Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Rheumatoid sarcopenia: loss of skeletal muscle strength and mass in rheumatoid arthritis

Abstract

Sarcopenia, a disorder that involves the generalized loss of skeletal muscle strength and mass, was formally recognized as a disease by its inclusion in the International Classification of Diseases in 2016. Sarcopenia typically affects older people, but younger individuals with chronic disease are also at risk. The risk of sarcopenia is high (with a prevalence of ≥25%) in individuals with rheumatoid arthritis (RA), and this rheumatoid sarcopenia is associated with increased likelihood of falls, fractures and physical disability, in addition to the burden of joint inflammation and damage. Chronic inflammation mediated by cytokines such as TNF, IL-6 and IFNγ contributes to aberrant muscle homeostasis (for instance, by exacerbating muscle protein breakdown), and results from transcriptomic studies have identified dysfunction of muscle stem cells and metabolism in RA. Progressive resistance exercise is an effective therapy for rheumatoid sarcopenia but it can be challenging or unsuitable for some individuals. The unmet need for anti-sarcopenia pharmacotherapies is great, both for people with RA and for otherwise healthy older adults.

Key points

  • Sarcopenia is a progressive and generalized skeletal muscle disorder that involves the accelerated loss of muscle strength and mass and affects approximately one in four people with rheumatoid arthritis (RA).

  • Disease-specific risk factors for rheumatoid sarcopenia include high disease activity, raised inflammatory markers, long disease duration, rheumatoid factor positivity, glucocorticoid use and joint damage.

  • Inflammatory cytokines can accelerate the development of sarcopenia through elevation of muscle proteolysis, disruption of muscle stem cell self-renewal and direct impairment of myofibre force.

  • Muscle strength is the key marker of sarcopenia; handgrip strength can be measured in RA and specific devices are available for individuals with severe hand arthritis.

  • Muscle mass in RA is most frequently measured with dual-energy X-ray absorptiometry, although newer techniques (ultrasonography, CT and MRI) are emerging, and panels of molecular biomarkers might prove useful in the future.

  • Exercise is currently the most effective intervention for improving strength and muscle mass in people with RA.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Overlapping syndromes of low muscle mass and their definitions.
Fig. 2: Proposed mechanisms for acceleration of sarcopenia by inflammatory cytokines in rheumatoid arthritis.

Similar content being viewed by others

References

  1. Cruz-Jentoft, A. J. & Sayer, A. A. Sarcopenia. Lancet 393, 2636–2646 (2019).

    Article  PubMed  Google Scholar 

  2. Cruz-Jentoft, A. J. et al. Sarcopenia: revised European consensus on definition and diagnosis. Age Ageing 48, 16–31 (2019).

    Article  PubMed  Google Scholar 

  3. Schaap, L. A., Koster, A. & Visser, M. Adiposity, muscle mass, and muscle strength in relation to functional decline in older persons. Epidemiol. Rev. 35, 51–65 (2013).

    Article  PubMed  Google Scholar 

  4. Schaap, L. A., van Schoor, N. M., Lips, P. & Visser, M. Associations of sarcopenia definitions, and their components, with the incidence of recurrent falling and fractures: the longitudinal aging study Amsterdam. J. Gerontol. A Biol. Sci. Med. Sci. 73, 1199–1204 (2018).

    Article  PubMed  Google Scholar 

  5. Kitamura, A. et al. Sarcopenia: prevalence, associated factors, and the risk of mortality and disability in Japanese older adults. J. Cachexia Sarcopenia Muscle 12, 30–38 (2021).

    Article  PubMed  Google Scholar 

  6. Shou, J., Chen, P.-J. & Xiao, W.-H. Mechanism of increased risk of insulin resistance in aging skeletal muscle. Diabetol. Metab. Syndr. 12, 14 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Newman, A. B. et al. Strength, but not muscle mass, is associated with mortality in the health, aging and body composition study cohort. J. Gerontol. A Biol. Sci. Med. Sci. 61, 72–77 (2006).

    Article  PubMed  Google Scholar 

  8. Landi, F. et al. Sarcopenia as a risk factor for falls in elderly individuals: results from the ilSIRENTE study. Clin. Nutr. 31, 652–658 (2012).

    Article  PubMed  Google Scholar 

  9. Anker, S. D., Morley, J. E. & von Haehling, S. Welcome to the ICD-10 code for sarcopenia. J. Cachexia Sarcopenia Muscle 7, 512–514 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Li, T. H. et al. The prevalence and risk factors of sarcopenia in rheumatoid arthritis patients: a systematic review and meta-regression analysis. Semin. Arthritis Rheum. 51, 236–245 (2021).

    Article  PubMed  Google Scholar 

  11. Baker, J. F. et al. Assessment of muscle mass relative to fat mass and associations with physical functioning in rheumatoid arthritis. Rheumatology 56, 981–988 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Kramer, H. R., Fontaine, K. R., Bathon, J. M. & Giles, J. T. Muscle density in rheumatoid arthritis: associations with disease features and functional outcomes. Arthritis Rheum. 64, 2438–2450 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Fukuda, W. et al. Low body mass index is associated with impaired quality of life in patients with rheumatoid arthritis. Int. J. Rheum. Dis. 16, 297–302 (2013).

    Article  PubMed  Google Scholar 

  14. Andonian, B. J. et al. Altered skeletal muscle metabolic pathways, age, systemic inflammation, and low cardiorespiratory fitness associate with improvements in disease activity following high-intensity interval training in persons with rheumatoid arthritis. Arthritis Res. Ther. 23, 187 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Greenlund, L. J. & Nair, K. S. Sarcopenia—consequences, mechanisms, and potential therapies. Mech. Ageing Dev. 124, 287–299 (2003).

    Article  CAS  PubMed  Google Scholar 

  16. Liao, C. D., Chen, H. C., Huang, S. W. & Liou, T. H. Exercise therapy for sarcopenia in rheumatoid arthritis: a meta-analysis and meta-regression of randomized controlled trials. Clin. Rehabil. 36, 145–157 (2022).

    Article  PubMed  Google Scholar 

  17. Rausch Osthoff, A. K. et al. Effects of exercise and physical activity promotion: meta-analysis informing the 2018 EULAR recommendations for physical activity in people with rheumatoid arthritis, spondyloarthritis and hip/knee osteoarthritis. RMD Open 4, e000713 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Hernández-Hernández, V., Ferraz-Amaro, I. & Díaz-González, F. Influence of disease activity on the physical activity of rheumatoid arthritis patients. Rheumatology 53, 722–731 (2013).

    Article  PubMed  Google Scholar 

  19. Tierney, M., Fraser, A. & Kennedy, N. Physical activity in rheumatoid arthritis: a systematic review. J. Phys. Act. Health 9, 1036–1048 (2012).

    Article  PubMed  Google Scholar 

  20. Anker, S. D. et al. Muscle wasting disease: a proposal for a new disease classification. J. Cachexia Sarcopenia Muscle 5, 1–3 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Fearon, K., Evans, W. J. & Anker, S. D. Myopenia—a new universal term for muscle wasting. J. Cachexia Sarcopenia Muscle 2, 1–3 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Hoogendijk, E. O. et al. Frailty: implications for clinical practice and public health. Lancet 394, 1365–1375 (2019).

    Article  PubMed  Google Scholar 

  23. Evans, W. J. et al. Cachexia: a new definition. Clin. Nutr. 27, 793–799 (2008).

    Article  CAS  PubMed  Google Scholar 

  24. Roubenoff, R. et al. Low physical activity reduces total energy expenditure in women with rheumatoid arthritis: implications for dietary intake recommendations. Am. J. Clin. Nutr. 76, 774–779 (2002).

    Article  CAS  PubMed  Google Scholar 

  25. Weber, D., Long, J., Leonard, M. B., Zemel, B. & Baker, J. F. Development of novel methods to define deficits in appendicular lean mass relative to fat mass. PLoS ONE 11, e0164385 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Baker, J. F. et al. Sarcopenic obesity in rheumatoid arthritis: prevalence and impact on physical functioning. Rheumatology 61, 2285–2294 (2021).

    Article  PubMed Central  Google Scholar 

  27. Cederholm, T. et al. GLIM criteria for the diagnosis of malnutrition – a consensus report from the global clinical nutrition community. Clin. Nutr. 38, 1–9 (2019).

    Article  CAS  PubMed  Google Scholar 

  28. Mayhew, A. J. et al. The prevalence of sarcopenia in community-dwelling older adults, an exploration of differences between studies and within definitions: a systematic review and meta-analyses. Age Ageing 48, 48–56 (2018).

    Article  Google Scholar 

  29. Masanés, F. et al. Cut-off points for muscle mass – not grip strength or gait speed – determine variations in sarcopenia prevalence. J. Nutr. Health Aging 21, 825–829 (2017).

    Article  PubMed  Google Scholar 

  30. Dao, T., Kirk, B., Phu, S., Vogrin, S. & Duque, G. Prevalence of Sarcopenia and its association with antirheumatic drugs in middle-aged and older adults with rheumatoid arthritis: a systematic review and meta-analysis. Calcif. Tissue Int. 109, 475–489 (2021).

    Article  CAS  PubMed  Google Scholar 

  31. Chen, L.-K. et al. Sarcopenia in Asia: consensus report of the Asian Working Group for Sarcopenia. J. Am. Med. Dir. Assoc. 15, 95–101 (2014).

    Article  PubMed  Google Scholar 

  32. Torii, M. et al. Prevalence and factors associated with sarcopenia in patients with rheumatoid arthritis. Mod. Rheumatol. 29, 589–595 (2019).

    Article  PubMed  Google Scholar 

  33. Sayer, A. A. et al. The developmental origins of sarcopenia. J. Nutr. Health Aging 12, 427–432 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Mitchell, P. J., Cooper, C., Dawson-Hughes, B., Gordon, C. M. & Rizzoli, R. Life-course approach to nutrition. Osteoporos. Int. 26, 2723–2742 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Barone, M. et al. Sarcopenia in patients with rheumatic diseases: prevalence and associated risk factors. J. Clin. Med. 7, 504 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Mochizuki, T., Yano, K., Ikari, K. & Okazaki, K. Sarcopenia-associated factors in Japanese patients with rheumatoid arthritis: a cross-sectional study. Geriatrics Gerontol. Int. 19, 907–912 (2019).

    Article  Google Scholar 

  37. Vlietstra, L. et al. Sarcopenia in osteoarthritis and rheumatoid arthritis: the association with self-reported fatigue, physical function and obesity. PLoS ONE 14, e0217462 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Szulc, P., Duboeuf, F., Marchand, F. & Delmas, P. D. Hormonal and lifestyle determinants of appendicular skeletal muscle mass in men: the MINOS study. Am. J. Clin. Nutr. 80, 496–503 (2004).

    Article  CAS  PubMed  Google Scholar 

  39. Sokka, T. et al. Physical inactivity in patients with rheumatoid arthritis: data from twenty-one countries in a cross-sectional, international study. Arthritis Rheum. 59, 42–50 (2008).

    Article  PubMed  Google Scholar 

  40. Bremander, A., Malm, K. & Andersson, M. L., BARFOT Study Group. Physical activity in established rheumatoid arthritis and variables associated with maintenance of physical activity over a seven-year period – a longitudinal observational study. BMC Rheumatol. 4, 53 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  41. Cavicchia, P. P. et al. A new dietary inflammatory index predicts interval changes in serum high-sensitivity C-reactive protein. J. Nutr. 139, 2365–2372 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Shivappa, N., Steck, S. E., Hurley, T. G., Hussey, J. R. & Hébert, J. R. Designing and developing a literature-derived, population-based dietary inflammatory index. Public Health Nutr. 17, 1689–1696 (2014).

    Article  PubMed  Google Scholar 

  43. Bagheri, A. et al. Inflammatory potential of the diet and risk of sarcopenia and its components. Nutr. J. 19, 129 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Locquet, M., Bruyere, O., Lengele, L., Reginster, J. Y. & Beaudart, C. Relationship between smoking and the incidence of sarcopenia: the SarcoPhAge cohort. Public Health 193, 101–108 (2021).

    Article  CAS  PubMed  Google Scholar 

  45. Hong, S.-H. & Bae, Y.-J. Association between alcohol consumption and the risk of sarcopenia: a systematic review and meta-analysis. Nutrients 14, 3266 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Steffl, M., Bohannon, R. W., Petr, M., Kohlikova, E. & Holmerova, I. Alcohol consumption as a risk factor for sarcopenia – a meta-analysis. BMC Geriatr. 16, 99 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Azizov, V. & Zaiss, M. M. Alcohol consumption in rheumatoid arthritis: a path through the immune system. Nutrients 13, 1324 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Jones, G. et al. Sarcopenia and variation in the human leukocyte antigen complex. J. Gerontol. Ser. A 75, 301–308 (2019).

    Article  Google Scholar 

  49. Dodds, R. M., Granic, A., Robinson, S. M. & Sayer, A. A. Sarcopenia, long-term conditions, and multimorbidity: findings from UK Biobank participants. J. Cachexia, Sarcopenia Muscle 11, 62–68 (2020).

    Article  PubMed  Google Scholar 

  50. Baker, J. F., Long, J., Ibrahim, S., Leonard, M. B. & Katz, P. Are men at greater risk of lean mass deficits in rheumatoid arthritis? Arthritis Care Res. 67, 112–119 (2015).

    Article  Google Scholar 

  51. Book, C., Karlsson, M. K., Nilsson, J. Å., Åkesson, K. & Jacobsson, L. T. H. Changes in body composition after 2 years with rheumatoid arthritis. Scand. J. Rheumatol. 40, 95–100 (2011).

    Article  CAS  PubMed  Google Scholar 

  52. Giles, J. T. et al. Abnormal body composition phenotypes in older rheumatoid arthritis patients: association with disease characteristics and pharmacotherapies. Arthritis Care Res. 59, 807–815 (2008).

    Article  Google Scholar 

  53. Yamada, Y. et al. Glucocorticoid use is an independent risk factor for developing sarcopenia in patients with rheumatoid arthritis: from the CHIKARA study. Clin. Rheumatol. 39, 1757–1764 (2020).

    Article  PubMed  Google Scholar 

  54. Cho, E. J., Choi, Y., Jung, S. J. & Kwak, H. B. Role of exercise in estrogen deficiency-induced sarcopenia. J. Exerc. Rehabil. 18, 2–9 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  55. Shin, M. J., Jeon, Y. K. & Kim, I. J. Testosterone and sarcopenia. World J. Mens Health 36, 192–198 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  56. Gomez-Ramirez, E. E. et al. Risk factors of muscle wasting in women with rheumatoid arthritis: relevance of the persistent failure of conventional combination therapy. Healthcare 10, 2004 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  57. Bigman, G. & As, R. Implications of race and ethnicity in Sarcopenia US national prevalence of sarcopenia by muscle mass, strength, and function indices. Gerontol. Geriatr. Res. 4, 126 (2021).

    Google Scholar 

  58. Jones, G. et al. Genome-wide meta-analysis of muscle weakness identifies 15 susceptibility loci in older men and women. Nat. Commun. 12, 654 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Viatte, S. et al. Association of HLA-DRB1 haplotypes with rheumatoid arthritis severity, mortality, and treatment response. J. Am. Med. Assoc. 313, 1645–1656 (2015).

    Article  Google Scholar 

  60. Cretoiu, D. et al. in Muscle Atrophy (ed. Xiao, J.) 23–46 (Springer Singapore, 2018).

  61. Riuzzi, F. et al. Cellular and molecular mechanisms of sarcopenia: the S100B perspective. J. Cachexia Sarcopenia Muscle 9, 1255–1268 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  62. Verdijk, L. B. et al. Satellite cells in human skeletal muscle; from birth to old age. AGE 36, 545–557 (2014).

    Article  CAS  PubMed  Google Scholar 

  63. Mikkelsen, U. R. et al. Preserved skeletal muscle protein anabolic response to acute exercise and protein intake in well-treated rheumatoid arthritis patients. Arthritis Res. Ther. 17, 271 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  64. Huffman, K. M. et al. Molecular alterations in skeletal muscle in rheumatoid arthritis are related to disease activity, physical inactivity, and disability. Arthritis Res. Ther. 19, 12–12 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  65. Patel, H. P. et al. Lean mass, muscle strength and gene expression in community dwelling older men: findings from the hertfordshire sarcopenia study (HSS). Calcif. Tissue Int. 95, 308–316 (2014).

    Article  CAS  PubMed  Google Scholar 

  66. Deane, C. S. et al. Transcriptomic meta-analysis of disuse muscle atrophy vs. resistance exercise-induced hypertrophy in young and older humans. J. Cachexia Sarcopenia Muscle 12, 629–645 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  67. Castillero, E. et al. IGF-I system, atrogenes and myogenic regulatory factors in arthritis induced muscle wasting. Mol. Cell. Endocrinol. 309, 8–16 (2009).

    Article  CAS  PubMed  Google Scholar 

  68. Cohen, S., Nathan, J. A. & Goldberg, A. L. Muscle wasting in disease: molecular mechanisms and promising therapies. Nat. Rev. Drug Discov. 14, 58–74 (2015).

    Article  CAS  PubMed  Google Scholar 

  69. Jiao, J. & Demontis, F. Skeletal muscle autophagy and its role in sarcopenia and organismal aging. Curr. Opin. Pharmacol. 34, 1–6 (2017).

    Article  CAS  PubMed  Google Scholar 

  70. Lecker, S. H. et al. Multiple types of skeletal muscle atrophy involve a common program of changes in gene expression. FASEB J. 18, 39–51 (2004).

    Article  CAS  PubMed  Google Scholar 

  71. Perrini, S. et al. The GH/IGF1 axis and signaling pathways in the muscle and bone: mechanisms underlying age-related skeletal muscle wasting and osteoporosis. J. Endocrinol. 205, 201–210 (2010).

    Article  CAS  PubMed  Google Scholar 

  72. Pérez-Baos, S. et al. Mediators and patterns of muscle loss in chronic systemic inflammation. Front. Physiol. 9, 409 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  73. de Oliveira Nunes Teixeira, V., Filippin, L. I., Viacava, P. R., de Oliveira, P. G. & Xavier, R. M. Muscle wasting in collagen-induced arthritis and disuse atrophy. Exp. Biol. Med. 238, 1421–1430 (2013).

    Article  Google Scholar 

  74. Fry, C. S. et al. Inducible depletion of satellite cells in adult, sedentary mice impairs muscle regenerative capacity without affecting sarcopenia. Nat. Med. 21, 76–80 (2015).

    Article  CAS  PubMed  Google Scholar 

  75. Boutrup, R. J., Farup, J., Vissing, K., Kjaer, M. & Mikkelsen, U. R. Skeletal muscle stem cell characteristics and myonuclei content in patients with rheumatoid arthritis: a cross-sectional study. Rheumatol. Int. 38, 1031–1041 (2018).

    Article  CAS  PubMed  Google Scholar 

  76. Jimenez-Gutierrez, G. E. et al. Molecular mechanisms of inflammation in sarcopenia: diagnosis and therapeutic update. Cells 11, 2359 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Zhang, X. et al. Immune system and sarcopenia: presented relationship and future perspective. Exp. Gerontol. 164, 111823 (2022).

    Article  CAS  PubMed  Google Scholar 

  78. Little, R. D. et al. Compensatory anabolic signaling in the sarcopenia of experimental chronic arthritis. Sci. Rep. 7, 6311 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  79. Reid, M. B. & Moylan, J. S. Beyond atrophy: redox mechanisms of muscle dysfunction in chronic inflammatory disease. J. Physiol. 589, 2171–2179 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. VanderVeen, B. N. et al. The regulation of skeletal muscle fatigability and mitochondrial function by chronically elevated interleukin-6. Exp. Physiol. 104, 385–397 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Giudice, J. & Taylor, J. M. Muscle as a paracrine and endocrine organ. Curr. Opin. Pharmacol. 34, 49–55 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Nelke, C., Dziewas, R., Minnerup, J., Meuth, S. G. & Ruck, T. Skeletal muscle as potential central link between sarcopenia and immune senescence. eBioMedicine 49, 381–388 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  83. Murillo-Saich, J. D. et al. Association of myostatin, a cytokine released by muscle, with inflammation in rheumatoid arthritis: a cross-sectional study. Medicine 100, e24186 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Bano, G. et al. Inflammation and sarcopenia: a systematic review and meta-analysis. Maturitas 96, 10–15 (2017).

    Article  PubMed  Google Scholar 

  85. Kalinkovich, A. & Livshits, G. Sarcopenic obesity or obese sarcopenia: a cross talk between age-associated adipose tissue and skeletal muscle inflammation as a main mechanism of the pathogenesis. Ageing Res. Rev. 35, 200–221 (2017).

    Article  CAS  PubMed  Google Scholar 

  86. Oliver, C. E. et al. Tissue engineered skeletal muscle model of rheumatoid arthritis using human primary skeletal muscle cells. J. Tissue Eng. Regen. Med. 16, 128–139 (2022).

    Article  CAS  PubMed  Google Scholar 

  87. Fukada, S.-i The roles of muscle stem cells in muscle injury, atrophy and hypertrophy. J. Biochem. 163, 353–358 (2018).

    Article  CAS  PubMed  Google Scholar 

  88. Doles, J. D. & Olwin, B. B. The impact of JAK–STAT signaling on muscle regeneration. Nat. Med. 20, 1094–1095 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Queeney, K., Housley, W., Sokolov, J. & Long, A. FRI0131. Elucidating the mechanism underlying creatine phosphokinase upregulation with upadacitinib [Abstr.]. Ann. Rheum. Dis. 78 (Suppl. 2), 734–735 (2019).

    Google Scholar 

  90. Price, F. D. et al. Inhibition of JAK–STAT signaling stimulates adult satellite cell function. Nat. Med. 20, 1174–1181 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Sorensen, J. R. et al. Preclinical characterization of the JAK/STAT inhibitor SGI-1252 on skeletal muscle function, morphology, and satellite cell content. PLoS ONE 13, e0198611 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  92. Bonetto, A. et al. JAK/STAT3 pathway inhibition blocks skeletal muscle wasting downstream of IL-6 and in experimental cancer cachexia. Am. J. Physiol. Endocrinol. Metab. 303, E410–E421 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Chen, Z., Li, B., Zhan, R. Z., Rao, L. & Bursac, N. Exercise mimetics and JAK inhibition attenuate IFN-gamma-induced wasting in engineered human skeletal muscle. Sci. Adv. 7, eabd9502 (2021).

    Article  CAS  PubMed  Google Scholar 

  94. Dobrowolny, G., Barbiera, A., Sica, G. & Scicchitano, B. M. Age-related alterations at neuromuscular junction: role of oxidative stress and epigenetic modifications. Cells 10, 1307 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Bellanti, F., Lo Buglio, A. & Vendemiale, G. Mitochondrial Impairment in sarcopenia. Biology 10, 31 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  96. Bentzinger, C. F. & Rudnicki, M. A. Rejuvenating aged muscle stem cells. Nat. Med. 20, 234–235 (2014).

    Article  CAS  PubMed  Google Scholar 

  97. Yu, K.-H. et al. Consensus recommendations on managing the selected comorbidities including cardiovascular disease, osteoporosis, and interstitial lung disease in rheumatoid arthritis. Medicine 101, e28501 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Malmstrom, T. K. & Morley, J. E. SARC-F: a simple questionnaire to rapidly diagnose sarcopenia. J. Am. Med. Dir. Assoc. 14, 531–532 (2013).

    Article  PubMed  Google Scholar 

  99. Bahat, G., Yilmaz, O., Kılıç, C., Oren, M. M. & Karan, M. A. Performance of SARC-F in regard to sarcopenia definitions, muscle mass and functional measures. J. Nutr. Health Aging 22, 898–903 (2018).

    Article  CAS  PubMed  Google Scholar 

  100. Fries, J. F., Spitz, P., Kraines, R. G. & Holman, H. R. Measurement of patient outcome in arthritis. Arthritis Rheum. 23, 137–145 (1980).

    Article  CAS  PubMed  Google Scholar 

  101. Palamar, D. et al. Disease activity, handgrip strengths, and hand dexterity in patients with rheumatoid arthritis. Clin. Rheumatol. 36, 2201–2208 (2017).

    Article  CAS  PubMed  Google Scholar 

  102. Sheehy, C., Gaffney, K. & Mukhtyar, C. Standardized grip strength as an outcome measure in early rheumatoid arthritis. Scand. J. Rheumatol. 42, 289–293 (2013).

    Article  CAS  PubMed  Google Scholar 

  103. Navarro-Compán, V. et al. Relationship between types of radiographic damage and disability in patients with rheumatoid arthritis in the EURIDISS cohort: a longitudinal study. Rheumatology 54, 83–90 (2014).

    Article  PubMed  Google Scholar 

  104. Beaudart, C. et al. Sarcopenia in daily practice: assessment and management. BMC Geriatrics 16, 170 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  105. Beenakker, K. G. M. et al. Patterns of muscle strength loss with age in the general population and patients with a chronic inflammatory state. Ageing Res. Rev. 9, 431–436 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  106. Callahan, L. F. et al. Measures of activity and damage in rheumatoid arthritis: depiction of changes and prediction of mortality over five years. Arthritis Rheum. 10, 381–394 (1997).

    Article  CAS  Google Scholar 

  107. Flipon, E. et al. Is it possible to identify early predictors of the future cost of chronic arthritis? The VErA project. Fundam. Clin. Pharmacol. 23, 105–113 (2009).

    Article  CAS  PubMed  Google Scholar 

  108. Roberts, H. C. et al. A review of the measurement of grip strength in clinical and epidemiological studies: towards a standardised approach. Age Ageing 40, 423–429 (2011).

    Article  PubMed  Google Scholar 

  109. Lusa, A. L., Amigues, I., Kramer, H. R., Dam, T.-T. & Giles, J. T. Indicators of walking speed in rheumatoid arthritis: relative influence of articular, psychosocial, and body composition characteristics. Arthritis Care Res. 67, 21–31 (2015).

    Article  Google Scholar 

  110. Evans, W. J., Hellerstein, M., Orwoll, E., Cummings, S. & Cawthon, P. M. D3-creatine dilution and the importance of accuracy in the assessment of skeletal muscle mass. J. Cachexia Sarcopenia Muscle 10, 14–21 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  111. Khoja, S. S., Patterson, C. G., Goodpaster, B. H., Delitto, A. & Piva, S. R. Skeletal muscle fat in individuals with rheumatoid arthritis compared to healthy adults. Exp. Gerontol. 129, 110768 (2020).

    Article  PubMed  Google Scholar 

  112. Baker, J. F. et al. Intramuscular fat accumulation and associations with body composition, strength, and physical functioning in patients with rheumatoid arthritis. Arthritis Care Res. 70, 1727–1734 (2018).

    Article  CAS  Google Scholar 

  113. Khoja, S. S., Moore, C. G., Goodpaster, B. H., Delitto, A. & Piva, S. R. Skeletal muscle fat and its association with physical function in rheumatoid arthritis. Arthritis Care Res. 70, 333–342 (2018).

    Article  Google Scholar 

  114. Gonzalez, M. C., Barbosa-Silva, T. G. & Heymsfield, S. B. Bioelectrical impedance analysis in the assessment of sarcopenia. Curr. Opin. Clin. Nutr. Metab. Care 21, 366–374 (2018).

    Article  PubMed  Google Scholar 

  115. De Oliveira, M., Cavalheiro Do Espírito Santo, R., Xavier, R., Alabarse, P. & Miranda de Souza Silva, J. POS0546 urinary metabolomic biomarker candidates for skeletal muscle wasting in patients with rheumatoid arthritis. Ann. Rheum. Dis. 81, 536–537 (2022).

    Article  Google Scholar 

  116. Gonzalez-Ponce, F. et al. Myostatin levels and the risk of myopenia and rheumatoid cachexia in women with rheumatoid arthritis. J. Immunol. Res. 2022, 7258152 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  117. Kerschan-Schindl, K. et al. Rheumatoid arthritis in remission. Wien. Klin. Wochenschr. 131, 1–7 (2019).

    Article  CAS  PubMed  Google Scholar 

  118. Wada, Y., Sudo, M., Kobayashi, D., Kuroda, T. & Narita, I. THU0155. Serum myostatin in patients with rheumatoid arthritis and its correlation with body compositions [Abstr.]. Ann. Rheum. Dis. 79 (Suppl. 1), 293 (2020).

    Google Scholar 

  119. Silva, J. M. D. S. et al. THU0080. Serum irisin and myostatin levels in patients with rheumatoid arthritis [Abstr.]. Ann. Rheum. Dis. 77 (Suppl. 2), 263 (2018).

    Google Scholar 

  120. Baker, J. F. et al. Insulin-like growth factor 1 and adiponectin and associations with muscle deficits, disease characteristics, and treatments in rheumatoid arthritis. J. Rheumatol. 42, 2038–2045 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Toussirot, E. et al. Increased high molecular weight adiponectin and lean mass during tocilizumab treatment in patients with rheumatoid arthritis: a 12-month multicentre study. Arthritis Res. Ther. 22, 224 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Sendama, W. The effect of ageing on the resolution of inflammation. Ageing Res. Rev. 57, 101000 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  123. Ying, L., Zhang, Q., Yang, Y.-M. & Zhou, J.-Y. A combination of serum biomarkers in elderly patients with sarcopenia: a cross-sectional observational study. Int. J. Endocrinol. 2022, 4026940 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  124. Dzik, K. P. & Kaczor, J. J. Mechanisms of vitamin D on skeletal muscle function: oxidative stress, energy metabolism and anabolic state. Eur. J. Appl. Physiol. 119, 825–839 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Minamino, H. et al. Serum vitamin D status inversely associates with a prevalence of severe sarcopenia among female patients with rheumatoid arthritis. Sci. Rep. 11, 20485 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Tada, M., Yamada, Y., Mandai, K. & Hidaka, N. Matrix metalloprotease 3 is associated with sarcopenia in rheumatoid arthritis - results from the CHIKARA study. Int. J. Rheum. Dis. 21, 1962–1969 (2018).

    Article  CAS  PubMed  Google Scholar 

  127. Dent, E. et al. International clinical practice guidelines for sarcopenia (ICFSR): screening, diagnosis and management. J. Nutr. Health Aging 22, 1148–1161 (2018).

    Article  CAS  PubMed  Google Scholar 

  128. Hurkmans, E., van der Giesen, F. J., Vliet Vlieland, T. P. M., Schoones, J. & Van den Ende, E. Dynamic exercise programs (aerobic capacity and/or muscle strength training) in patients with rheumatoid arthritis. Cochrane Database Syst. Rev. 4, CD006853 (2009).

    Google Scholar 

  129. Hurst, C. et al. Resistance exercise as a treatment for sarcopenia: prescription and delivery. Age Ageing 51, afac003 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  130. Rausch Osthoff, A.-K. et al. 2018 EULAR recommendations for physical activity in people with inflammatory arthritis and osteoarthritis. Ann. Rheum. Dis. 77, 1251–1260 (2018).

    Article  PubMed  Google Scholar 

  131. Speed, C. A. & Campbell, R. Mechanisms of strength gain in a handgrip exercise programme in rheumatoid arthritis. Rheumatol. Int. 32, 159–163 (2012).

    Article  CAS  PubMed  Google Scholar 

  132. Lemmey, A. B., Williams, S. L., Marcora, S. M., Jones, J. & Maddison, P. J. Are the benefits of a high-intensity progressive resistance training program sustained in rheumatoid arthritis patients? A 3-year followup study. Arthritis Care Res. 64, 71–75 (2012).

    Article  Google Scholar 

  133. Andonian, B. J. et al. Effect of high-intensity interval training on muscle remodeling in rheumatoid arthritis compared to prediabetes. Arthritis Res. Ther. 20, 283 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  134. Cruz-Jentoft, A. J., Romero-Yuste, S., Chamizo Carmona, E. & Nolla, J. M. Sarcopenia, immune-mediated rheumatic diseases, and nutritional interventions. Aging Clin. Exp. Res. 33, 2929–2939 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  135. Groen, B. B. L. et al. Post-prandial protein handling: you are what you just ate. PLoS ONE 10, e0141582 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  136. Deutz, N. E. et al. Protein intake and exercise for optimal muscle function with aging: recommendations from the ESPEN Expert Group. Clin. Nutr. 33, 929–936 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Gielen, E. et al. Nutritional interventions to improve muscle mass, muscle strength, and physical performance in older people: an umbrella review of systematic reviews and meta-analyses. Nutr. Rev. 79, 121–147 (2021).

    Article  PubMed  Google Scholar 

  138. Komar, B., Schwingshackl, L. & Hoffmann, G. Effects of leucine-rich protein supplements on anthropometric parameter and muscle strength in the elderly: a systematic review and meta-analysis. J. Nutr. Health Aging 19, 437–446 (2015).

    Article  CAS  PubMed  Google Scholar 

  139. Wilkinson, T. J. et al. Can creatine supplementation improve body composition and objective physical function in rheumatoid arthritis patients? A randomized controlled trial. Arthritis Care Res. 68, 729–737 (2016).

    Article  CAS  Google Scholar 

  140. Marcora, S., Lemmey, A. & Maddison, P. Dietary treatment of rheumatoid cachexia with beta-hydroxy-beta-methylbutyrate, glutamine and arginine: a randomised controlled trial. Clin. Nutr. 24, 442–454 (2005).

    Article  CAS  PubMed  Google Scholar 

  141. Hulander, E. et al. Improvements in body composition after a proposed anti-inflammatory diet are modified by employment status in weight-stable patients with rheumatoid arthritis, a randomized controlled crossover trial. Nutrients 14, 1058 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. De Spiegeleer, A. et al. Pharmacological interventions to improve muscle mass, muscle strength and physical performance in older people: an umbrella review of systematic reviews and meta-analyses. Drugs Aging 35, 719–734 (2018).

    Article  PubMed  Google Scholar 

  143. Landi, F. et al. Nonsteroidal anti-inflammatory drug (NSAID) use and sarcopenia in older people: results from the ilSIRENTE study. J. Am. Med. Dir. Assoc. 14, 626.e629–626.e613 (2013).

    Article  Google Scholar 

  144. Dideriksen, K. et al. No effect of anti-inflammatory medication on postprandial and postexercise muscle protein synthesis in elderly men with slightly elevated systemic inflammation. Exp. Gerontol. 83, 120–129 (2016).

    Article  CAS  PubMed  Google Scholar 

  145. Petersen, S. G. et al. Nonsteroidal anti-inflammatory drug or glucosamine reduced pain and improved muscle strength with resistance training in a randomized controlled trial of knee osteoarthritis patients. Arch. Phys. Med. Rehabil. 92, 1185–1193 (2011).

    Article  PubMed  Google Scholar 

  146. Trappe, T. A. et al. Influence of acetaminophen and ibuprofen on skeletal muscle adaptations to resistance exercise in older adults. Am. J. Physiol. Regul. Integr. Comp. Physiol. 300, R655–R662 (2011).

    Article  CAS  PubMed  Google Scholar 

  147. Papanicolaou, D. A. et al. A phase IIA randomized, placebo-controlled clinical trial to study the efficacy and safety of the selective androgen receptor modulator (SARM), MK-0773 in female participants with sarcopenia. J. Nutr. Health Aging 17, 533–543 (2013).

    Article  CAS  PubMed  Google Scholar 

  148. Becker, C. et al. Myostatin antibody (LY2495655) in older weak fallers: a proof-of-concept, randomised, phase 2 trial. Lancet Diabetes Endocrinol. 3, 948–957 (2015).

    Article  CAS  PubMed  Google Scholar 

  149. Rooks, D. et al. Bimagrumab vs optimized standard of care for treatment of sarcopenia in community-dwelling older adults: a randomized clinical trial. JAMA Netw. Open 3, e2020836 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  150. Wei, Y. et al. Prevention of muscle wasting by CRISPR/Cas9-mediated disruption of myostatin in vivo. Mol. Ther. 24, 1889–1891 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Ono, T. et al. Simultaneous augmentation of muscle and bone by locomomimetism through calcium-PGC-1α signaling. Bone Res. 10, 52 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. de Souza, M. P. G. U. E. S., Guimarães, N. S., de Resende Guimarães, M. F. B., de Souza, V. A. & Kakehasi, A. M. Effect of biological disease-modifying antirheumatic drugs on body composition in patients with rheumatoid arthritis: a systematic review and meta-analysis. Adv. Rheumatol. 62, 16 (2022).

    Article  PubMed  Google Scholar 

  153. Hein, T. R. et al. The effect of disease-modifying anti-rheumatic drugs on skeletal muscle mass in rheumatoid arthritis patients: a systematic review with meta-analysis. Arthritis Res. Ther. 24, 171 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  154. Hasegawa, E. et al. SAT0110. Sarcopenia in patients with rheumatoid arthritis on the treatment with biologic disease modifying anti-rheumatic drugs [Abstr.]. Ann. Rheum. Dis. 79 (Suppl. 1), 989 (2020).

    Google Scholar 

Download references

Acknowledgements

J.D.I. and A.A.S. are National Institute for Health and Care Research (NIHR) Senior Investigators.

Author information

Authors and Affiliations

Authors

Contributions

J.L.B. researched data for and wrote the article. All authors contributed substantially to the discussion of content. J.L.B., A.G.P., A.A.S. and J.D.I. reviewed and edited the manuscript before submission.

Corresponding author

Correspondence to Joshua L. Bennett.

Ethics declarations

Competing interests

J.D.I. has received research funding from GSK, Janssen and Pfizer, and speaker and/or consultancy fees from AbbVie, BMS, Gilead, Roche and UCB. The remaining authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Rheumatology thanks Michael Kjaer, Masahiro Tada, and Ricardo Xavier, who co-reviewed with Rafaela Cavalheiro do Espirito Santo, for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Glossary

Appendicular lean mass index

Appendicular lean mass divided by the square of the individual’s height.

Muscle quality

Used interchangeably to describe either muscle strength relative to muscle mass or muscle structure (such as the ratio of contractile muscle to fat within the tissue).

Primary sarcopenia

Gradual age-related deterioration in muscle health that leads to sarcopenia.

Rheumatoid cachexia

Abnormal body composition in the context of rheumatoid arthritis, with low muscle mass plus normal or increased fat mass.

Rheumatoid sarcopenia

Sarcopenia associated with rheumatoid arthritis.

Sarcopenia

A progressive and generalized skeletal muscle disorder that involves the accelerated loss of muscle strength and mass.

Sarcopenic obesity

Sarcopenia plus increased fat mass.

Secondary sarcopenia

Sarcopenia associated with disease.

Severe sarcopenia

Sarcopenia plus poor physical performance (such as slow gait speed).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bennett, J.L., Pratt, A.G., Dodds, R. et al. Rheumatoid sarcopenia: loss of skeletal muscle strength and mass in rheumatoid arthritis. Nat Rev Rheumatol 19, 239–251 (2023). https://doi.org/10.1038/s41584-023-00921-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41584-023-00921-9

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing