum. Dis. 76, 1829–1836 (2017).

    Article  PubMed  Google Scholar 

  103. Lazarus, M. N., Turner-Stokes, T., Chavele, K.-M., Isenberg, D. A. & Ehrenstein, M. R. B-cell numbers and phenotype at clinical relapse following rituximab therapy differ in SLE patients according to anti-dsDNA antibody levels. Rheumatology 51, 1208–1215 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Reddy, V. et al. Obinutuzumab induces superior B-cell cytotoxicity to rituximab in rheumatoid arthritis and systemic lupus erythematosus patient samples. Rheumatology 56, 1227–1237 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Mysler, E. F. et al. Efficacy and safety of ocrelizumab in active proliferative lupus nephritis: results from a randomized, double-blind, phase III study. Arthritis Rheum. 65, 2368–2379 (2013).

    Article  CAS  PubMed  Google Scholar 

  106. Ehrenstein, M. R. & Wing, C. The BAFFling effects of rituximab in lupus: danger ahead? Nat. Rev. Rheumatol. 12, 367–372 (2016).

    Article  CAS  PubMed  Google Scholar 

  107. Kraaij, T. et al. Long-term effects of combined B-cell immunomodulation with rituximab and belimumab in severe, refractory systemic lupus erythematosus: 2-year results. Nephrol. Dial. Transpl. 36, 1474–1483 (2021).

    Article  CAS  Google Scholar 

  108. Atisha-Fregoso, Y. et al. Phase II randomized trial of rituximab plus cyclophosphamide followed by belimumab for the treatment of lupus nephritis. Arthritis Rheumatol. 73, 121–131 (2021).

    Article  CAS  PubMed  Google Scholar 

  109. Shipa, M. et al. Effectiveness of belimumab after rituximab in systemic lupus erythematosus: a randomized controlled trial. Ann. Intern. Med. 174, 1647–1657 (2021).

    Article  PubMed  Google Scholar 

  110. Teng, Y. K. O. et al. Pharmacodynamic effect of sequential belimumab and rituximab therapy in patients with systemic lupus erythematosus: the phase 3, randomized, placebo-controlled BLISS-BELIEVE study [Abstract]. Ann. Rheum. Dis. 81, 186 (2022).

    Article  Google Scholar 

  111. Morand, E. F. et al. Trial of anifrolumab in active systemic lupus erythematosus. N. Engl. J. Med. 382, 211–221 (2020).

    Article  CAS  PubMed  Google Scholar 

  112. Jayne, D. et al. Phase II randomised trial of type I interferon inhibitor anifrolumab in patients with active lupus nephritis. Ann. Rheum. Dis. 81, 496–506 (2022).

    Article  CAS  PubMed  Google Scholar 

  113. Furie, R. A. et al. Type I interferon inhibitor anifrolumab in active systemic lupus erythematosus (TULIP-1): a randomised, controlled, phase 3 trial. Lancet Rheumatol. 1, e208–e219 (2019).

    Article  Google Scholar 

  114. Zhao, Q. Bispecific antibodies for autoimmune and inflammatory diseases: clinical progress to date. BioDrugs 34, 111–119 (2020).

    Article  PubMed  Google Scholar 

  115. Abuqayyas, L. et al. Safety and biological activity of rozibafusp alfa, a bispecific inhibitor of inducible costimulator ligand and B cell activating factor, in patients with rheumatoid arthritis: results of a phase 1b, randomized, double-blind, placebo-controlled, multiple ascending dose study. ACR Open Rheumatol. 4, 903–911 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  116. Dörner, T. et al. Treatment of primary Sjögren’s syndrome with ianalumab (VAY736) targeting B cells by BAFF receptor blockade coupled with enhanced, antibody-dependent cellular cytotoxicity. Ann. Rheum. Dis. 78, 641–647 (2019).

    Article  PubMed  Google Scholar 

  117. Bowman, S. J. et al. Safety and efficacy of subcutaneous ianalumab (VAY736) in patients with primary Sjögren’s syndrome: a randomised, double-blind, placebo-controlled, phase 2b dose-finding trial. Lancet 399, 161–171 (2022).

    Article  CAS  PubMed  Google Scholar 

  118. Mok, C. C. Biological and targeted therapies of systemic lupus erythematosus: evidence and the state of the art. Expert. Rev. Clin. Immunol. 13, 677–692 (2017).

    Article  CAS  PubMed  Google Scholar 

  119. Yan, M.-T., Chao, C.-T. & Lin, S.-H. Chronic kidney disease: strategies to retard progression. Int. J. Mol. Sci. 22, 10084 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Tse, K. C. et al. Angiotensin inhibition or blockade for the treatment of patients with quiescent lupus nephritis and persistent proteinuria. Lupus 14, 947–952 (2005).

    Article  CAS  PubMed  Google Scholar 

  121. Chang, J. C., Weiss, P. F., Xiao, R., Atkinson, M. A. & Wenderfer, S. E. Use of renin angiotensin aldosterone system inhibitors in children with lupus and time to glucocorticoid discontinuation. Kidney Int. 102, 395–404 (2022).

    Article  CAS  PubMed  Google Scholar 

  122. Del Vecchio, L., Beretta, A., Jovane, C., Peiti, S. & Genovesi, S. A role for SGLT-2 inhibitors in treating non-diabetic chronic kidney disease. Drugs 81, 1491–1511 (2021).

    Article  PubMed  Google Scholar 

  123. De Nicola, L. et al. Can SGLT2 inhibitors answer unmet therapeutic needs in chronic kidney disease? J. Nephrol. 35, 1605–1618 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  124. Säemann, M. & Kronbichler, A. Call for action in ANCA-associated vasculitis and lupus nephritis: promises and challenges of SGLT-2 inhibitors. Ann. Rheum. Dis. 81, 614–617 (2022).

    Article  PubMed  Google Scholar 

  125. Appel, G. B. et al. Mycophenolate mofetil versus cyclophosphamide for induction treatment of lupus nephritis. J. Am. Soc. Nephrol. 20, 1103–1112 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Isenberg, D. et al. Influence of race/ethnicity on response to lupus nephritis treatment: the ALMS study. Rheumatology 49, 128–140 (2010).

    Article  PubMed  Google Scholar 

  127. Ginzler, E. et al. Phase III/IV, randomized, fifty-two-week study of the efficacy and safety of belimumab in patients of black African ancestry with systemic lupus erythematosus. Arthritis Rheumatol. 74, 112–123 (2022).

    Article  CAS  PubMed  Google Scholar 

  128. Yasuda, H., Fukusumi, Y., Ivanov, V., Zhang, Y. & Kawachi, H. Tacrolimus ameliorates podocyte injury by restoring FK506 binding protein 12 (FKBP12) at actin cytoskeleton. FASEB J. 35, e21983 (2021).

    Article  CAS  PubMed  Google Scholar 

  129. Vital, E. M. et al. Anifrolumab efficacy and safety by type I interferon gene signature and clinical subgroups in patients with SLE: post hoc analysis of pooled data from two phase III trials. Ann. Rheum. Dis. 81, 951–961 (2022).

    Article  CAS  PubMed  Google Scholar 

  130. Cooles, F. A. H. & Isaacs, J. D. The interferon gene signature as a clinically relevant biomarker in autoimmune rheumatic disease. Lancet Rheumatol. 4, e61–e72 (2022).

    Article  CAS  Google Scholar 

  131. Bruce, I. N. et al. Pharmacokinetics, pharmacodynamics, and safety of subcutaneous anifrolumab in patients with systemic lupus erythematosus, active skin disease, and high type I interferon gene signature: a multicentre, randomised, double-blind, placebo-controlled, phase 2 study. Lancet Rheumatol. 3, e101–e110 (2021).

    Article  CAS  Google Scholar 

  132. Bolin, K. et al. Association of STAT4 polymorphism with severe renal insufficiency in lupus nephritis. PLoS One 8, e84450 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  133. Taylor, K. E. et al. Specificity of the STAT4 genetic association for severe disease manifestations of systemic lupus erythematosus. PLoS Genet. 4, e1000084 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  134. Reid, S. et al. Interaction between the STAT4 rs11889341(T) risk allele and smoking confers increased risk of myocardial infarction and nephritis in patients with systemic lupus erythematosus. Ann. Rheum. Dis. 80, 1183–1189 (2021).

    Article  CAS  PubMed  Google Scholar 

  135. Hagberg, N. et al. The STAT4 SLE risk allele rs7574865[T] is associated with increased IL-12-induced IFN-γ production in T cells from patients with SLE. Ann. Rheum. Dis. 77, 1070–1077 (2018).

    Article  CAS  PubMed  Google Scholar 

  136. Hasni, S. A. et al. Phase 1 double-blind randomized safety trial of the Janus kinase inhibitor tofacitinib in systemic lupus erythematosus. Nat. Commun. 12, 3391 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Anolik, J. H. et al. The relationship of FcRγIIIa genotype to degree of B cell depletion by rituximab in the treatment of systemic lupus erythematosus. Arthritis Rheum. 48, 455–459 (2003).

    Article  CAS  PubMed  Google Scholar 

  138. Robinson, J. I. et al. Comprehensive genetic and functional analyses of Fc gamma receptors influence on response to rituximab therapy for autoimmunity. EBioMedicine 86, 104343 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Wahadat, M. J. et al. Gene signature fingerprints stratify SLE patients in groups with similar biological disease profiles: a multicenter longitudinal study. Rheumatology 61, 4344–4354 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  140. Garantziotis, P. et al. Molecular taxonomy of systemic lupus erythematosus through data-driven patient stratification: molecular endotypes and cluster-tailored drugs. Front. Immunol. 13, 860726 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Wang, Y.-F. et al. Identification of shared and Asian-specific loci for systemic lupus erythematosus and evidence for roles of type III interferon signaling and lysosomal function in the disease: a multi-ancestral genome-wide association study. Arthritis Rheumatol. 74, 840–848 (2022).

    Article  CAS  PubMed  Google Scholar 

  142. Owen, K. A. et al. Analysis of trans-ancestral SLE risk loci identifies unique biologic networks and drug targets in African and European ancestries. Am. J. Hum. Genet. 107, 864–881 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Fava, A. et al. Urine proteomics and renal single-cell transcriptomics implicate interleukin-16 in lupus nephritis. Arthritis Rheumatol. 74, 829–839 (2022).

    Article  CAS  PubMed  Google Scholar 

  144. Zhang, T., Duran, V., Vanarsa, K. & Mohan, C. Targeted urine proteomics in lupus nephritis — a meta-analysis. Expert. Rev. Proteom. 17, 767–776 (2020).

    Article  CAS  Google Scholar 

  145. Parikh, S. V. et al. Molecular profiling of kidney compartments from serial biopsies differentiate treatment responders from non-responders in lupus nephritis. Kidney Int. 102, 845–865 (2022).

    Article  CAS  PubMed  Google Scholar 

  146. Der, E. et al. Tubular cell and keratinocyte single-cell transcriptomics applied to lupus nephritis reveal type I IFN and fibrosis relevant pathways. Nat. Immunol. 20, 915–927 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Almaani, S. et al. Rethinking lupus nephritis classification on a molecular level. J. Clin. Med. 8, E1524 (2019).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

C.C.M. and R.S. researched data and wrote the article. All authors contributed substantially to the discussion of content, and to the review and editing of the manuscript before submission.

Corresponding author

Correspondence to Chi Chiu Mok.

Ethics declarations

Competing interests

Y.K.O.T. received an unrestricted research grant from GlaxoSmithKline, Aurinia Pharmaceuticals and Vifor Pharma. The Leiden University Medical Center received consulting fees for consultancy provided by Y.K.O.T. from Aurinia Pharmaceuticals, GlaxoSmithKline, KezarBio, Novartis, Otsuka Pharmaceuticals and Vifor Pharma. Y.T. has received speaking fees and/or honoraria from AbbVie, AstraZeneca, Boehringer-Ingelheim, Bristol-Myers Squibb, Chugai, Daiichi-Sankyo, Eli Lilly, Eisai, Gilead, GlaxoSmithKline, Mitsubishi-Tanabe and Pfizer, and has received research grants from AbbVie, Asahi-Kasei, Boehringer-Ingelheim, Chugai, Daiichi-Sankyo, Eisai and Takeda. The remaining authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Rheumatology thanks Tak Mao Chan, Ioannis Parodis and Agneta Zickert for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mok, C.C., Teng, Y.K.O., Saxena, R. et al. Treatment of lupus nephritis: consensus, evidence and perspectives. Nat Rev Rheumatol 19, 227–238 (2023). https://doi.org/10.1038/s41584-023-00925-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41584-023-00925-5

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing