Abstract
Pathological calcification of cartilage is a hallmark of osteoarthritis (OA). Calcification can be observed both at the cartilage surface and in its deeper layers. The formation of calcium-containing crystals, typically basic calcium phosphate (BCP) and calcium pyrophosphate dihydrate (CPP) crystals, is an active, highly regulated and complex biological process that is initiated by chondrocytes and modified by genetic factors, dysregulated mitophagy or apoptosis, inflammation and the activation of specific cellular-signalling pathways. The links between OA and BCP deposition are stronger than those observed between OA and CPP deposition. Here, we review the molecular processes involved in cartilage calcification in OA and summarize the effects of calcium crystals on chondrocytes, synovial fibroblasts, macrophages and bone cells. Finally, we highlight therapeutic pathways leading to decreased joint calcification and potential new drugs that could treat not only OA but also other diseases associated with pathological calcification.
Key points
-
Cartilage calcification, consisting of basic calcium phosphate (BCP) and calcium pyrophosphate dihydrate (CPP) crystals, is a hallmark of osteoarthritis (OA).
-
The extent of BCP calcification correlates with the histological severity of OA.
-
Calcium crystals are formed by chondrocytes undergoing hypertrophy, mitophagy or apoptosis in response to inflammation and ageing.
-
Crystals trigger responses in chondrocytes, fibroblasts and macrophages, leading to inflammation, cell death and cartilage catabolism.
-
Treatments that inhibit pathological calcification could be potential novel therapies for OA.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 print issues and online access
$209.00 per year
only $17.42 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
Molloy, E. S. & McCarthy, G. M. Hydroxyapatite deposition disease of the joint. Curr. Rheumatol. Rep. 5, 215–221 (2003).
Yavorskyy, A., Hernandez-Santana, A., McCarthy, G. & McMahon, G. Detection of calcium phosphate crystals in the joint fluid of patients with osteoarthritis — analytical approaches and challenges. Analyst 133, 302–318 (2008).
Dieppe, P. A., Crocker, P., Huskisson, E. C. & Willoughby, D. A. Apatite deposition disease. A new arthropathy. Lancet 1, 266–269 (1976).
Schumacher, H. R. Crystal-induced arthritis: an overview. Am. J. Med. 100, 46S–52S (1996).
Halverson, P. B. Arthropathies associated with basic calcium phosphate crystals. Scanning Microsc. 6, 791–796 (1992). discussion 796-797.
Rosenthal, A. K. Basic calcium phosphate crystal-associated musculoskeletal syndromes: an update. Curr. Opin. Rheumatol. 30, 168–172 (2018).
Liu, Y. Z., Jackson, A. P. & Cosgrove, S. D. Contribution of calcium-containing crystals to cartilage degradation and synovial inflammation in osteoarthritis. Osteoarthritis Cartilage 17, 1333–1340 (2009).
Zhang, W. et al. European League Against Rheumatism recommendations for calcium pyrophosphate deposition. Part I: terminology and diagnosis. Ann. Rheum. Dis. 70, 563–570 (2011).
McCarty, D. J., Kohn, N. N. & Faires, J. S. The significance of calcium phosphate crystals in the synovial fluid of arthritic patients: the “Pseudogout Syndrome”. Ann. Intern. Med. 56, 711–737 (1962).
Nalbant, S. et al. Synovial fluid features and their relations to osteoarthritis severity: new findings from sequential studies. Osteoarthritis Cartilage 11, 50–54 (2003).
Gibilisco, P. A., Schumacher, H. R. Jr, Hollander, J. L. & Soper, K. A. Synovial fluid crystals in osteoarthritis. Arthritis Rheum. 28, 511–515 (1985).
Ledingham, J., Regan, M., Jones, A. & Doherty, M. Radiographic patterns and associations of osteoarthritis of the knee in patients referred to hospital. Ann. Rheum. Dis. 52, 520–526 (1993).
Pattrick, M., Hamilton, E., Wilson, R., Austin, S. & Doherty, M. Association of radiographic changes of osteoarthritis, symptoms, and synovial fluid particles in 300 knees. Ann. Rheum. Dis. 52, 97–103 (1993).
Derfus, B. A. et al. The high prevalence of pathologic calcium crystals in pre-operative knees. J. Rheumatol. 29, 570–574 (2002).
Halverson, P. B. & McCarty, D. J. Patterns of radiographic abnormalities associated with basic calcium phosphate and calcium pyrophosphate dihydrate crystal deposition in the knee. Ann. Rheum. Dis. 45, 603–605 (1986).
Neame, R. L., Carr, A. J., Muir, K. & Doherty, M. UK community prevalence of knee chondrocalcinosis: evidence that correlation with osteoarthritis is through a shared association with osteophyte. Ann. Rheum. Dis. 62, 513–518 (2003).
Felson, D. T. et al. Risk factors for incident radiographic knee osteoarthritis in the elderly: the Framingham Study. Arthritis Rheum. 40, 728–733 (1997).
Fuerst, M. et al. Calcification of articular cartilage in human osteoarthritis. Arthritis Rheum. 60, 2694–2703 (2009).
Fuerst, M. et al. Articular cartilage mineralization in osteoarthritis of the hip. BMC Musculoskelet. Disord. 10, 166 (2009).
Hawellek, T. et al. Articular cartilage calcification of the hip and knee is highly prevalent, independent of age but associated with histological osteoarthritis: evidence for a systemic disorder. Osteoarthritis Cartilage 24, 2092–2099 (2016).
Hubert, J. et al. Cartilage calcification of the ankle joint is associated with osteoarthritis in the general population. BMC Musculoskelet. Disord. 19, 169 (2018).
Hawellek, T. et al. Articular cartilage calcification of the humeral head is highly prevalent and associated with osteoarthritis in the general population. J. Orthop. Res. 34, 1984–1990 (2016).
Hubert, J. et al. Hyaline cartilage calcification of the first metatarsophalangeal joint is associated with osteoarthritis but independent of age and BMI. BMC Musculoskelet. Disord. 17, 474 (2016).
Hawellek, T. et al. Calcification of the acetabular labrum of the hip: prevalence in the general population and relation to hip articular cartilage and fibrocartilage degeneration. Arthritis Res. Ther. 20, 104 (2018).
Frallonardo, P. et al. Basic calcium phosphate and pyrophosphate crystals in early and late osteoarthritis: relationship with clinical indices and inflammation. Clin. Rheumatol. 37, 2847–2853 (2018).
Latourte, A. et al. Chondrocalcinosis of the knee and the risk of osteoarthritis progression: data from the knee and hip osteoarthritis long-term assessment cohort. Arthritis Rheumatol. 72, 726–732 (2020).
Neogi, T. et al. Lack of association between chondrocalcinosis and increased risk of cartilage loss in knees with osteoarthritis: results of two prospective longitudinal magnetic resonance imaging studies. Arthritis Rheum. 54, 1822–1828 (2006).
Filippou, G. et al. Criterion validity of ultrasound in the identification of calcium pyrophosphate crystal deposits at the knee: an OMERACT ultrasound study. Ann. Rheum. Dis. 80, 261–267 (2021).
Guermazi, A. et al. Reliability of a new scoring system for intraarticular mineralization of the knee: Boston University Calcium Knee Score (BUCKS). Osteoarthritis Cartilage 28, 802–810 (2020).
Bernabei, I. et al. Multi-energy photon-counting computed tomography versus other clinical imaging techniques for the identification of articular calcium crystal deposition. Rheumatology 60, 2483–2485 (2021).
Stamp, L. K. et al. Clinical utility of multi-energy spectral photon-counting computed tomography in crystal arthritis. Arthritis Rheumatol. 71, 1158–1162 (2019).
Reynard, L. N. & Barter, M. J. Osteoarthritis year in review 2019: genetics, genomics and epigenetics. Osteoarthritis Cartilage 28, 275–284 (2020).
Komori, T. Whole aspect of Runx2 functions in skeletal development. Int. J. Mol. Sci. 23, 5776 (2022).
Dreier, R. Hypertrophic differentiation of chondrocytes in osteoarthritis: the developmental aspect of degenerative joint disorders. Arthritis Res. Ther. 12, 216 (2010).
van der Kraan, P. M. & van den Berg, W. B. Chondrocyte hypertrophy and osteoarthritis: role in initiation and progression of cartilage degeneration? Osteoarthritis Cartilage 20, 223–232 (2012).
Ea, H. K. et al. Articular cartilage calcification in osteoarthritis: insights into crystal-induced stress. Arthritis Rheum. 63, 10–18 (2011).
Hessle, L. et al. Tissue-nonspecific alkaline phosphatase and plasma cell membrane glycoprotein-1 are central antagonistic regulators of bone mineralization. Proc. Natl Acad. Sci. USA 99, 9445–9449 (2002).
Zhou, X., Cui, Y., Zhou, X. & Han, J. Phosphate/pyrophosphate and MV-related proteins in mineralisation: discoveries from mouse models. Int. J. Biol. Sci. 8, 778–790 (2012).
Cruz, M. A. E. et al. Phosphatidylserine controls calcium phosphate nucleation and growth on lipid monolayers: a physicochemical understanding of matrix vesicle-driven biomineralization. J. Struct. Biol. 212, 107607 (2020).
Cavaco, S. et al. Gla-rich protein is involved in the cross-talk between calcification and inflammation in osteoarthritis. Cell Mol. Life Sci. 73, 1051–1065 (2016).
Nasi, S., So, A., Combes, C., Daudon, M. & Busso, N. Interleukin-6 and chondrocyte mineralisation act in tandem to promote experimental osteoarthritis. Ann. Rheum. Dis. 75, 1372–1379 (2016).
Long, D. L., Willey, J. S. & Loeser, R. F. Rac1 is required for matrix metalloproteinase 13 production by chondrocytes in response to fibronectin fragments. Arthritis Rheum. 65, 1561–1568 (2013).
Queirolo, V. et al. PKCε is a regulator of hypertrophic differentiation of chondrocytes in osteoarthritis. Osteoarthritis Cartilage 24, 1451–1460 (2016).
Pei, D. D. et al. Contribution of mitophagy to cell-mediated mineralization: revisiting a 50-year-old conundrum. Adv. Sci. 5, 1800873 (2018).
Ansari, M. Y., Khan, N. M., Ahmad, I. & Haqqi, T. M. Parkin clearance of dysfunctional mitochondria regulates ROS levels and increases survival of human chondrocytes. Osteoarthritis Cartilage 26, 1087–1097 (2018).
Wang, C. et al. Protective effects of metformin against osteoarthritis through upregulation of SIRT3-mediated PINK1/Parkin-dependent mitophagy in primary chondrocytes. Biosci. Trends 12, 605–612 (2019).
Huang, L. W. et al. Zinc protects chondrocytes from monosodium iodoacetate-induced damage by enhancing ATP and mitophagy. Biochem. Biophys. Res. Commun. 521, 50–56 (2020).
Shin, H. J. et al. Pink1-mediated chondrocytic mitophagy contributes to cartilage degeneration in osteoarthritis. J. Clin. Med. 8, 1849 (2019).
Boraldi, F., Lofaro, F. D. & Quaglino, D. Apoptosis in the extraosseous calcification process. Cells 10, 131 (2021).
D’Arcy, M. S. Cell death: a review of the major forms of apoptosis, necrosis and autophagy. Cell Biol. Int. 43, 582–592 (2019).
Hashimoto, S. et al. Chondrocyte-derived apoptotic bodies and calcification of articular cartilage. Proc. Natl Acad. Sci. USA 95, 3094–3099 (1998).
Bratton, D. L. et al. Appearance of phosphatidylserine on apoptotic cells requires calcium-mediated nonspecific flip-flop and is enhanced by loss of the aminophospholipid translocase. J. Biol. Chem. 272, 26159–26165 (1997).
Musumeci, G., Loreto, C., Carnazza, M. L. & Martinez, G. Characterization of apoptosis in articular cartilage derived from the knee joints of patients with osteoarthritis. Knee Surg. Sports Traumatol. Arthrosc. 19, 307–313 (2011).
Zamli, Z. & Sharif, M. Chondrocyte apoptosis: a cause or consequence of osteoarthritis? Int. J. Rheum. Dis. 14, 159–166 (2011).
Blanco, F. J., Guitian, R., Vazquez-Martul, E., de Toro, F. J. & Galdo, F. Osteoarthritis chondrocytes die by apoptosis. A possible pathway for osteoarthritis pathology. Arthritis Rheum. 41, 284–289 (1998).
Sharif, M., Whitehouse, A., Sharman, P., Perry, M. & Adams, M. Increased apoptosis in human osteoarthritic cartilage corresponds to reduced cell density and expression of caspase-3. Arthritis Rheum. 50, 507–515 (2004).
Thomas, C. M., Fuller, C. J., Whittles, C. E. & Sharif, M. Chondrocyte death by apoptosis is associated with the initiation and severity of articular cartilage degradation. Int. J. Rheum. Dis. 14, 191–198 (2011).
Kouri, J. B., Aguilera, J. M., Reyes, J., Lozoya, K. A. & Gonzalez, S. Apoptotic chondrocytes from osteoarthrotic human articular cartilage and abnormal calcification of subchondral bone. J. Rheumatol. 27, 1005–1019 (2000).
Kirsch, T., Swoboda, B. & Nah, H. Activation of annexin II and V expression, terminal differentiation, mineralization and apoptosis in human osteoarthritic cartilage. Osteoarthritis Cartilage 8, 294–302 (2000).
Magne, D. et al. Phosphate is a specific signal for ATDC5 chondrocyte maturation and apoptosis-associated mineralization: possible implication of apoptosis in the regulation of endochondral ossification. J. Bone Min. Res. 18, 1430–1442 (2003).
Abdelhafez, E. M. N., Ali, S. M. N. A., Hassan, M. R. E., Abdel-Hakem, A. M. Apoptotic Inhibitors as Therapeutic Targets for Cell Survival. In Cytotoxicity — Definition, Identification, and Cytotoxic Compounds (eds Istifli, E. S., Ila, H. B.) (IntechOpen, 2019).
Landis, W. J. & Jacquet, R. Association of calcium and phosphate ions with collagen in the mineralization of vertebrate tissues. Calcif. Tissue Int. 93, 329–337 (2013).
Nudelman, F. et al. The role of collagen in bone apatite formation in the presence of hydroxyapatite nucleation inhibitors. Nat. Mater. 9, 1004–1009 (2010).
Wang, Y. et al. The predominant role of collagen in the nucleation, growth, structure and orientation of bone apatite. Nat. Mater. 11, 724–733 (2012).
Schwarcz, H. P., McNally, E. A. & Botton, G. A. Dark-field transmission electron microscopy of cortical bone reveals details of extrafibrillar crystals. J. Struct. Biol. 188, 240–248 (2014).
Yu, L. & Wei, M. Biomineralization of collagen-based materials for hard tissue repair. Int. J. Mol. Sci. 22, 944 (2021).
Lotsari, A., Rajasekharan, A. K., Halvarsson, M. & Andersson, M. Transformation of amorphous calcium phosphate to bone-like apatite. Nat. Commun. 9, 4170 (2018).
Vidavsky, N., Kunitake, J. & Estroff, L. A. Multiple pathways for pathological calcification in the human body. Adv. Healthc. Mater. 10, e2001271 (2021).
Berenbaum, F. Osteoarthritis as an inflammatory disease (osteoarthritis is not osteoarthrosis!). Osteoarthritis Cartilage 21, 16–21 (2013).
Chow, Y. Y. & Chin, K. Y. The role of inflammation in the pathogenesis of osteoarthritis. Mediators Inflamm. 2020, 8293921 (2020).
van den Bosch, M. H. J. Inflammation in osteoarthritis: is it time to dampen the alarm(in) in this debilitating disease? Clin. Exp. Immunol. 195, 153–166 (2019).
Cecil, D. L. et al. Inflammation-induced chondrocyte hypertrophy is driven by receptor for advanced glycation end products. J. Immunol. 175, 8296–8302 (2005).
Johnson, K., Hashimoto, S., Lotz, M., Pritzker, K. & Terkeltaub, R. Interleukin-1 induces pro-mineralizing activity of cartilage tissue transglutaminase and factor XIIIa. Am. J. Pathol. 159, 149–163 (2001).
Merz, D., Liu, R., Johnson, K. & Terkeltaub, R. IL-8/CXCL8 and growth-related oncogene alpha/CXCL1 induce chondrocyte hypertrophic differentiation. J. Immunol. 171, 4406–4415 (2003).
Morita, K. et al. Reactive oxygen species induce chondrocyte hypertrophy in endochondral ossification. J. Exp. Med. 204, 1613–1623 (2007).
Nasi, S. et al. The protective role of the 3-mercaptopyruvate sulfurtransferase (3-MST)-hydrogen sulfide (H2S) pathway against experimental osteoarthritis. Arthritis Res. Ther. 22, 49 (2020).
Nasi, S. et al. Xanthine oxidoreductase is involved in chondrocyte mineralization and expressed in osteoarthritic damaged cartilage. Front. Cell Dev. Biol. 9, 612440 (2021).
Amin, A. R. et al. The expression and regulation of nitric oxide synthase in human osteoarthritis-affected chondrocytes: evidence for up-regulated neuronal nitric oxide synthase. J. Exp. Med. 182, 2097–2102 (1995).
Palmer, R. M., Hickery, M. S., Charles, I. G., Moncada, S. & Bayliss, M. T. Induction of nitric oxide synthase in human chondrocytes. Biochem. Biophys. Res. Commun. 193, 398–405 (1993).
van den Berg, W. B., van de Loo, F., Joosten, L. A. & Arntz, O. J. Animal models of arthritis in NOS2-deficient mice. Osteoarthritis Cartilage 7, 413–415 (1999).
Cheung, H. S. & Ryan, L. M. Phosphocitrate blocks nitric oxide-induced calcification of cartilage and chondrocyte-derived apoptotic bodies. Osteoarthritis Cartilage 7, 409–412 (1999).
Whiteman, M. et al. Peroxynitrite mediates calcium-dependent mitochondrial dysfunction and cell death via activation of calpains. FASEB J. 18, 1395–1397 (2004).
Anderson, H. C., Hodges, P. T., Aguilera, X. M., Missana, L. & Moylan, P. E. Bone morphogenetic protein (BMP) localization in developing human and rat growth plate, metaphysis, epiphysis, and articular cartilage. J. Histochem. Cytochem. 48, 1493–1502 (2000).
Steinert, A. F. et al. Hypertrophy is induced during the in vitro chondrogenic differentiation of human mesenchymal stem cells by bone morphogenetic protein-2 and bone morphogenetic protein-4 gene transfer. Arthritis Res. Ther. 11, R148 (2009).
Valcourt, U., Gouttenoire, J., Moustakas, A., Herbage, D. & Mallein-Gerin, F. Functions of transforming growth factor-β family type I receptors and Smad proteins in the hypertrophic maturation and osteoblastic differentiation of chondrocytes. J. Biol. Chem. 277, 33545–33558 (2002).
Shao, Y. et al. BMP5 silencing inhibits chondrocyte senescence and apoptosis as well as osteoarthritis progression in mice. Aging 13, 9646–9664 (2021).
Cai, M. M., Smith, E. R. & Holt, S. G. The role of fetuin-A in mineral trafficking and deposition. Bonekey Rep. 4, 672 (2015).
Pappa, E., Perrea, D. S., Pneumaticos, S. & Nikolaou, V. S. Role of fetuin A in the diagnosis and treatment of joint arthritis. World J. Orthop. 8, 461–464 (2017).
Xiao, J. et al. Serum fetuin-A levels are inversely associated with clinical severity in patients with primary knee osteoarthritis. Biomarkers 18, 51–54 (2013).
Jahnen-Dechent, W., Heiss, A., Schafer, C. & Ketteler, M. Fetuin-A regulation of calcified matrix metabolism. Circ. Res. 108, 1494–1509 (2011).
Pappa, E. et al. The role of intra-articular administration of Fetuin-A in post-traumatic knee osteoarthritis: an experimental study in a rat model. J. Exp. Orthop. 6, 25 (2019).
Favero, M. et al. Synovial fluid fetuin-A levels in patients affected by osteoarthritis with or without evidence of calcium crystals. Rheumatology 58, 729–730 (2019).
Pesesse, L. et al. Bone sialoprotein as a potential key factor implicated in the pathophysiology of osteoarthritis. Osteoarthritis Cartilage 22, 547–556 (2014).
Hunter, G. K. & Goldberg, H. A. Nucleation of hydroxyapatite by bone sialoprotein. Proc. Natl Acad. Sci. USA 90, 8562–8565 (1993).
Baht, G. S., Hunter, G. K. & Goldberg, H. A. Bone sialoprotein-collagen interaction promotes hydroxyapatite nucleation. Matrix Biol. 27, 600–608 (2008).
Tye, C. E. et al. Delineation of the hydroxyapatite-nucleating domains of bone sialoprotein. J. Biol. Chem. 278, 7949–7955 (2003).
Monfoulet, L. et al. Bone sialoprotein, but not osteopontin, deficiency impairs the mineralization of regenerating bone during cortical defect healing. Bone 46, 447–452 (2010).
Gorski, J. P. Biomineralization of bone: a fresh view of the roles of non-collagenous proteins. Front. Biosci. 16, 2598–2621 (2011).
Baht, G. S. et al. Phosphorylation of Ser136 is critical for potent bone sialoprotein-mediated nucleation of hydroxyapatite crystals. Biochem. J. 428, 385–395 (2010).
Idelevich, A., Rais, Y. & Monsonego-Ornan, E. Bone Gla protein increases HIF-1α-dependent glucose metabolism and induces cartilage and vascular calcification. Arterioscler. Thromb. Vasc. Biol. 31, e55–e71 (2011).
Ducy, P. et al. Increased bone formation in osteocalcin-deficient mice. Nature 382, 448–452 (1996).
Moriishi, T. et al. Osteocalcin is necessary for the alignment of apatite crystallites, but not glucose metabolism, testosterone synthesis, or muscle mass. PLoS Genet. 16, e1008586 (2020).
Pullig, O., Weseloh, G., Ronneberger, D., Kakonen, S. & Swoboda, B. Chondrocyte differentiation in human osteoarthritis: expression of osteocalcin in normal and osteoarthritic cartilage and bone. Calcif. Tissue Int. 67, 230–240 (2000).
Zhang, Q. et al. Dmp1 null mice develop a unique osteoarthritis-like phenotype. Int. J. Biol. Sci. 12, 1203–1212 (2016).
Prasadam, I., Zhou, Y., Shi, W., Crawford, R. & Xiao, Y. Role of dentin matrix protein 1 in cartilage redifferentiation and osteoarthritis. Rheumatology 53, 2280–2287 (2014).
He, G., Dahl, T., Veis, A. & George, A. Nucleation of apatite crystals in vitro by self-assembled dentin matrix protein 1. Nat. Mater. 2, 552–558 (2003).
Ye, L. et al. Dmp1-deficient mice display severe defects in cartilage formation responsible for a chondrodysplasia-like phenotype. J. Biol. Chem. 280, 6197–6203 (2005).
Rosenthal, A. K., Gohr, C. M., Uzuki, M. & Masuda, I. Osteopontin promotes pathologic mineralization in articular cartilage. Matrix Biol. 26, 96–105 (2007).
Rosenthal, A. K., Derfus, B. A. & Henry, L. A. Transglutaminase activity in aging articular chondrocytes and articular cartilage vesicles. Arthritis Rheum. 40, 966–970 (1997).
Gao, S. G. et al. Elevated osteopontin level of synovial fluid and articular cartilage is associated with disease severity in knee osteoarthritis patients. Osteoarthritis Cartilage 18, 82–87 (2010).
Luo, G. et al. Spontaneous calcification of arteries and cartilage in mice lacking matrix GLA protein. Nature 386, 78–81 (1997).
O’Young, J. et al. Matrix Gla protein inhibits ectopic calcification by a direct interaction with hydroxyapatite crystals. J. Am. Chem. Soc. 133, 18406–18412 (2011).
den Hollander, W. et al. Genome-wide association and functional studies identify a role for matrix Gla protein in osteoarthritis of the hand. Ann. Rheum. Dis. 76, 2046–2053 (2017).
Hur, D. J. et al. A novel MGP mutation in a consanguineous family: review of the clinical and molecular characteristics of Keutel syndrome. Am. J. Med. Genet. A 135, 36–40 (2005).
Rafael, M. S. et al. Insights into the association of Gla-rich protein and osteoarthritis, novel splice variants and gamma-carboxylation status. Mol. Nutr. Food Res. 58, 1636–1646 (2014).
Cancela, M. L., Conceicao, N. & Laize, V. Gla-rich protein, a new player in tissue calcification? Adv. Nutr. 3, 174–181 (2012).
O’Conor, C. J. et al. Cartilage-specific knockout of the mechanosensory ion channel TRPV4 decreases age-related osteoarthritis. Sci. Rep. 6, 29053 (2016).
Burton, D. W. et al. Chondrocyte calcium-sensing receptor expression is up-regulated in early guinea pig knee osteoarthritis and modulates PTHrP, MMP-13, and TIMP-3 expression. Osteoarthritis Cartilage 13, 395–404 (2005).
Zhang, M. et al. Prevention of injury-induced osteoarthritis in rodent temporomandibular joint by targeting chondrocyte CaSR. J. Bone Min. Res. 34, 726–738 (2019).
Chang, W., Tu, C., Chen, T. H., Bikle, D. & Shoback, D. The extracellular calcium-sensing receptor (CaSR) is a critical modulator of skeletal development. Sci. Signal. 1, ra1 (2008).
Pritchard, M. H. & Jessop, J. D. Chondrocalcinosis in primary hyperparathyroidism. Influence of age, metabolic bone disease, and parathyroidectomy. Ann. Rheum. Dis. 36, 146–151 (1977).
Dodds, W. J. & Steinbach, H. L. Primary hyperparathyroidism and articular cartilage calcification. Am. J. Roentgenol. Radium Ther. Nucl. Med. 104, 884–892 (1968).
Priesand, S., Wyckoff, J., Wrobel, J. & Schmidt, B. Acute pseudogout of the foot following parathyroidectomy: a case report. Clin. Diabetes Endocrinol. 3, 10 (2017).
Johnson, K. et al. Up-regulated expression of the phosphodiesterase nucleotide pyrophosphatase family member PC-1 is a marker and pathogenic factor for knee meniscal cartilage matrix calcification. Arthritis Rheum. 44, 1071–1081 (2001).
Pendleton, A. et al. Mutations in ANKH cause chondrocalcinosis. Am. J. Hum. Genet. 71, 933–940 (2002).
Zhang, Y. et al. Association of sporadic chondrocalcinosis with a −4-basepair G-to-A transition in the 5’-untranslated region of ANKH that promotes enhanced expression of ANKH protein and excess generation of extracellular inorganic pyrophosphate. Arthritis Rheum. 52, 1110–1117 (2005).
Zaka, R. & Williams, C. J. Genetics of chondrocalcinosis. Osteoarthritis Cartilage 13, 745–750 (2005).
Abhishek, A. & Doherty, M. Pathophysiology of articular chondrocalcinosis — role of ANKH. Nat. Rev. Rheumatol. 7, 96–104 (2011).
Uzuki, M., Sawai, T., Ryan, L. M., Rosenthal, A. K. & Masuda, I. Upregulation of ANK protein expression in joint tissue in calcium pyrophosphate dihydrate crystal deposition disease. J. Rheumatol. 41, 65–74 (2014).
Fleisch, H., Russell, R. G. & Straumann, F. Effect of pyrophosphate on hydroxyapatite and its implications in calcium homeostasis. Nature 212, 901–903 (1966).
Bertrand, J. et al. Decreased levels of nucleotide pyrophosphatase phosphodiesterase 1 are associated with cartilage calcification in osteoarthritis and trigger osteoarthritic changes in mice. Ann. Rheum. Dis. 71, 1249–1253 (2012).
Terkeltaub, R. Physiologic and pathologic functions of the NPP nucleotide pyrophosphatase/phosphodiesterase family focusing on NPP1 in calcification. Purinergic Signal. 2, 371–377 (2006).
Ho, A. M., Johnson, M. D. & Kingsley, D. M. Role of the mouse ank gene in control of tissue calcification and arthritis. Science 289, 265–270 (2000).
Zaka, R. & Williams, C. J. Role of the progressive ankylosis gene in cartilage mineralization. Curr. Opin. Rheumatol. 18, 181–186 (2006).
Johnson, K. & Terkeltaub, R. Inorganic pyrophosphate (PPI) in pathologic calcification of articular cartilage. Front. Biosci. 10, 988–997 (2005).
Narisawa, S., Frohlander, N. & Millan, J. L. Inactivation of two mouse alkaline phosphatase genes and establishment of a model of infantile hypophosphatasia. Dev. Dyn. 208, 432–446 (1997).
Chotard, E. et al. Calcium pyrophosphate crystal deposition in a cohort of 57 patients with Gitelman Syndrome. Rheumatology 61, 2494–2503 (2021).
Richette, P. et al. Hypomagnesemia associated with chondrocalcinosis: a cross-sectional study. Arthritis Rheum. 57, 1496–1501 (2007).
Caswell, A., Guilland-Cumming, D. F., Hearn, P. R., McGuire, M. K. & Russell, R. G. Pathogenesis of chondrocalcinosis and pseudogout. Metabolism of inorganic pyrophosphate and production of calcium pyrophosphate dihydrate crystals. Ann. Rheum. Dis. 42 (Suppl. 1), 27–37 (1983).
Renaudin, F. et al. Adsorption of proteins on m-CPPD and urate crystals inhibits crystal-induced cell responses: study on albumin-crystal interaction. J. Funct. Biomater. 10, 18 (2019).
Platt, P. & Dick, W. C. Crystals and inflammation. Ann. Rheum. Dis. 42 (Suppl. 1), 4–7 (1983).
Sun, Y., Zeng, X. R., Wenger, L. & Cheung, H. S. Basic calcium phosphate crystals stimulate the endocytotic activity of cells — inhibition by anti-calcification agents. Biochem. Biophys. Res. Commun. 312, 1053–1059 (2003).
Barabe, F., Gilbert, C., Liao, N., Bourgoin, S. G. & Naccache, P. H. Crystal-induced neutrophil activation VI. Involvement of FcγRIIIB (CD16) and CD11b in response to inflammatory microcrystals. FASEB J. 12, 209–220 (1998).
Liu-Bryan, R., Pritzker, K., Firestein, G. S. & Terkeltaub, R. TLR2 signaling in chondrocytes drives calcium pyrophosphate dihydrate and monosodium urate crystal-induced nitric oxide generation. J. Immunol. 174, 5016–5023 (2005).
Liu-Bryan, R. & Liote, F. Monosodium urate and calcium pyrophosphate dihydrate (CPPD) crystals, inflammation, and cellular signaling. Jt. Bone Spine 72, 295–302 (2005).
Nadra, I. et al. Proinflammatory activation of macrophages by basic calcium phosphate crystals via protein kinase C and MAP kinase pathways: a vicious cycle of inflammation and arterial calcification? Circ. Res. 96, 1248–1256 (2005).
McCarthy, G. M., Cheung, H. S., Abel, S. M. & Ryan, L. M. Basic calcium phosphate crystal-induced collagenase production: role of intracellular crystal dissolution. Osteoarthritis Cartilage 6, 205–213 (1998).
Halverson, P. B., Greene, A. & Cheung, H. S. Intracellular calcium responses to basic calcium phosphate crystals in fibroblasts. Osteoarthritis Cartilage 6, 324–329 (1998).
Burt, H. M. & Jackson, J. K. Enhancement of crystal induced neutrophil responses by opsonisation of calcium pyrophosphate dihydrate crystals. Ann. Rheum. Dis. 52, 599–607 (1993).
Winternitz, C. I., Jackson, J. K. & Burt, H. M. The interaction of monoclinic calcium pyrophosphate dihydrate crystals with neutrophils. Rheumatol. Int. 16, 101–107 (1996).
Bertrand, J. et al. BCP crystals promote chondrocyte hypertrophic differentiation in OA cartilage by sequestering Wnt3a. Ann. Rheum. Dis. 79, 975–984 (2020).
Hang, H. C. & Linder, M. E. Exploring protein lipidation with chemical biology. Chem. Rev. 111, 6341–6358 (2011).
Ea, H. K. et al. Pathogenic role of basic calcium phosphate crystals in destructive arthropathies. PLoS One 8, e57352 (2013).
Munshi, M. et al. SYK is activated by mutated MYD88 and drives pro-survival signaling in MYD88 driven B-cell lymphomas. Blood Cancer J. 10, 12 (2020).
Chen, L. et al. SYK inhibition modulates distinct PI3K/AKT- dependent survival pathways and cholesterol biosynthesis in diffuse large B cell lymphomas. Cancer Cell 23, 826–838 (2013).
Cunningham, C. C. et al. Osteoarthritis-associated basic calcium phosphate crystals induce pro-inflammatory cytokines and damage-associated molecules via activation of Syk and PI3 kinase. Clin. Immunol. 144, 228–236 (2012).
Luo, Y. & Zheng, S. G. Hall of Fame among Pro-inflammatory cytokines: interleukin-6 gene and its transcriptional regulation mechanisms. Front. Immunol. 7, 604 (2016).
Ehirchiou, D. et al. CD11b signaling prevents chondrocyte mineralization and attenuates the severity of osteoarthritis. Front. Cell Dev. Biol. 8, 611757 (2020).
Ea, H. K., Uzan, B., Rey, C. & Liote, F. Octacalcium phosphate crystals directly stimulate expression of inducible nitric oxide synthase through p38 and JNK mitogen-activated protein kinases in articular chondrocytes. Arthritis Res. Ther. 7, R915–R926 (2005).
Molloy, E. S. & McCarthy, G. M. Basic calcium phosphate crystals: pathways to joint degeneration. Curr. Opin. Rheumatol. 18, 187–192 (2006).
Rong, J. et al. Basic calcium phosphate crystals induce osteoarthritis-associated changes in phenotype markers in primary human chondrocytes by a calcium/calmodulin kinase 2-dependent mechanism. Calcif. Tissue Int. 104, 331–343 (2019).
Nalesso, G. et al. WNT-3A modulates articular chondrocyte phenotype by activating both canonical and noncanonical pathways. J. Cell Biol. 193, 551–564 (2011).
Stucker, S., Bollmann, M., Garbers, C. & Bertrand, J. The role of calcium crystals and their effect on osteoarthritis pathogenesis. Best. Pract. Res. Clin. Rheumatol. 35, 101722 (2021).
Ea, H. K. et al. Annexin 5 overexpression increased articular chondrocyte apoptosis induced by basic calcium phosphate crystals. Ann. Rheum. Dis. 67, 1617–1625 (2008).
Meyer, F. et al. Chondrocytes from osteoarthritic and chondrocalcinosis cartilage represent different phenotypes. Front. Cell Dev. Biol. 9, 622287 (2021).
McCarthy, G. M. & Dunne, A. Calcium crystal deposition diseases - beyond gout. Nat. Rev. Rheumatol. 14, 592–602 (2018).
McCarthy, G. M. et al. Basic calcium phosphate crystals activate human osteoarthritic synovial fibroblasts and induce matrix metalloproteinase-13 (collagenase-3) in adult porcine articular chondrocytes. Ann. Rheum. Dis. 60, 399–406 (2001).
Nguyen, C. et al. Intracellular calcium oscillations in articular chondrocytes induced by basic calcium phosphate crystals lead to cartilage degradation. Osteoarthritis Cartilage 20, 1399–1408 (2012).
Nalesso, G. et al. Calcium calmodulin kinase II activity is required for cartilage homeostasis in osteoarthritis. Sci. Rep. 11, 5682 (2021).
Sugita, S. et al. Transcription factor Hes1 modulates osteoarthritis development in cooperation with calcium/calmodulin-dependent protein kinase 2. Proc. Natl Acad. Sci. USA 112, 3080–3085 (2015).
Nishida, K. et al. Involvement of nitric oxide in chondrocyte cell death in chondro-osteophyte formation. Osteoarthritis Cartilage 9, 232–237 (2001).
Wu, C. L., Harasymowicz, N. S., Klimak, M. A., Collins, K. H. & Guilak, F. The role of macrophages in osteoarthritis and cartilage repair. Osteoarthritis Cartilage 28, 544–554 (2020).
Martinon, F., Petrilli, V., Mayor, A., Tardivel, A. & Tschopp, J. Gout-associated uric acid crystals activate the NALP3 inflammasome. Nature 440, 237–241 (2006).
Pazar, B. et al. Basic calcium phosphate crystals induce monocyte/macrophage IL-1β secretion through the NLRP3 inflammasome in vitro. J. Immunol. 186, 2495–2502 (2011).
Campillo-Gimenez, L. et al. Inflammatory potential of four different phases of calcium pyrophosphate relies on NF-κB activation and MAPK pathways. Front. Immunol. 9, 2248 (2018).
Nasi, S., Ea, H. K., So, A. & Busso, N. Revisiting the role of interleukin-1 pathway in osteoarthritis: interleukin-1α and -1β, and NLRP3 inflammasome are not involved in the pathological features of the murine menisectomy model of osteoarthritis. Front. Pharmacol. 8, 282 (2017).
Mahon, O. R., Kelly, D. J., McCarthy, G. M. & Dunne, A. Osteoarthritis-associated basic calcium phosphate crystals alter immune cell metabolism and promote M1 macrophage polarization. Osteoarthritis Cartilage 28, 603–612 (2020).
Schelbergen, R. F. et al. Alarmins S100A8 and S100A9 elicit a catabolic effect in human osteoarthritic chondrocytes that is dependent on Toll-like receptor 4. Arthritis Rheum. 64, 1477–1487 (2012).
Corr, E. M., Cunningham, C. C., Helbert, L., McCarthy, G. M. & Dunne, A. Osteoarthritis-associated basic calcium phosphate crystals activate membrane proximal kinases in human innate immune cells. Arthritis Res. Ther. 19, 23 (2017).
Loftus, R. M. & Finlay, D. K. Immunometabolism: cellular metabolism turns immune regulator. J. Biol. Chem. 291, 1–10 (2016).
Chen, Y. et al. Macrophages in osteoarthritis: pathophysiology and therapeutics. Am. J. Transl. Res. 12, 261–268 (2020).
Zhang, H., Cai, D. & Bai, X. Macrophages regulate the progression of osteoarthritis. Osteoarthritis Cartilage 28, 555–561 (2020).
Liu, B., Zhang, M., Zhao, J., Zheng, M. & Yang, H. Imbalance of M1/M2 macrophages is linked to severity level of knee osteoarthritis. Exp. Ther. Med. 16, 5009–5014 (2018).
Gobelet, C. & Gerster, J. C. Synovial fluid lactate levels in septic and non-septic arthritides. Ann. Rheum. Dis. 43, 742–745 (1984).
Bulysheva, A. A., Sori, N. & Francis, M. P. Direct crystal formation from micronized bone and lactic acid: the writing on the wall for calcium-containing crystal pathogenesis in osteoarthritis? PLoS One 13, e0202373 (2018).
Fahy, N. et al. Human osteoarthritic synovium impacts chondrogenic differentiation of mesenchymal stem cells via macrophage polarisation state. Osteoarthritis Cartilage22, 1167–1175 (2014).
Mathiessen, A. & Conaghan, P. G. Synovitis in osteoarthritis: current understanding with therapeutic implications. Arthritis Res. Ther. 19, 18 (2017).
Attur, M. et al. Prostaglandin E2 exerts catabolic effects in osteoarthritis cartilage: evidence for signaling via the EP4 receptor. J. Immunol. 181, 5082–5088 (2008).
Molloy, E. S. et al. Mechanism of basic calcium phosphate crystal-stimulated cyclo-oxygenase-1 up-regulation in osteoarthritic synovial fibroblasts. Rheumatology 47, 965–971 (2008).
Morgan, M. P. et al. Basic calcium phosphate crystal-induced prostaglandin E2 production in human fibroblasts: role of cyclooxygenase 1, cyclooxygenase 2, and interleukin-1beta. Arthritis Rheum. 50, 1642–1649 (2004).
McCarty, D. J. & Cheung, H. S. Prostaglandin (PG) E2 generation by cultured canine synovial fibroblasts exposed to microcrystals containing calcium. Ann. Rheum. Dis. 44, 316–320 (1985).
McCarthy, G. M. et al. Molecular mechanism of basic calcium phosphate crystal-induced activation of human fibroblasts. Role of nuclear factor κb, activator protein 1, and protein kinase C. J. Biol. Chem. 273, 35161–35169 (1998).
Zeng, X. R., Sun, Y., Wenger, L. & Cheung, H. S. Induction of early growth response gene Egr2 by basic calcium phosphate crystals through a calcium-dependent protein kinase C-independent p44/42 mitogen-activated protein kinase pathway. Cell Tissues Organs 174, 63–72 (2003).
Zeng, X. R., Sun, Y., Wenger, L. & Cheung, H. S. Basic calcium phosphate crystal-induced Egr-1 expression stimulates mitogenesis in human fibroblasts. Biochem. Biophys. Res. Commun. 330, 658–664 (2005).
Reuben, P. M., Brogley, M. A., Sun, Y. & Cheung, H. S. Molecular mechanism of the induction of metalloproteinases 1 and 3 in human fibroblasts by basic calcium phosphate crystals. Role of calcium-dependent protein kinase Cα. J. Biol. Chem. 277, 15190–15198 (2002).
Brogley, M. A., Cruz, M. & Cheung, H. S. Basic calcium phosphate crystal induction of collagenase 1 and stromelysin expression is dependent on a p42/44 mitogen-activated protein kinase signal transduction pathway. J. Cell Physiol. 180, 215–224 (1999).
Sun, Y., Wenger, L., Brinckerhoff, C. E., Misra, R. R. & Cheung, H. S. Basic calcium phosphate crystals induce matrix metalloproteinase-1 through the Ras/mitogen-activated protein kinase/c-Fos/AP-1/metalloproteinase 1 pathway. Involvement of transcription factor binding sites AP-1 and PEA-3. J. Biol. Chem. 277, 1544–1552 (2002).
Bai, G., Howell, D. S., Howard, G. A., Roos, B. A. & Cheung, H. S. Basic calcium phosphate crystals up-regulate metalloproteinases but down-regulate tissue inhibitor of metalloproteinase-1 and -2 in human fibroblasts. Osteoarthritis Cartilage 9, 416–422 (2001).
Reuben, P. M., Wenger, L., Cruz, M. & Cheung, H. S. Induction of matrix metalloproteinase-8 in human fibroblasts by basic calcium phosphate and calcium pyrophosphate dihydrate crystals: effect of phosphocitrate. Connect. Tissue Res. 42, 1–12 (2001).
Nair, D., Misra, R. P., Sallis, J. D. & Cheung, H. S. Phosphocitrate inhibits a basic calcium phosphate and calcium pyrophosphate dihydrate crystal-induced mitogen-activated protein kinase cascade signal transduction pathway. J. Biol. Chem. 272, 18920–18925 (1997).
Guerne, P. A., Terkeltaub, R., Zuraw, B. & Lotz, M. Inflammatory microcrystals stimulate interleukin-6 production and secretion by human monocytes and synoviocytes. Arthritis Rheum. 32, 1443–1452 (1989).
Kuttapitiya, A. et al. Microarray analysis of bone marrow lesions in osteoarthritis demonstrates upregulation of genes implicated in osteochondral turnover, neurogenesis and inflammation. Ann. Rheum. Dis. 76, 1764–1773 (2017).
Li, G. et al. Subchondral bone in osteoarthritis: insight into risk factors and microstructural changes. Arthritis Res. Ther. 15, 223 (2013).
Shibakawa, A. et al. The role of subchondral bone resorption pits in osteoarthritis: MMP production by cells derived from bone marrow. Osteoarthritis Cartilage 13, 679–687 (2005).
Hunter, D. J. et al. Increase in bone marrow lesions associated with cartilage loss: a longitudinal magnetic resonance imaging study of knee osteoarthritis. Arthritis Rheum. 54, 1529–1535 (2006).
Knowles, H. J. et al. Chondroclasts are mature osteoclasts which are capable of cartilage matrix resorption. Virchows Arch. 461, 205–210 (2012).
Chang, C. C., Tsai, Y. H., Liu, Y., Lin, S. Y. & Liang, Y. C. Calcium-containing crystals enhance receptor activator of nuclear factor κB ligand/macrophage colony-stimulating factor-mediated osteoclastogenesis via extracellular-signal-regulated kinase and p38 pathways. Rheumatology 54, 1913–1922 (2015).
Choi, Y., Yoo, J. H., Lee, Y., Bae, M. K. & Kim, H. J. Calcium-phosphate crystals promote RANKL expression via the downregulation of DUSP1. Mol. Cell 42, 183–188 (2019).
Bouchard, L., de Medicis, R., Lussier, A., Naccache, P. H. & Poubelle, P. E. Inflammatory microcrystals alter the functional phenotype of human osteoblast-like cells in vitro: synergism with IL-1 to overexpress cyclooxygenase-2. J. Immunol. 168, 5310–5317 (2002).
Sai, Y. et al. Capacity of octacalcium phosphate to promote osteoblastic differentiation toward osteocytes in vitro. Acta Biomater. 69, 362–371 (2018).
Feng, X. RANKing intracellular signaling in osteoclasts. IUBMB Life 57, 389–395 (2005).
Meo Burt, P., Xiao, L. & Hurley, M. M. FGF23 regulates Wnt/beta-catenin signaling-mediated osteoarthritis in mice overexpressing high-molecular-weight FGF2. Endocrinology 159, 2386–2396 (2018).
Cheung, H. S., Devine, T. R. & Hubbard, W. Calcium phosphate particle induction of metalloproteinase and mitogenesis: effect of particle sizes. Osteoarthritis Cartilage 5, 145–151 (1997).
Prudhommeaux, F. et al. Variation in the inflammatory properties of basic calcium phosphate crystals according to crystal type. Arthritis Rheum. 39, 1319–1326 (1996).
Back, M. et al. Endogenous calcification inhibitors in the prevention of vascular calcification: a consensus statement from the COST action EuroSoftCalcNet. Front. Cardiovasc. Med. 5, 196 (2018).
Kimura, H. Physiological roles of hydrogen sulfide and polysulfides. Handb. Exp. Pharmacol. 230, 61–81 (2015).
Castelblanco, M., Nasi, S., Pasch, A., So, A. & Busso, N. The role of the gasotransmitter hydrogen sulfide in pathological calcification. Br. J. Pharmacol. 177, 778–792 (2020).
Burguera, E. F. et al. Hydrogen sulfide biosynthesis is impaired in the osteoarthritic joint. Int. J. Biometeorol. 64, 997–1010 (2020).
Nasi, S. et al. The gasotransmitter hydrogen sulfide (H2S) prevents pathologic calcification (PC) in cartilage. Antioxidants 10, 1433 (2021).
Burguera, E. F., Vela-Anero, A., Magalhaes, J., Meijide-Failde, R. & Blanco, F. J. Effect of hydrogen sulfide sources on inflammation and catabolic markers on interleukin 1β-stimulated human articular chondrocytes. Osteoarthritis Cartilage 22, 1026–1035 (2014).
Vaamonde-Garcia, C. et al. Intraarticular administration effect of hydrogen sulfide on an in vivo rat model of osteoarthritis. Int. J. Mol. Sci. 21, 7421 (2020).
Olson, K. R. The therapeutic potential of hydrogen sulfide: separating hype from hope. Am. J. Physiol. Regul. Integr. Comp. Physiol. 301, R297–R312 (2011).
Peng, T. et al. Systematic review of sodium thiosulfate in treating calciphylaxis in chronic kidney disease patients. Nephrology 23, 669–675 (2018).
Nasi, S., Ea, H. K., Liote, F., So, A. & Busso, N. Sodium thiosulfate prevents chondrocyte mineralization and reduces the severity of murine osteoarthritis. PLoS One 11, e0158196 (2016).
Jansen, R. S. et al. ABCC6 prevents ectopic mineralization seen in pseudoxanthoma elasticum by inducing cellular nucleotide release. Proc. Natl Acad. Sci. USA 110, 20206–20211 (2013).
Kauffenstein, G. et al. Disseminated arterial calcification and enhanced myogenic response are associated with abcc6 deficiency in a mouse model of pseudoxanthoma elasticum. Arterioscler. Thromb. Vasc. Biol. 34, 1045–1056 (2014).
Mackenzie, N. C. et al. Altered bone development and an increase in FGF-23 expression in Enpp1−/− mice. PLoS One 7, e32177 (2012).
Johnson, K. et al. Linked deficiencies in extracellular PPi and osteopontin mediate pathologic calcification associated with defective PC-1 and ANK expression. J. Bone Min. Res. 18, 994–1004 (2003).
Li, Q., Sundberg, J. P., Levine, M. A., Terry, S. F. & Uitto, J. The effects of bisphosphonates on ectopic soft tissue mineralization caused by mutations in the ABCC6 gene. Cell Cycle 14, 1082–1089 (2015).
Dedinszki, D. et al. Oral administration of pyrophosphate inhibits connective tissue calcification. EMBO Mol. Med. 9, 1463–1470 (2017).
Rutsch, F. et al. Hypophosphatemia, hyperphosphaturia, and bisphosphonate treatment are associated with survival beyond infancy in generalized arterial calcification of infancy. Circ. Cardiovasc. Genet. 1, 133–140 (2008).
Shirai, T. et al. Chondroprotective effect of alendronate in a rabbit model of osteoarthritis. J. Orthop. Res. 29, 1572–1577 (2011).
Panahifar, A., Maksymowych, W. P. & Doschak, M. R. Potential mechanism of alendronate inhibition of osteophyte formation in the rat model of post-traumatic osteoarthritis: evaluation of elemental strontium as a molecular tracer of bone formation. Osteoarthritis Cartilage 20, 694–702 (2012).
Hayami, T. et al. The role of subchondral bone remodeling in osteoarthritis: reduction of cartilage degeneration and prevention of osteophyte formation by alendronate in the rat anterior cruciate ligament transection model. Arthritis Rheum. 50, 1193–1206 (2004).
Khorasani, M. S. et al. Effect of alendronate on post-traumatic osteoarthritis induced by anterior cruciate ligament rupture in mice. Arthritis Res. Ther. 17, 30 (2015).
She, G., Zhou, Z., Zha, Z., Wang, F. & Pan, X. Protective effect of zoledronic acid on articular cartilage and subchondral bone of rabbits with experimental knee osteoarthritis. Exp. Ther. Med. 14, 4901–4909 (2017).
Lampropoulou-Adamidou, K. et al. Chondroprotective effect of high-dose zoledronic acid: an experimental study in a rabbit model of osteoarthritis. J. Orthop. Res. 32, 1646–1651 (2014).
Latourte, A., Kloppenburg, M. & Richette, P. Emerging pharmaceutical therapies for osteoarthritis. Nat. Rev. Rheumatol. 16, 673–688 (2020).
Khan, T. et al. ENPP1 enzyme replacement therapy improves blood pressure and cardiovascular function in a mouse model of generalized arterial calcification of infancy. Dis. Model. Mech. 11, dmm035691 (2018).
Albright, R. A. et al. ENPP1-Fc prevents mortality and vascular calcifications in rodent model of generalized arterial calcification of infancy. Nat. Commun. 6, 10006 (2015).
Tani, T. et al. Inhibition of tissue-nonspecific alkaline phosphatase protects against medial arterial calcification and improves survival probability in the CKD-MBD mouse model. J. Pathol. 250, 30–41 (2020).
Opdebeeck, B. et al. Pharmacological TNAP inhibition efficiently inhibits arterial media calcification in a warfarin rat model but deserves careful consideration of potential physiological bone formation/mineralization impairment. Bone 137, 115392 (2020).
Goettsch, C. et al. TNAP as a therapeutic target for cardiovascular calcification — a discussion of its pleiotropic functions in the body. Cardiovasc. Res. 118, 84–96 (2020).
Perello, J. et al. Mechanism of action of SNF472, a novel calcification inhibitor to treat vascular calcification and calciphylaxis. Br. J. Pharmacol. 177, 4400–4415 (2020).
Ferrer, M. D. et al. Characterization of SNF472 pharmacokinetics and efficacy in uremic and non-uremic rats models of cardiovascular calcification. PLoS One 13, e0197061 (2018).
Brandenburg, V. M. et al. Improvement in wound healing, pain, and quality of life after 12 weeks of SNF472 treatment: a phase 2 open-label study of patients with calciphylaxis. J. Nephrol. 32, 811–821 (2019).
Schantl, A. E. et al. Inhibition of vascular calcification by inositol phosphates derivatized with ethylene glycol oligomers. Nat. Commun. 11, 721 (2020).
Cheung, H. S., Sallis, J. D., Demadis, K. D. & Wierzbicki, A. Phosphocitrate blocks calcification-induced articular joint degeneration in a guinea pig model. Arthritis Rheum. 54, 2452–2461 (2006).
Sun, Y. et al. Phosphocitrate is potentially a disease-modifying drug for noncrystal-associated osteoarthritis. Biomed. Res. Int. 2013, 326267 (2013).
Ryu, J. H. et al. Interleukin-6 plays an essential role in hypoxia-inducible factor 2α-induced experimental osteoarthritic cartilage destruction in mice. Arthritis Rheum. 63, 2732–2743 (2011).
Lopez-Mejias, R. & Gonzalez-Gay, M. A. IL-6: linking chronic inflammation and vascular calcification. Nat. Rev. Rheumatol. 15, 457–459 (2019).
Williams, C. J. et al. Mutations in osteoprotegerin account for the CCAL1 locus in calcium pyrophosphate deposition disease. Osteoarthritis Cartilage 26, 797–806 (2018).
Tachmazidou, I. et al. Identification of new therapeutic targets for osteoarthritis through genome-wide analyses of UK Biobank data. Nat. Genet. 51, 230–236 (2019).
Wilkins, J. M., Southam, L., Mustafa, Z., Chapman, K. & Loughlin, J. Association of a functional microsatellite within intron 1 of the BMP5 gene with susceptibility to osteoarthritis. BMC Med. Genet. 10, 141 (2009).
Nitschke, Y. & Rutsch, F. Inherited arterial calcification syndromes: etiologies and treatment concepts. Curr. Osteoporos. Rep. 15, 255–270 (2017).
Okawa, A. et al. Mutation in Npps in a mouse model of ossification of the posterior longitudinal ligament of the spine. Nat. Genet. 19, 271–273 (1998).
Kan, L., Hu, M., Gomes, W. A. & Kessler, J. A. Transgenic mice overexpressing BMP4 develop a fibrodysplasia ossificans progressiva (FOP)-like phenotype. Am. J. Pathol. 165, 1107–1115 (2004).
Fernandez-Martin, S., Lopez-Pena, M., Munoz, F., Permuy, M. & Gonzalez-Cantalapiedra, A. Bisphosphonates as disease-modifying drugs in osteoarthritis preclinical studies: a systematic review from 2000 to 2020. Arthritis Res. Ther. 23, 60 (2021).
Kranenburg, G. et al. Etidronate for prevention of ectopic mineralization in patients with Pseudoxanthoma elasticum. J. Am. Coll. Cardiol. 71, 1117–1126 (2018).
Richette, P. et al. Efficacy of tocilizumab in patients with hand osteoarthritis: double blind, randomised, placebo-controlled, multicentre trial. Ann. Rheum. Dis. 80, 349–355 (2021).
Author information
Authors and Affiliations
Contributions
All authors researched data for the article, made a substantial contribution to discussion of the content, wrote the article; and reviewed/edited the manuscript before submission.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Peer review
Peer review information
Nature Reviews Rheumatology thanks F. Oliviero and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Bernabei, I., So, A., Busso, N. et al. Cartilage calcification in osteoarthritis: mechanisms and clinical relevance. Nat Rev Rheumatol 19, 10–27 (2023). https://doi.org/10.1038/s41584-022-00875-4
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s41584-022-00875-4
This article is cited by
-
Klf10 is involved in extracellular matrix calcification of chondrocytes alleviating chondrocyte senescence
Journal of Translational Medicine (2024)
-
Oxygen vacancy-engineered cerium oxide mediated by copper-platinum exhibit enhanced SOD/CAT-mimicking activities to regulate the microenvironment for osteoarthritis therapy
Journal of Nanobiotechnology (2024)
-
Calcium Pyrophosphate Crystal Formation and Deposition: Where Do we Stand and What Does the Future hold?
Current Rheumatology Reports (2024)
-
Melatonin enhances therapeutic outcomes of adipose tissue-derived mesenchymal stem cell therapy in rat osteoarthritis by reducing TNF-α and IL-1β-induced injuries
Cytotechnology (2024)
-
Re-thinking osteoarthritis pathogenesis: what can we learn (and what do we need to unlearn) from mouse models about the mechanisms involved in disease development
Arthritis Research & Therapy (2023)