Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The decisive early phase of bone regeneration

Abstract

Bone has a remarkable endogenous regenerative capacity that enables scarless healing and restoration of its prior mechanical function, even under challenging conditions such as advanced age and metabolic or immunological degenerative diseases. However — despite much progress — a high number of bone injuries still heal with unsatisfactory outcomes. The mechanisms leading to impaired healing are heterogeneous, and involve exuberant and non-resolving immune reactions or overstrained mechanical conditions that affect the delicate regulation of the early initiation of scar-free healing. Every healing process begins phylogenetically with an inflammatory reaction, but its spatial and temporal intensity must be tightly controlled. Dysregulation of this inflammatory cascade directly affects the subsequent healing phases and hinders the healing progression. This Review discusses the complex processes underlying bone regeneration, focusing on the early healing phase and its highly dynamic environment, where vibrant changes in cellular and tissue composition alter the mechanical environment and thus affect the signalling pathways that orchestrate the healing process. Essential to scar-free healing is the interplay of various dynamic cascades that control timely resolution of local inflammation and tissue self-organization, while also providing sufficient local stability to initiate endogenous restoration. Various immunotherapy and mechanobiology-based therapy options are under investigation for promoting bone regeneration.

Key points

  • Bone healing is a dynamic yet stable process that occurs throughout an individuals’ lifespan; patient-specific factors can increase the risk of healing disorders but the causal relationship is incompletely understood.

  • The bone healing process is tightly regulated and very well orchestrated but might easily become disrupted; a relevant percentage of patients with a fracture experience unsatisfactory healing outcomes.

  • Emerging evidence highlights the patients’ immune competence as a decisive factor in the healing process; various components of the immune system have beneficial or detrimental effects.

  • Mechanical conditions promote bone regeneration, but this knowledge has not yet been exploited in daily clinical practice or current surgical treatment strategies.

  • The initial stages of bone healing are characterized by dynamic self-organization of the tissue that governs the healing outcome; invading immune and/or matrix-generating cells define the signalling pattern that guides healing.

  • New patient-specific treatment approaches are on the horizon that target immunomodulatory and biomechanical aspects.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The organization of various bone compartments.
Fig. 2: Intact and injured bone.
Fig. 3: The interdependent and overlapping phases of bone healing.
Fig. 4: Dynamic cellular environment of bone healing.
Fig. 5: Biomechanical events of bone healing.
Fig. 6: Progenitor cell recruitment for osteogenic differentiation.
Fig. 7: Angiogenic processes during bone healing.

Similar content being viewed by others

References

  1. United States Bone and Joint Initiative. The Burden of Musculoskeletal Diseases in the United States, 3rd edn (United States Bone and Joint Initiative, 2014).

  2. Storm, A. Gesundheitsreport 2018. Analyse der Arbeitsunfähigkeitsdaten, Band 21 (DAK-Gesundheit, 2018).

  3. Brennan, S. L. et al. Rheumatoid arthritis and incident fracture in women: a case–control study. BMC Musculoskelet. Disord. 15, 13 (2014).

    Article  Google Scholar 

  4. Claes, L., Recknagel, S. & Ignatius, A. Fracture healing under healthy and inflammatory conditions. Nat. Rev. Rheumatol. 8, 133–143 (2012).

    Article  CAS  Google Scholar 

  5. GBD 2019 Fracture Collaborators Global, regional, and national burden of bone fractures in 204 countries and territories, 1990–2019: a systematic analysis from the Global Burden of Disease Study 2019 Lancet Healthy Longev. 2 e580–e592 (2021).

    Article  Google Scholar 

  6. Borgstrom, F. et al. Fragility fractures in Europe: burden, management and opportunities. Arch. Osteoporos. 15, 59 (2020).

    Article  Google Scholar 

  7. Tompkins, B. A. et al. IMPACT: preclinical studies of cell therapy for human disease. Circ. Res. 122, 1006–1020 (2018).

    Article  CAS  Google Scholar 

  8. Grigorian-Shamagian, L. et al. Insights into therapeutic products, preclinical research models, and clinical trials in cardiac regenerative and reparative medicine: where are we now and the way ahead. Current opinion paper of the ESC Working Group on Cardiovascular Regenerative and Reparative Medicine. Cardiovasc. Res. 117, 1428–1433 (2021).

    Article  CAS  Google Scholar 

  9. Shigeto, J. et al. Preclinical toxicity studies for regenerative medicine in Japan. Clin. Ther. 40, 1813–1822 (2018).

    Article  Google Scholar 

  10. Greenhill, C. Metabolism: role of bone in glucose metabolism. Nat. Rev. Endocrinol. 14, 191 (2018).

    Article  Google Scholar 

  11. Langdahl, B., Ferrari, S. & Dempster, D. W. Bone modeling and remodeling: potential as therapeutic targets for the treatment of osteoporosis. Ther. Adv. Musculoskelet. Dis. 8, 225–235 (2016).

    Article  CAS  Google Scholar 

  12. Rolvien, T. & Amling, M. Disuse osteoporosis: clinical and mechanistic insights. Calcif. Tissue Int. 110, 592–604 (2022).

    Article  CAS  Google Scholar 

  13. Dello Russo, C. et al. Physiological adaptations affecting drug pharmacokinetics in space: what do we really know? A critical review of the literature. Br. J. Pharmacol. 179, 2538–2557 (2022).

    Article  CAS  Google Scholar 

  14. Lombardi, G., Ziemann, E. & Banfi, G. Physical activity and bone health: what is the role of immune system? A narrative review of the third way. Front. Endocrinol. 10, 60 (2019).

    Article  Google Scholar 

  15. Arron, J. R. & Choi, Y. Bone versus immune system. Nature 408, 535–536 (2000).

    Article  CAS  Google Scholar 

  16. Knecht, R. S. et al. Mechanobiological principles influence the immune response in regeneration: implications for bone healing. Front. Bioeng. Biotechnol. 9, 614508 (2021).

    Article  Google Scholar 

  17. Shen, B. et al. A mechanosensitive peri-arteriolar niche for osteogenesis and lymphopoiesis. Nature 591, 438–444 (2021).

    Article  CAS  Google Scholar 

  18. Bucher, C. H., Lei, H., Duda, G. N., Volk, H.-D. & Schmidt-Bleek, K. The role of immune reactivity in bone regeneration Adv. Tech. Bone Regen. 18 3697–3707 (2016).

    Google Scholar 

  19. Bucher, C. H. et al. Experience in the adaptive immunity impacts bone homeostasis, remodeling, and healing. Front. Immunol. 10, 797 (2019).

    Article  CAS  Google Scholar 

  20. Schmidt-Bleek, K., Kwee, B. J., Mooney, D. J. & Duda, G. N. Boon and bane of inflammation in bone tissue regeneration and its link with angiogenesis. Tissue Eng. Part B Rev. 21, 354–364 (2015).

    Article  CAS  Google Scholar 

  21. Schell, H. et al. The haematoma and its role in bone healing. J. Exp. Orthop. 4, 5 (2017).

    Article  CAS  Google Scholar 

  22. Gaber, T., Dziurla, R., Tripmacher, R., Burmester, G. R. & Buttgereit, F. Hypoxia inducible factor (HIF) in rheumatology: low O2! See what HIF can do! Ann. Rheum. Dis. 64, 971–980 (2005).

    Article  CAS  Google Scholar 

  23. Lang, A. et al. MIF does only marginally enhance the pro-regenerative capacities of DFO in a mouse-osteotomy-model of compromised bone healing conditions. Bone 154, 116247 (2022).

    Article  CAS  Google Scholar 

  24. Loeffler, J., Duda, G. N., Sass, F. A. & Dienelt, A. The metabolic microenvironment steers bone tissue regeneration. Trends Endocrinol. Metab. 29, 99–110 (2018).

    Article  CAS  Google Scholar 

  25. Street, J. et al. Is human fracture hematoma inherently angiogenic? Clin. Orthop. Relat. Res. https://doi.org/10.1097/00003086-200009000-00033 (2000).

    Article  Google Scholar 

  26. Berkmann, J. C. et al. Early pH changes in musculoskeletal tissues upon injury – aerobic catabolic pathway activity linked to inter-individual differences in local pH. Int. J. Mol. Sci. https://doi.org/10.3390/ijms21072513 (2020).

    Article  Google Scholar 

  27. Gerstenfeld, L. C., Cullinane, D. M., Barnes, G. L., Graves, D. T. & Einhorn, T. A. Fracture healing as a post-natal developmental process: molecular, spatial, and temporal aspects of its regulation. J. Cell. Biochem. 88, 873–884 (2003).

    Article  CAS  Google Scholar 

  28. Bogeska, R. et al. Inflammatory exposure drives long-lived impairment of hematopoietic stem cell self-renewal activity and accelerated aging. Cell Stem Cell 29, 1273–1284 (2022).

    Article  CAS  Google Scholar 

  29. Schlundt, C. et al. Clinical and research approaches to treat non-union fracture. Curr. Osteoporos. Rep. 16, 155–168 (2018).

    Article  Google Scholar 

  30. Steward, S. K. Fracture non-union: a review of clinical challenges and future research needs. Malays. Orthop. J. 13, 1–10 (2019).

    Article  Google Scholar 

  31. Sass, F. A. et al. Immunology guides skeletal muscle regeneration. Int. J. Mol. Sci. https://doi.org/10.3390/ijms19030835 (2018).

    Article  Google Scholar 

  32. Schmidt-Bleek, K. et al. Cellular composition of the initial fracture hematoma compared to a muscle hematoma: a study in sheep. J. Orthop. Res. 27, 1147–1151 (2009).

    Article  Google Scholar 

  33. Jeyaraman, M. et al. Osteogenic and chondrogenic potential of periosteum-derived mesenchymal stromal cells: do they hold the key to the future? Pharmaceuticals 14, 1133 (2021).

    Article  CAS  Google Scholar 

  34. Matsushita, Y. et al. A Wnt-mediated transformation of the bone marrow stromal cell identity orchestrates skeletal regeneration. Nat. Commun. 11, 332 (2020).

    Article  CAS  Google Scholar 

  35. Julien, A. et al. Direct contribution of skeletal muscle mesenchymal progenitors to bone repair. Nat. Commun. 12, 2860 (2021).

    Article  CAS  Google Scholar 

  36. Ambrosi, T. H. et al. Aged skeletal stem cells generate an inflammatory degenerative niche. Nature 597, 256–262 (2021).

    Article  CAS  Google Scholar 

  37. Colnot, C. Skeletal cell fate decisions within periosteum and bone marrow during bone regeneration. J. Bone Miner. Res. 24, 274–282 (2009).

    Article  Google Scholar 

  38. Moore, S. R. et al. Translating periosteum’s regenerative power: insights from quantitative analysis of tissue genesis with a periosteum substitute implant. Stem Cell Transl. Med. 5, 1739–1749 (2016).

    Article  CAS  Google Scholar 

  39. Debnath, S. et al. Discovery of a periosteal stem cell mediating intramembranous bone formation. Nature 562, 133–139 (2018).

    Article  CAS  Google Scholar 

  40. van Gastel, N. et al. Lipid availability determines fate of skeletal progenitor cells via SOX9. Nature 579, 111–117 (2020).

    Article  Google Scholar 

  41. Tsukasaki, M. et al. Periosteal stem cells control growth plate stem cells during postnatal skeletal growth. Nat. Commun. 13, 4166 (2022).

    Article  CAS  Google Scholar 

  42. Sass, F. A. et al. CD31+ cells from peripheral blood facilitate bone regeneration in biologically impaired conditions through combined effects on immunomodulation and angiogenesis. J. Bone Miner. Res. 32, 902–912 (2016).

    Article  Google Scholar 

  43. Schmidt-Bleek, K. et al. Initial immune reaction and angiogenesis in bone healing. J. Tissue Eng. Regen. Med. 8, 120–130 (2012).

    Article  Google Scholar 

  44. Maruyama, M. et al. Modulation of the inflammatory response and bone healing. Front. Endocrinol. 11, 386 (2020).

    Article  Google Scholar 

  45. Weitzmann, M. N. Bone and the immune system. Toxicol. Pathol. 45, 911–924 (2017).

    Article  CAS  Google Scholar 

  46. Guder, C., Gravius, S., Burger, C., Wirtz, D. C. & Schildberg, F. A. Osteoimmunology: a current update of the interplay between bone and the immune system. Front. Immunol. 11, 58 (2020).

    Article  CAS  Google Scholar 

  47. Ono, T. & Takayanagi, H. Osteoimmunology in bone fracture healing. Curr. Osteoporos. Rep. 15, 367–375 (2017).

    Article  Google Scholar 

  48. Muire, P. J., Mangum, L. H. & Wenke, J. C. Time course of immune response and immunomodulation during normal and delayed healing of musculoskeletal wounds. Front. Immunol. 11, 1056 (2020).

    Article  CAS  Google Scholar 

  49. Yang, N. & Liu, Y. The role of the immune microenvironment in bone regeneration. Int. J. Med. Sci. 18, 3697–3707 (2021).

    Article  CAS  Google Scholar 

  50. Tsukasaki, M. & Takayanagi, H. Osteoimmunology: evolving concepts in bone-immune interactions in health and disease. Nat. Rev. Immunol. 19, 626–642 (2019).

    Article  CAS  Google Scholar 

  51. Takayanagi, H. Osteoimmunology: shared mechanisms and crosstalk between the immune and bone systems. Nat. Rev. Immunol. 7, 292–304 (2007).

    Article  CAS  Google Scholar 

  52. Walsh, M. C., Takegahara, N., Kim, H. & Choi, Y. Updating osteoimmunology: regulation of bone cells by innate and adaptive immunity. Nat. Rev. Rheumatol. 14, 146–156 (2018).

    Article  CAS  Google Scholar 

  53. Weitzmann, M. N. & Ofotokun, I. Physiological and pathophysiological bone turnover – role of the immune system. Nat. Rev. Endocrinol. 12, 518–532 (2016).

    Article  CAS  Google Scholar 

  54. Alexander, K. A. et al. Osteal macrophages promote in vivo intramembranous bone healing in a mouse tibial injury model. J. Bone Miner. Res. 26, 1517–1532 (2011).

    Article  CAS  Google Scholar 

  55. Ono, T. et al. IL-17-producing γδ T cells enhance bone regeneration. Nat. Commun. 7, 10928 (2016).

    Article  CAS  Google Scholar 

  56. Ehnert, S. et al. Effects of immune cells on mesenchymal stem cells during fracture healing. World J. Stem Cell 13, 1667–1695 (2021).

    Article  Google Scholar 

  57. Woloszyk, A. et al. Fracture hematoma micro-architecture influences transcriptional profile and plays a crucial role in determining bone healing outcomes. Biomater. Adv. 139, 213027 (2022).

    Article  CAS  Google Scholar 

  58. Bastian, O. W., Koenderman, L., Alblas, J., Leenen, L. P. & Blokhuis, T. J. Neutrophils contribute to fracture healing by synthesizing fibronectin+ extracellular matrix rapidly after injury. Clin. Immunol. 164, 78–84 (2016).

    Article  CAS  Google Scholar 

  59. Gaber, T. et al. Adaptation of human CD4+ T cells to pathophysiological hypoxia: a transcriptome analysis. J. Rheumatol. 36, 2655–2669 (2009).

    Article  CAS  Google Scholar 

  60. Reinke, S. et al. Terminally differentiated CD8+ T cells negatively affect bone regeneration in humans. Sci. Transl. Med. 5, 177ra136 (2013).

    Article  Google Scholar 

  61. Schlundt, C. et al. The multifaceted roles of macrophages in bone regeneration: a story of polarization, activation and time. Acta Biomater. 133, 46–57 (2021).

    Article  CAS  Google Scholar 

  62. Bahney, C. S. et al. Cellular biology of fracture healing. J. Orthop. Res. 37, 35–50 (2019).

    Article  Google Scholar 

  63. Mountziaris, P. M., Spicer, P. P., Kasper, F. K. & Mikos, A. G. Harnessing and modulating inflammation in strategies for bone regeneration. Tissue Eng. Part B, Rev. 17, 393–402 (2011).

    Article  CAS  Google Scholar 

  64. Mountziaris, P. M. & Mikos, A. G. Modulation of the inflammatory response for enhanced bone tissue regeneration. Tissue Eng. Part B Rev. 14, 179–186 (2008).

    Article  CAS  Google Scholar 

  65. Aizawa, T., Kon, T., Einhorn, T. A. & Gerstenfeld, L. C. Induction of apoptosis in chondrocytes by tumor necrosis factor-α. J. Orthop. Res. 19, 785–796 (2001).

    Article  CAS  Google Scholar 

  66. Gerstenfeld, L. C. et al. Impaired fracture healing in the absence of TNF-α signaling: the role of TNF-α in endochondral cartilage resorption. J. Bone Miner. Res. 18, 1584–1592 (2003).

    Article  CAS  Google Scholar 

  67. Gerstenfeld, L. C. et al. Impaired intramembranous bone formation during bone repair in the absence of tumor necrosis factor-α signaling. Cell Tissues Organs 169, 285–294 (2001).

    Article  CAS  Google Scholar 

  68. Hashimoto, J. et al. Inhibitory effects of tumor necrosis factor alpha on fracture healing in rats. Bone 10, 453–457 (1989).

    Article  CAS  Google Scholar 

  69. Kumar, B. V., Connors, T. J. & Farber, D. L. Human T cell development, localization, and function throughout life. Immunity 48, 202–213 (2018).

    Article  CAS  Google Scholar 

  70. Epari, D. R., Lienau, J., Schell, H., Witt, F. & Duda, G. N. Pressure, oxygen tension and temperature in the periosteal callus during bone healing – an in vivo study in sheep. Bone 43, 734–739 (2008).

    Article  Google Scholar 

  71. Stefanowski, J. et al. Limbostomy: longitudinal intravital microendoscopy in murine osteotomies. Cytometry A 97, 483–495 (2020).

    Article  CAS  Google Scholar 

  72. Neve, A., Cantatore, F. P., Maruotti, N., Corrado, A. & Ribatti, D. Extracellular matrix modulates angiogenesis in physiological and pathological conditions. Biomed. Res. Int. 2014, 756078 (2014).

    Article  Google Scholar 

  73. Newman, A. C., Nakatsu, M. N., Chou, W., Gershon, P. D. & Hughes, C. C. The requirement for fibroblasts in angiogenesis: fibroblast-derived matrix proteins are essential for endothelial cell lumen formation. Mol. Biol. Cell 22, 3791–3800 (2011).

    Article  CAS  Google Scholar 

  74. Shiu, Y. T. et al. The role of mechanical stresses in angiogenesis. Crit. Rev. Biomed. Eng. 33, 431–510 (2005).

    Article  Google Scholar 

  75. Grosso, A. et al. It takes two to tango: coupling of angiogenesis and osteogenesis for bone regeneration. Front. Bioeng. Biotechnol. 5, 68 (2017).

    Article  Google Scholar 

  76. Chandurkar, M. K. & Han, S. J. Subcellular force quantification of endothelial cells using silicone pillar arrays. Methods Mol. Biol. 2375, 229–245 (2022).

    Article  Google Scholar 

  77. Korff, T. & Augustin, H. G. Tensional forces in fibrillar extracellular matrices control directional capillary sprouting. J. Cell Sci. 112, 3249–3258 (1999).

    Article  CAS  Google Scholar 

  78. Ceccarelli, J., Cheng, A. & Putnam, A. J. Mechanical strain controls endothelial patterning during angiogenic sprouting. Cell Mol. Bioeng. 5, 463–473 (2012).

    Article  Google Scholar 

  79. Ouyang, M. et al. Sensing traction force on the matrix induces cell–cell distant mechanical communications for self-assembly. ACS Biomater. Sci. Eng. 6, 5833–5848 (2020).

    Article  CAS  Google Scholar 

  80. Checa, S., Rausch, M. K., Petersen, A., Kuhl, E. & Duda, G. N. The emergence of extracellular matrix mechanics and cell traction forces as important regulators of cellular self-organization. Biomech. Model. Mechanobiol. 14, 1–13 (2015).

    Article  Google Scholar 

  81. Huebsch, N. et al. Matrix elasticity of void-forming hydrogels controls transplanted-stem-cell-mediated bone formation. Nat. Mater. 14, 1269–1277 (2015).

    Article  CAS  Google Scholar 

  82. Chaudhuri, O. et al. Hydrogels with tunable stress relaxation regulate stem cell fate and activity. Nat. Mater. 15, 326–334 (2016).

    Article  CAS  Google Scholar 

  83. Borgiani, E. et al. Age-related changes in the mechanical regulation of bone healing are explained by altered cellular mechanoresponse. J. Bone Miner. Res. 34, 1923–1937 (2019).

    Article  CAS  Google Scholar 

  84. Perier-Metz, C., Duda, G. N. & Checa, S. Initial mechanical conditions within an optimized bone scaffold do not ensure bone regeneration – an in silico analysis. Biomech. Model. Mechanobiol. 20, 1723–1731 (2021).

    Article  Google Scholar 

  85. Claes, L. E. & Meyers, N. The direction of tissue strain affects the neovascularization in the fracture-healing zone. Med. Hypotheses 137, 109537 (2020).

    Article  CAS  Google Scholar 

  86. Lienau, J. et al. Initial vascularization and tissue differentiation are influenced by fixation stability. J. Orthop. Res. 23, 639–645 (2005).

    Article  Google Scholar 

  87. Cardwell, R. D. et al. Static and cyclic mechanical loading of mesenchymal stem cells on elastomeric, electrospun polyurethane meshes. J. Biomech. Eng. https://doi.org/10.1115/1.4030404 (2015).

    Article  Google Scholar 

  88. Wang, Q., Huang, H., Wei, K. & Zhao, Y. Time-dependent combinatory effects of active mechanical loading and passive topographical cues on cell orientation. Biotechnol. Bioeng. 113, 2191–2201 (2016).

    Article  CAS  Google Scholar 

  89. Schreivogel, S., Kuchibhotla, V., Knaus, P., Duda, G. N. & Petersen, A. Load-induced osteogenic differentiation of mesenchymal stromal cells is caused by mechano-regulated autocrine signaling. J. Tissue Eng. Regen. Med. 13, 1992–2008 (2019).

    Article  CAS  Google Scholar 

  90. Kreja, L. et al. Effects of mechanical strain on human mesenchymal stem cells and ligament fibroblasts in a textured poly(L-lactide) scaffold for ligament tissue engineering. J. Mater. Sci. Mater. Med. 23, 2575–2582 (2012).

    Article  CAS  Google Scholar 

  91. Petersen, A., Joly, P., Bergmann, C., Korus, G. & Duda, G. N. The impact of substrate stiffness and mechanical loading on fibroblast-induced scaffold remodeling. Tissue Eng. Part A 18, 1804–1817 (2012).

    Article  CAS  Google Scholar 

  92. Kurpinski, K., Chu, J., Wang, D. & Li, S. Proteomic profiling of mesenchymal stem cell responses to mechanical strain and TGF-β1. Cell Mol. Bioeng. 2, 606–614 (2009).

    Article  CAS  Google Scholar 

  93. Kopf, J., Petersen, A., Duda, G. N. & Knaus, P. BMP2 and mechanical loading cooperatively regulate immediate early signalling events in the BMP pathway. BMC Biol. 10, 37 (2012).

    Article  CAS  Google Scholar 

  94. K. S Kang et al. Flexure-based device for cyclic strain-mediated osteogenic differentiation J. Biomech. Eng. 135 114501 (2013).

    Article  Google Scholar 

  95. Delaine-Smith, R. M. & Reilly, G. C. The effects of mechanical loading on mesenchymal stem cell differentiation and matrix production. Vitam. Horm. 87, 417–480 (2011).

    Article  CAS  Google Scholar 

  96. Legant, W. R., Chen, C. S. & Vogel, V. Force-induced fibronectin assembly and matrix remodeling in a 3D microtissue model of tissue morphogenesis. Integr. Biol. 4, 1164–1174 (2012).

    Article  CAS  Google Scholar 

  97. Brauer, E. et al. Collagen fibrils mechanically contribute to tissue contraction in an in vitro wound healing scenario. Adv. Sci. 6, 1801780 (2019).

    Article  Google Scholar 

  98. Huang, J. et al. Dermal extracellular matrix molecules in skin development, homeostasis, wound regeneration and diseases. Semin. Cell Dev. Biol. 128, 137–144 (2022).

    Article  CAS  Google Scholar 

  99. Nikoloudaki, G., Snider, P., Simmons, O., Conway, S. J. & Hamilton, D. W. Periostin and matrix stiffness combine to regulate myofibroblast differentiation and fibronectin synthesis during palatal healing. Matrix Biol. 94, 31–56 (2020).

    Article  CAS  Google Scholar 

  100. Pountos, I., Georgouli, T., Pneumaticos, S. & Giannoudis, P. V. Fracture non-union: can biomarkers predict outcome? Injury 44, 1725–1732 (2013).

    Article  CAS  Google Scholar 

  101. Ryaby, J. T. Clinical effects of electromagnetic and electric fields on fracture healing. Clin. Orthop. Relat. Res. https://doi.org/10.1097/00003086-199810001-00021 (1998).

    Article  Google Scholar 

  102. Mills, L. A., Aitken, S. A. & Simpson, A. The risk of non-union per fracture: current myths and revised figures from a population of over 4 million adults. Acta Orthop. 88, 434–439 (2017).

    Article  Google Scholar 

  103. Leow, J. M., Clement, N. D. & Simpson, A. Application of the radiographic union scale for tibial fractures (RUST): assessment of healing rate and time of tibial fractures managed with intramedullary nailing. Orthop. Traumatol. Surg. Res. 106, 89–93 (2020).

    Article  Google Scholar 

  104. Alt, V. et al. A health economic analysis of the use of rhBMP-2 in Gustilo-Anderson grade III open tibial fractures for the UK, Germany, and France. Injury 40, 1269–1275 (2009).

    Article  Google Scholar 

  105. Kanakaris, N. K. et al. Application of bone morphogenetic proteins to femoral non-unions: a 4-year multicentre experience. Injury 40, S54–S61 (2009).

    Article  Google Scholar 

  106. Kanakaris, N. K. et al. Application of BMP-7 to tibial non-unions: a 3-year multicenter experience. Injury 39, S83–S90 (2008).

    Article  Google Scholar 

  107. Gelalis, I. D. et al. Diagnostic and treatment modalities in nonunions of the femoral shaft: a review. Injury 43, 980–988 (2012).

    Article  Google Scholar 

  108. Corrales, L. A., Morshed, S., Bhandari, M. & Miclau, T. 3rd Variability in the assessment of fracture-healing in orthopaedic trauma studies. J. Bone Jt. Surg. Am. 90, 1862–1868 (2008).

    Article  Google Scholar 

  109. Simpson, A. The forgotten phase of fracture healing: the need to predict nonunion. Bone Jt. Res. 6, 610–611 (2017).

    Article  CAS  Google Scholar 

  110. Nicholson, J. A., Yapp, L. Z., Keating, J. F. & Simpson, A. Monitoring of fracture healing. Update on current and future imaging modalities to predict union. Injury 52, S29–S34 (2021).

    Article  Google Scholar 

  111. Zura, R. et al. Epidemiology of fracture nonunion in 18 human bones. JAMA Surg. 151, e162775 (2016).

    Article  Google Scholar 

  112. Schneider, E. et al. Loads acting in an intramedullary nail during fracture healing in the human femur. J. Biomech. 34, 849–857 (2001).

    Article  CAS  Google Scholar 

  113. Claes, L. E. & Cunningham, J. L. Monitoring the mechanical properties of healing bone. Clin. Orthop. Relat. Res. 467, 1964–1971 (2009).

    Article  CAS  Google Scholar 

  114. Calori, G. M. et al. Non-unions. Clin. Cases Min. Bone Metab. 14, 186–188 (2017).

    Article  Google Scholar 

  115. Wittauer, M. et al. Definition of long-bone nonunion: a scoping review of prospective clinical trials to evaluate current practice. Injury 52, 3200–3205 (2021).

    Article  Google Scholar 

  116. Whelan, D. B. et al. Development of the radiographic union score for tibial fractures for the assessment of tibial fracture healing after intramedullary fixation. J. Trauma. 68, 629–632 (2010).

    Google Scholar 

  117. Chiavaras, M. M. et al. The Radiographic Union Score for Hip (RUSH): the use of a checklist to evaluate hip fracture healing improves agreement between radiologists and orthopedic surgeons. Skelet. Radiol. 42, 1079–1088 (2013).

    Article  Google Scholar 

  118. Frank, T. et al. The Radiographic Union Score for Hip (RUSH) identifies radiographic nonunion of femoral neck fractures. Clin. Orthop. Relat. Res. 474, 1396–1404 (2016).

    Article  Google Scholar 

  119. Bhandari, M. et al. Radiographic Union Score for Hip substantially improves agreement between surgeons and radiologists. BMC Musculoskelet. Disord. 14, 70 (2013).

    Article  Google Scholar 

  120. Leow, J. M., Clement, N. D., Tawonsawatruk, T., Simpson, C. J. & Simpson, A. H. The radiographic union scale in tibial (RUST) fractures: reliability of the outcome measure at an independent centre. Bone Jt. Res. 5, 116–121 (2016).

    Article  CAS  Google Scholar 

  121. Sun, G. et al. Regulatory B cell is critical in bone union process through suppressing proinflammatory cytokines and stimulating Foxp3 in Treg cells. Clin. Exp. Pharmacol. Physiol. 44, 455–462 (2017).

    Article  CAS  Google Scholar 

  122. Chitwood, J. R. et al. Predicting fracture healing with blood biomarkers: the potential to assess patient risk of fracture nonunion. Biomarkers 26, 703–717 (2021).

    Article  CAS  Google Scholar 

  123. Working, Z. M. et al. A quantitative serum biomarker of circulating collagen X effectively correlates with endochondral fracture healing. J. Orthop. Res. 39, 53–62 (2021).

    Article  CAS  Google Scholar 

  124. Jiang, H. et al. Downregulation of regulatory T cell function in patients with delayed fracture healing. Clin. Exp. Pharmacol. Physiol. 45, 430–436 (2018).

    Article  CAS  Google Scholar 

  125. Schlundt, C. et al. Individual effector/regulator T cell ratios impact bone regeneration. Front. Immunol. 10, 1954 (2019).

    Article  CAS  Google Scholar 

  126. Konnecke, I. et al. T and B cells participate in bone repair by infiltrating the fracture callus in a two-wave fashion. Bone 64, 155–165 (2014).

    Article  Google Scholar 

  127. Horwitz, E. M. Advancing regenerative medicine the translational way. Sci. Transl. Med. 5, 177fs179 (2013).

    Article  Google Scholar 

  128. Helfet, D. L. et al. AO philosophy and principles of fracture management – its evolution and evaluation. J. Bone Jt. Surg. Am. 85, 1156–1160 (2003).

    Article  Google Scholar 

  129. Duda, G. N., Haas, N. P. & Bergmann, G. Founding of the Julius Wolff Institut Charite – Universitatsmedizin Berlin: editorial comment. Clin. Orthop. Relat. Res. 468, 1050–1051 (2010).

    Article  Google Scholar 

  130. Palomares, K. T. et al. Mechanical stimulation alters tissue differentiation and molecular expression during bone healing. J. Orthop. Res. 27, 1123–1132 (2009).

    Article  Google Scholar 

  131. Duda, G. N. et al. Does partial weight bearing unload a healing bone in external ring fixation. Langenbecks Arch. Surg. 388, 298–304 (2003).

    Article  Google Scholar 

  132. Vetter, A. et al. Temporal tissue patterns in bone healing of sheep. J. Orthop. Res. 28, 1440–1447 (2010).

    Article  Google Scholar 

  133. Braun, B. J. et al. Weight-bearing recommendations after operative fracture treatment – fact or fiction? Gait results with and feasibility of a dynamic, continuous pedobarography insole. Int. Orthop. 41, 1507–1512 (2017).

    Article  Google Scholar 

  134. Claes, L., Eckert-Hubner, K. & Augat, P. The fracture gap size influences the local vascularization and tissue differentiation in callus healing. Langenbecks Arch. Surg. 388, 316–322 (2003).

    Article  Google Scholar 

  135. Elliott, D. S. et al. A unified theory of bone healing and nonunion: BHN theory. Bone Jt. J. 98-B, 884–891 (2016).

    Article  CAS  Google Scholar 

  136. Schell, H. et al. The course of bone healing is influenced by the initial shear fixation stability. J. Orthop. Res. 23, 1022–1028 (2005).

    Article  CAS  Google Scholar 

  137. Epari, D. R., Schell, H., Bail, H. J. & Duda, G. N. Instability prolongs the chondral phase during bone healing in sheep. Bone 38, 864–870 (2006).

    Article  Google Scholar 

  138. Epari, D. R., Taylor, W. R., Heller, M. O. & Duda, G. N. Mechanical conditions in the initial phase of bone healing. Clin. Biomech. 21, 646–655 (2006).

    Article  Google Scholar 

  139. Kaspar, K. et al. Angle stable locking reduces interfragmentary movements and promotes healing after unreamed nailing. Study of a displaced osteotomy model in sheep tibiae. J. Bone Jt. Surg. Am. 87, 2028–2037 (2005).

    Article  CAS  Google Scholar 

  140. Heyland, M. et al. Semi-rigid screws provide an auxiliary option to plate working length to control interfragmentary movement in locking plate fixation at the distal femur. Injury 46, S24–S32 (2015).

    Article  Google Scholar 

  141. Mardian, S., Schaser, K. D., Duda, G. N. & Heyland, M. Working length of locking plates determines interfragmentary movement in distal femur fractures under physiological loading. Clin. Biomech. 30, 391–396 (2015).

    Article  Google Scholar 

  142. Mardian, S. et al. What constitutes a good osteosynthesis? [German]. Chirurg 92, 863–872 (2021).

    Google Scholar 

  143. Dreyer, M. J. et al. European Society of Biomechanics S.M. Perren Award 2022: standardized tibio-femoral implant loads and kinematics. J. Biomech. 141, 111171 (2022).

    Article  Google Scholar 

  144. Virzì, A. et al. Comprehensive review of 3D segmentation software tools for MRI usable for pelvic surgery planning. J. Digit. Imaging 33, 99–110 (2020).

    Article  Google Scholar 

  145. Reichert, J. C. et al. A tissue engineering solution for segmental defect regeneration in load-bearing long bones. Sci. Transl. Med. 4, 141ra193 (2012).

    Article  Google Scholar 

  146. Cipitria, A. et al. Porous scaffold architecture guides tissue formation. J. Bone Miner. Res. 27, 1275–1288 (2012).

    Article  CAS  Google Scholar 

  147. Strong, A. L., Neumeister, M. W. & Levi, B. Stem cells and tissue engineering: regeneration of the skin and its contents. Clin. Plast. Surg. 44, 635–650 (2017).

    Article  Google Scholar 

  148. Srivastava, A. K. & Bulte, J. W. Seeing stem cells at work in vivo. Stem Cell Rev. Rep. 10, 127–144 (2014).

    Article  Google Scholar 

  149. Chikate, T. R. & Tang, L. Tracking and imaging of transplanted stem cells in animals. Methods Mol. Biol. 2150, 45–56 (2020).

    Article  CAS  Google Scholar 

  150. Challen, G. A., Boles, N., Lin, K. K. & Goodell, M. A. Mouse hematopoietic stem cell identification and analysis. Cytometry A 75, 14–24 (2009).

    Article  Google Scholar 

  151. Bhat, S., Viswanathan, P., Chandanala, S., Prasanna, S. J. & Seetharam, R. N. Expansion and characterization of bone marrow derived human mesenchymal stromal cells in serum-free conditions. Sci. Rep. 11, 3403 (2021).

    Article  CAS  Google Scholar 

  152. Wang, Y., Yi, H. & Song, Y. The safety of MSC therapy over the past 15 years: a meta-analysis. Stem Cell Res. Ther. 12, 545 (2021).

    Article  CAS  Google Scholar 

  153. Thum, T., Bauersachs, J., Poole-Wilson, P. A., Volk, H. D. & Anker, S. D. The dying stem cell hypothesis: immune modulation as a novel mechanism for progenitor cell therapy in cardiac muscle. J. Am. Coll. Cardiol. 46, 1799–1802 (2005).

    Article  CAS  Google Scholar 

  154. Jiang, W. & Xu, J. Immune modulation by mesenchymal stem cells. Cell Prolif. 53, e12712 (2020).

    Article  Google Scholar 

  155. Cai, Y. et al. Stroke treatment: is exosome therapy superior to stem cell therapy. Biochimie 179, 190–204 (2020).

    Article  CAS  Google Scholar 

  156. Denu, R. A. et al. Fibroblasts and mesenchymal stromal/stem cells are phenotypically indistinguishable. Acta Haematol. 136, 85–97 (2016).

    Article  CAS  Google Scholar 

  157. Hematti, P. Mesenchymal stromal cells and fibroblasts: a case of mistaken identity. Cytotherapy 14, 516–521 (2012).

    Article  CAS  Google Scholar 

  158. Haniffa, M. A., Collin, M. P., Buckley, C. D. & Dazzi, F. Mesenchymal stem cells: the fibroblasts’ new clothes. Haematologica 94, 258–263 (2009).

    Article  CAS  Google Scholar 

  159. Bautista-Hernandez, L. A., Gomez-Olivares, J. L., Buentello-Volante, B. & Bautista-de Lucio, V. M. Fibroblasts: the unknown sentinels eliciting immune responses against microorganisms. Eur. J. Microbiol. Immunol. 7, 151–157 (2017).

    Article  CAS  Google Scholar 

  160. Geissler, S. et al. In serum veritas–in serum sanitas? Cell non-autonomous aging compromises differentiation and survival of mesenchymal stromal cells via the oxidative stress pathway. Cell Death Dis. 4, e970 (2013).

    Article  CAS  Google Scholar 

  161. Wendler, S. et al. Immune modulation to enhance bone healing – a new concept to induce bone using prostacyclin to locally modulate immunity. Front. Immunol. 10, 713 (2019).

    Article  CAS  Google Scholar 

  162. Schlundt, C. et al. Macrophages in bone fracture healing: their essential role in endochondral ossification. Bone 106, 78–89 (2018).

    Article  CAS  Google Scholar 

  163. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT04543682 (2022).

  164. Wan, C. et al. Activation of the hypoxia-inducible factor-1α pathway accelerates bone regeneration. Proc. Natl Acad. Sci. USA 105, 686–691 (2008).

    Article  CAS  Google Scholar 

  165. Komatsu, D. E., Bosch-Marce, M., Semenza, G. L. & Hadjiargyrou, M. Enhanced bone regeneration associated with decreased apoptosis in mice with partial HIF-1α deficiency. J. Bone Miner. Res. 22, 366–374 (2007).

    Article  CAS  Google Scholar 

  166. Wang, Y. et al. The hypoxia-inducible factor α pathway couples angiogenesis to osteogenesis during skeletal development. J. Clin. Invest. 117, 1616–1626 (2007).

    Article  CAS  Google Scholar 

  167. Schmidt, A. H. Autologous bone graft: is it still the gold standard? Injury 52, S18–S22 (2021).

    Article  Google Scholar 

  168. Yang, M. et al. Ophiopogonin D promotes bone regeneration by stimulating CD31(hi) EMCN(hi) vessel formation. Cell Prolif. 53, e12784 (2020).

    Article  Google Scholar 

  169. Kim, S. W., Kim, H. & Yoon, Y. S. Advances in bone marrow-derived cell therapy: CD31-expressing cells as next generation cardiovascular cell therapy. Regen. Med. 6, 335–349 (2011).

    Article  CAS  Google Scholar 

  170. Ernst, M. Smart implants in fracture care – only buzzword or real opportunity? Injury 52, S101–S105 (2021).

    Article  Google Scholar 

  171. Tanzer, M., Laverdière, C., Barimani, B. & Hart, A. Augmented reality in arthroplasty: an overview of clinical applications, benefits, and limitations. J. Am. Acad. Orthop. Surg. 15, e760–e768 (2022).

    Article  Google Scholar 

  172. Petersen, A. et al. A biomaterial with a channel-like pore architecture induces endochondral healing of bone defects. Nat. Commun. 9, 4430 (2018).

    Article  CAS  Google Scholar 

  173. Paris, M. et al. Scaffold curvature-mediated novel biomineralization process originates a continuous soft tissue-to-bone interface. Acta Biomater. 60, 64–80 (2017).

    Article  Google Scholar 

  174. Pobloth, A. M. et al. Mechanobiologically optimized 3D titanium-mesh scaffolds enhance bone regeneration in critical segmental defects in sheep. Sci. Transl. Med. 10, eaam8828 (2018).

    Article  Google Scholar 

  175. Koh, A., Guerado, E. & Giannoudis, P. V. Atypical femoral fractures related to bisphosphonate treatment: issues and controversies related to their surgical management. Bone Jt. J. 99-B, 295–302 (2017).

    Article  CAS  Google Scholar 

  176. Andrzejowski, P. & Giannoudis, P. V. The ‘diamond concept’ for long bone non-union management. J. Orthop. Traumatol. 20, 21 (2019).

    Article  Google Scholar 

  177. Kroner, J. et al. Mast cells are critical regulators of bone fracture-induced inflammation and osteoclast formation and activity. J. Bone Miner. Res. 32, 2431–2444 (2017).

    Article  CAS  Google Scholar 

  178. Kovtun, A. et al. The crucial role of neutrophil granulocytes in bone fracture healing. Eur. Cell Mater. 32, 152–162 (2016).

    Article  CAS  Google Scholar 

  179. Schwarz, C. S. et al. Spatio-temporal bone remodeling after hematopoietic stem cell transplantation. Int. J. Mol. Sci. 22, 267 (2020).

    Article  Google Scholar 

  180. Ambrosi, T. H. et al. Adipocyte accumulation in the bone marrow during obesity and aging impairs stem cell-based hematopoietic and bone regeneration. Cell Stem Cell https://doi.org/10.1016/j.stem.2017.02.009 (2017).

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge funding from the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) (SFB 1444).

Author information

Authors and Affiliations

Authors

Contributions

G.N.D., S.G., S.C., A.P. and K.S.-B. researched data for the article and contributed substantially to discussion of the content. All authors wrote the article and reviewed and/or edited the manuscript before submission.

Corresponding author

Correspondence to Georg N. Duda.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Rheumatology thanks H. Takayanagi, M. Haffner-Luntzer and L. Gerstenfeld for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Callus

Cartilaginous (soft callus) or bony (hard callus) material forming a connecting bridge across a bone fracture during repair.

Cartilage hypertrophy

Cartilaginous tissue that is highly active and undergoing remodelling and calcification

Cortical bone

A dense bone layer that surrounds the bone marrow cavity.

Dynamization

A decrease in fixation stability to stimulate callus formation and bone formation.

Endochondral ossification

The process in which bone is formed indirectly through a cartilage intermediate.

Haematoma

A mass of mostly clotted blood that forms within an organ or tissue following blood vessel disruption.

Intramembranous ossification

The process in which bone is formed directly from mesenchymal connective tissue.

Lamellar bone

A mature form of bone consisting of collagen fibres organized in a regular and parallel fashion to form sheets (lamellae), which in turn form osteons to generate mechanically strong bone.

Matrix mineralization

The process by which organic bone matrix is enriched with calcium phosphate, the main inorganic component of bone.

Mechanotransduction

The mechanisms by which mechanical stimuli are converted into biological signals.

Mechanical loading

An external force (such as a weight), either constant or variable, that imposes physical stress on a system or component.

Mechanobiology

The study of how cells sense and respond to mechanical stimuli.

Mechanosensation

The transduction of mechanical stimuli into a cellular reaction.

Sprouting angiogenesis

The formation of new blood vessels (angiogenesis) from pre-existing vessels.

Stress relaxation

A time-dependent decrease in stress under a constant strain.

Trabecular bone

A honeycomb-like network (75–95% porosity) of interconnected bone rods and plates.

Woven bone

A primitive form of bone, consisting of haphazardly organized collagen fibres that are mechanically weak.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Duda, G.N., Geissler, S., Checa, S. et al. The decisive early phase of bone regeneration. Nat Rev Rheumatol 19, 78–95 (2023). https://doi.org/10.1038/s41584-022-00887-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41584-022-00887-0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing