Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Sexual dimorphism in the prevalence, manifestation and outcomes of axial spondyloarthritis

Abstract

Axial spondyloarthritis (axSpA) is a chronic inflammatory disease that predominantly affects the axial skeleton, although it can affect peripheral joints, and extra-musculoskeletal manifestations also occur. Historically, axSpA was thought to be a disease predominantly seen in men, although with the advent of magnetic resonance imaging techniques and advances in research, this dogma has been challenged and refuted. Sex and gender are different concepts, and both can have a role in disease. In axSpA, consideration of the influence of sex and gender on the disease phenotype is necessary to predict outcomes and to enable the development of therapeutic approaches that are best suited to individual patients.

Key points

  • Sex and gender have important roles in disease, with differential contributions to axial spondyloarthritis (axSpA) phenotype, response to therapy and outcomes.

  • AxSpA has equal prevalence in women and men, contrary to evidence that initially (and falsely) indicated that it is a disease that predominantly affects men.

  • Women and men with axSpA have different phenotypes, which is important to keep in mind when assessing for this diagnosis in the clinical setting.

  • Anatomical, physiological and hormonal differences might account for axSpA phenotypic heterogeneity.

  • More research is needed to better understand the contributions of sex and gender to disease in axSpA.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Anatomical differences in pelvic anatomy in men and women with axial spondyloarthritis.

Similar content being viewed by others

References

  1. Blakeman, J. R. Words matter: sex and gender as unique variables in research. ANS Adv. Nurs. Sci. 43, 214–227 (2020).

    Article  PubMed  Google Scholar 

  2. Mogil, J. S. Qualitative sex differences in pain processing: emerging evidence of a biased literature. Nat. Rev. Neurosci. 21, 353–365 (2020).

    Article  CAS  PubMed  Google Scholar 

  3. Kari, A. Gender and health, https://www.who.int/health-topics/gender#tab=tab_1 (2021).

  4. Balsam, K. F., Molina, Y. & Lehavot, K. in Principles of Addiction (ed. Miller, P. M.) 563–573 (Elsevier, 2013).

  5. Safran, D. G., Rogers, W. H., Tarlov, A. R., McHorney, C. A. & Ware, J. E. Jr Gender differences in medical treatment: the case of physician-prescribed activity restrictions. Soc. Sci. Med. 45, 711–722 (1997).

    Article  CAS  PubMed  Google Scholar 

  6. Schieber, A. C. et al. Do gender differences affect the doctor-patient interaction during consultations in general practice? Results from the INTERMEDE study. Fam. Pract. 31, 706–713 (2014).

    Article  PubMed  Google Scholar 

  7. Regitz-Zagrosek, V. & Seeland, U. Sex and gender differences in clinical medicine. Handb. Exp. Pharmacol. https://doi.org/10.1007/978-3-642-30726-3_1 (2012).

    Article  PubMed  Google Scholar 

  8. Chen, H. H., Chen, T. J., Chen, Y. M., Ying-Ming, C. & Chen, D. Y. Gender differences in ankylosing spondylitis-associated cumulative healthcare utilization: a population-based cohort study. Clinics 66, 251–254 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Curtis, J. R. et al. Diagnostic prevalence of ankylosing spondylitis using computerized health care data, 1996 to 2009: underrecognition in a US health care setting. Perm. J. 20, 15–151 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Traglia, M. et al. Genetic mechanisms leading to sex differences across common diseases and anthropometric traits. Genetics 205, 979–992 (2017).

    Article  CAS  PubMed  Google Scholar 

  11. Rudwaleit, M. et al. The development of Assessment of SpondyloArthritis International Society classification criteria for axial spondyloarthritis (part I): classification of paper patients by expert opinion including uncertainty appraisal. Ann. Rheum. Dis. 68, 770–776 (2009).

    Article  CAS  PubMed  Google Scholar 

  12. Ritchlin, C. & Adamopoulos, I. E. Axial spondyloarthritis: new advances in diagnosis and management. BMJ 372, m4447 (2021).

    Article  PubMed  Google Scholar 

  13. van der Horst-Bruinsma, I. E. et al. Baseline characteristics and treatment response to ixekizumab categorised by sex in radiographic and non-radiographic axial spondylarthritis through 52 weeks: data from three phase III randomised controlled trials. Adv. Ther. 39, 2806–2819 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  14. van der Horst-Bruinsma, I. E. Does gender modify outcome in rheumatic diseases? Jt. Bone Spine 89, 105365 (2022).

    Article  Google Scholar 

  15. van der Horst-Bruinsma, I. et al. A pooled analysis reporting the efficacy and safety of secukinumab in male and female patients with ankylosing spondylitis. Rheumatol. Ther. 8, 1775–1787 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Rusman, T. et al. Gender differences in retention rate of tumor necrosis factor alpha inhibitor treatment in ankylosing spondylitis: a retrospective cohort study in daily practice. Int. J. Rheum. Dis. 21, 836–842 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Rusman, T. et al. Disease activity in women with ankylosing spondylitis remains higher under Tumour Necrosis Factor inhibitor treatment than in men: a five-year observational study. Scand. J. Rheumatol. https://doi.org/10.1080/03009742.2021.1967046 (2021).

    Article  PubMed  Google Scholar 

  18. Ibáñez Vodnizza, S. E., van Bentum, R. E., Valenzuela, O. & van der Horst-Bruinsma, I. E. Patients with axial spondyloarthritis report significant differences between men and women and high impact of the disease: large websurvey analysis. Jt. Bone Spine 87, 315–319 (2020).

    Article  Google Scholar 

  19. Ibáñez Vodnizza, S. et al. Muscle wasting in male TNF-α blocker naïve ankylosing spondylitis patients: a comparison of gender differences in body composition. Rheumatology 56, 1566–1572 (2017).

    Article  PubMed  Google Scholar 

  20. Phillips, S. P. Defining and measuring gender: a social determinant of health whose time has come. Int. J. Equity Health 4, 11 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Mauvais-Jarvis, F. et al. Sex and gender: modifiers of health, disease, and medicine. Lancet 396, 565–582 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Johnson, J. L., Greaves, L. & Repta, R. Better science with sex and gender: facilitating the use of a sex and gender-based analysis in health research. Int. J. Equity Health 8, 14 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Doyal, L. Sex and gender: the challenges for epidemiologists. Int. J. Health Serv. 33, 569–579 (2003).

    Article  PubMed  Google Scholar 

  24. Marras, W. S., Davis, K. G. & Jorgensen, M. Spine loading as a function of gender. Spine 27, 2514–2520 (2002).

    Article  PubMed  Google Scholar 

  25. Marras, W. S., Jorgensen, M. J., Granata, K. P. & Wiand, B. Female and male trunk geometry: size and prediction of the spine loading trunk muscles derived from MRI. Clin. Biomech. 16, 38–46 (2001).

    Article  CAS  Google Scholar 

  26. Mogil, J. S. & Chanda, M. L. The case for the inclusion of female subjects in basic science studies of pain. Pain 117, 1–5 (2005).

    Article  PubMed  Google Scholar 

  27. Zucker, I. & Prendergast, B. J. Sex differences in pharmacokinetics predict adverse drug reactions in women. Biol. Sex. Differ. 11, 32 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Tannenbaum, C. & Day, D. Age and sex in drug development and testing for adults. Pharmacol. Res. 121, 83–93 (2017).

    Article  PubMed  Google Scholar 

  29. Rodenburg, E. M., Stricker, B. H. & Visser, L. E. Sex differences in cardiovascular drug-induced adverse reactions causing hospital admissions. Br. J. Clin. Pharmacol. 74, 1045–1052 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Karastergiou, K., Smith, S. R., Greenberg, A. S. & Fried, S. K. Sex differences in human adipose tissues - the biology of pear shape. Biol. Sex. Differ. 3, 13 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Engin, A. The definition and prevalence of obesity and metabolic syndrome. Adv. Exp. Med. Biol. 960, 1–17 (2017).

    Article  CAS  PubMed  Google Scholar 

  32. Karastergiou, K. The interplay between sex, ethnicity, and adipose tissue characteristics. Curr. Obes. Rep. 4, 269–278 (2015).

    Article  PubMed  Google Scholar 

  33. Brady, S. R. E. et al. High baseline fat mass, but not lean tissue mass, is associated with high intensity low back pain and disability in community-based adults. Arthritis Res. Ther. 21, 165 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Averbeck, B., Seitz, L., Kolb, F. P. & Kutz, D. F. Sex differences in thermal detection and thermal pain threshold and the thermal grill illusion: a psychophysical study in young volunteers. Biol. Sex. Differ. 8, 29 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Tavares-Ferreira D, R. P. et al. Sex differences in nociceptor translatomes contribute to divergent prostaglandin signaling in male and female mice. Biol. Psychiatry S0006-3223, 31952–31951 (2020).

    Google Scholar 

  36. Zubieta, J. K. et al. μ-opioid receptor-mediated antinociceptive responses differ in men and women. J. Neurosci. 22, 5100–5107 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Gear, R. W. et al. Kappa-opioids produce significantly greater analgesia in women than in men. Nat. Med. 2, 1248–1250 (1996).

    Article  CAS  PubMed  Google Scholar 

  38. Sorge, R. E. & Totsch, S. K. Sex differences in pain. J. Neurosci. Res. 95, 1271–1281 (2017).

    Article  CAS  PubMed  Google Scholar 

  39. Bartley, E. J. & Fillingim, R. B. Sex differences in pain: a brief review of clinical and experimental findings. Br. J. Anaesth. 111, 52–58 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Ortona, E. et al. Sex-based differences in autoimmune diseases. Ann. Ist. Super. Sanita 52, 205–212 (2016).

    CAS  PubMed  Google Scholar 

  41. Fischinger, S., Boudreau, C. M., Butler, A. L., Streeck, H. & Alter, G. Sex differences in vaccine-induced humoral immunity. Semin. Immunopathol. 41, 239–249 (2019).

    Article  CAS  PubMed  Google Scholar 

  42. Jaillon, S., Berthenet, K. & Garlanda, C. Sexual dimorphism in innate immunity. Clin. Rev. Allergy Immunol. 56, 308–321 (2019).

    Article  CAS  PubMed  Google Scholar 

  43. Purnamawati, K. et al. The importance of sex stratification in autoimmune disease biomarker research: a systematic review. Front. Immunol. 9, 1208 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Darboe, F. et al. Minimal sex-differential modulation of reactivity to pathogens and toll-like receptor ligands following infant bacillus Calmette-Guérin Russia vaccination. Front. Immunol. 8, 1092 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Veenstra van Nieuwenhoven, A. L. et al. Cytokine production in natural killer cells and lymphocytes in pregnant women compared with women in the follicular phase of the ovarian cycle. Fertil. Steril. 77, 1032–1037 (2002).

    Article  PubMed  Google Scholar 

  46. Pennell, L. M., Galligan, C. L. & Fish, E. N. Sex affects immunity. J. Autoimmun. 38, J282–J291 (2012).

    Article  CAS  PubMed  Google Scholar 

  47. Gubbels Bupp, M. R. Sex, the aging immune system, and chronic disease. Cell. Immunol. 294, 102–110 (2015).

    Article  CAS  PubMed  Google Scholar 

  48. Bove, R. Autoimmune diseases and reproductive aging. Clin. Immunol. 149, 251–264 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Tsui, H. W., Inman, R. D., Paterson, A. D., Reveille, J. D. & Tsui, F. W. ANKH variants associated with ankylosing spondylitis: gender differences. Arthritis Res. Ther. 7, R513–R525 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Tsui, H. W., Inman, R. D., Reveille, J. D. & Tsui, F. W. Association of a TNAP haplotype with ankylosing spondylitis. Arthritis Rheum. 56, 234–243 (2007).

    Article  CAS  PubMed  Google Scholar 

  51. Huang, W. N., Tso, T. K., Kuo, Y. C. & Tsay, G. J. Distinct impacts of syndesmophyte formation on male and female patients with ankylosing spondylitis. Int. J. Rheum. Dis. 15, 163–168 (2012).

    Article  PubMed  Google Scholar 

  52. Fish, E. N. The X-files in immunity: sex-based differences predispose immune responses. Nat. Rev. Immunol. 8, 737–744 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Jeong, H. et al. Estrogen attenuates the spondyloarthritis manifestations of the SKG arthritis model. Arthritis Res. Ther. 19, 198 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  54. Jimenez-Balderas, F. J., Tapia-Serrano, R., Madero-Cervera, J. I., Murrieta, S. & Mintz, G. Ovarian function studies in active ankylosing spondylitis in women. Clinical response to estrogen therapy. J. Rheumatol. 17, 497–502 (1990).

    CAS  PubMed  Google Scholar 

  55. Mahendira, D. et al. Analysis of the effect of the oral contraceptive pill on clinical outcomes in women with ankylosing spondylitis. J. Rheumatol. 41, 1344–1348 (2014).

    Article  PubMed  Google Scholar 

  56. Giltay, E. J. et al. Serum testosterone levels are not elevated in patients with ankylosing spondylitis. J. Rheumatol. 25, 2389–2394 (1998).

    CAS  PubMed  Google Scholar 

  57. Aydin, T., Karacan, I., Demir, S. E. & Sahin, Z. Bone loss in males with ankylosing spondylitis: its relation to sex hormone levels. Clin. Endocrinol. 63, 467–469 (2005).

    Article  CAS  Google Scholar 

  58. Tournadre, A. et al. Differences between women and men with recent-onset axial spondyloarthritis: results from a prospective multicenter French cohort. Arthritis Care Res. 65, 1482–1489 (2013).

    Article  CAS  Google Scholar 

  59. Shahlaee, A. et al. Gender differences in Iranian patients with ankylosing spondylitis. Clin. Rheumatol. 34, 285–293 (2015).

    Article  PubMed  Google Scholar 

  60. Landi, M. et al. Gender differences among patients with primary ankylosing spondylitis and spondylitis associated with psoriasis and inflammatory bowel disease in an iberoamerican spondyloarthritis cohort. Medicine 95, e5652 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. de Carvalho, H. M. et al. Gender characterization in a large series of Brazilian patients with spondyloarthritis. Clin. Rheumatol. 31, 687–695 (2012).

    Article  PubMed  Google Scholar 

  62. Lubrano, E. et al. The sex influence on response to tumor necrosis factor-α inhibitors and remission in axial spondyloarthritis. J. Rheumatol. https://doi.org/10.3899/jrheum.17666 (2017).

    Article  PubMed  Google Scholar 

  63. Barnabe, C. et al. Sex differences in pain scores and localization in inflammatory arthritis: a systematic review and metaanalysis. J. Rheumatol. 39, 1221–1230 (2012).

    Article  PubMed  Google Scholar 

  64. Slobodin, G. et al. Recently diagnosed axial spondyloarthritis: gender differences and factors related to delay in diagnosis. Clin. Rheumatol. 30, 1075–1080 (2011).

    Article  PubMed  Google Scholar 

  65. Cansu, D. U., Calışır, C., Savaş Yavaş, U., Kaşifoğlu, T. & Korkmaz, C. Predictors of radiographic severity and functional disability in Turkish patients with ankylosing spondylitis. Clin. Rheumatol. 30, 557–562 (2011).

    Article  PubMed  Google Scholar 

  66. Zarco, P. et al. Extra-articular disease in patients with spondyloarthritis. Baseline characteristics of the spondyloarthritis cohort of the AQUILES study. Reumatol. Clin. 11, 83–89 (2015).

    Article  PubMed  Google Scholar 

  67. Stolwijk, C., van Tubergen, A., Castillo-Ortiz, J. D. & Boonen, A. Prevalence of extra-articular7manifestations in patients with ankylosing spondylitis: a systematic review and meta-analysis. Ann. Rheum. Dis. 74, 65–73 (2015).

    Article  PubMed  Google Scholar 

  68. Mitulescu, T. C. et al. Acute anterior uveitis and other extra-articular manifestations of spondyloarthritis. J. Med. Life 8, 319–325 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Braakenburg, A. M., de Valk, H. W., de Boer, J. & Rothova, A. Human leukocyte antigen-B27-associated uveitis: long-term follow-up and gender differences. Am. J. Ophthalmol. 145, 472–479 (2008).

    Article  CAS  PubMed  Google Scholar 

  70. Webers, C. et al. Gender-attributable differences in outcome of ankylosing spondylitis: long-term results from the Outcome in Ankylosing Spondylitis International Study. Rheumatology 55, 419–428 (2016).

    PubMed  Google Scholar 

  71. Zeboulon, N., Dougados, M. & Gossec, L. Prevalence and characteristics of uveitis in the spondyloarthropathies: a systematic literature review. Ann. Rheum. Dis. 67, 955–959 (2008).

    Article  CAS  PubMed  Google Scholar 

  72. Agnani, S. et al. Gender and laterality affect recurrences of acute anterior uveitis. Br. J. Ophthalmol. 94, 1643–1647 (2010).

    Article  CAS  PubMed  Google Scholar 

  73. Miyamoto, N. et al. Estrogen protects against cellular infiltration by reducing the expressions of E-selectin and IL-6 in endotoxin-induced uveitis. J. Immunol. 163, 374–379 (1999).

    CAS  PubMed  Google Scholar 

  74. Khan, M. A. Epidemiology of HLA-B27 and arthritis. Clin. Rheumatol. 15, 10–12 (1996).

    Article  PubMed  Google Scholar 

  75. Chatzikyriakidou, A., Voulgari, P. V. & Drosos, A. A. What is the role of HLA-B27 in spondyloarthropathies? Autoimmun. Rev. 10, 464–468 (2011).

    Article  CAS  PubMed  Google Scholar 

  76. Bittar, M., Yong, W. C., Magrey, M. & Khan, M. A. Worldwide differences in clinical phenotype of axial spondyloarthritis. Curr. Rheumatol. Rep. 23, 76 (2021).

    Article  PubMed  Google Scholar 

  77. Haroon, M., O’Rourke, M., Ramasamy, P., Murphy, C. C. & FitzGerald, O. A novel evidence-based detection of undiagnosed spondyloarthritis in patients presenting with acute anterior uveitis: the DUET (Dublin Uveitis Evaluation Tool). Ann. Rheum. Dis. 74, 1990–1995 (2015).

    Article  PubMed  Google Scholar 

  78. Khan, M. A., Haroon, M. & Rosenbaum, J. T. Acute anterior uveitis and spondyloarthritis: more than meets the eye. Curr. Rheumatol. Rep. 17, 59 (2015).

    Article  PubMed  Google Scholar 

  79. Smith, W. M. Gender and spondyloarthropathy-associated uveitis. J. Ophthalmol. 2013, 928264 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  80. van Bentum, R. E. et al. Reduced occurrence rate of acute anterior uveitis in ankylosing spondylitis treated with golimumab — the GO-EASY Study. J. Rheumatol. 46, 153–159 (2019).

    Article  PubMed  Google Scholar 

  81. Walsh, J. A., Song, X., Kim, G. & Park, Y. Evaluation of the comorbidity burden in patients with ankylosing spondylitis using a large US administrative claims data set. Clin. Rheumatol. 37, 1869–1878 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  82. Maguire, S., Wilson, F., Gallagher, P. & O’Shea, F. Central obesity in axial spondyloarthritis: the missing link to understanding worse outcomes in women? J. Rheumatol. 49, 577–584 (2022).

    Article  PubMed  Google Scholar 

  83. Klingberg, E. et al. Osteoporosis in ankylosing spondylitis — prevalence, risk factors and methods of assessment. Arthritis Res. Ther. 14, R108 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  84. Ramírez, J., Nieto-González, J. C., Curbelo Rodríguez, R., Castañeda, S. & Carmona, L. Prevalence and risk factors for osteoporosis and fractures in axial spondyloarthritis: a systematic review and meta-analysis. Semin. Arthritis Rheum. 48, 44–52 (2018).

    Article  PubMed  Google Scholar 

  85. Will, R., Palmer, R., Bhalla, A. K., Ring, F. & Calin, A. Osteoporosis in early ankylosing spondylitis: a primary pathological event? Lancet 2, 1483–1485 (1989).

    Article  CAS  PubMed  Google Scholar 

  86. El Maghraoui, A. et al. Osteoporosis, body composition, and bone turnover in ankylosing spondylitis. J. Rheumatol. 26, 2205–2209 (1999).

    CAS  PubMed  Google Scholar 

  87. Ghozlani, I. et al. Prevalence and risk factors of osteoporosis and vertebral fractures in patients with ankylosing spondylitis. Bone 44, 772–776 (2009).

    Article  CAS  PubMed  Google Scholar 

  88. van der Weijden, M. A. et al. High frequency of vertebral fractures in early spondylarthropathies. Osteoporos. Int. 23, 1683–1690 (2012).

    Article  PubMed  Google Scholar 

  89. Beek, K. J. et al. Long-term treatment with TNF-α inhibitors improves bone mineral density but not vertebral fracture progression in ankylosing spondylitis. J. Bone Miner. Res. 34, 1041–1048 (2019).

    Article  CAS  PubMed  Google Scholar 

  90. van der Weijden, M. A. et al. Etanercept increases bone mineral density in ankylosing spondylitis, but does not prevent vertebral fractures: results of a prospective observational cohort study. J. Rheumatol. 43, 758–764 (2016).

    Article  PubMed  Google Scholar 

  91. van der Weijden, M. A. et al. High prevalence of low bone mineral density in patients within 10 years of onset of ankylosing spondylitis: a systematic review. Clin. Rheumatol. 31, 1529–1535 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  92. Nguyen, N. D., Ahlborg, H. G., Center, J. R., Eisman, J. A. & Nguyen, T. V. Residual lifetime risk of fractures in women and men. J. Bone Miner. Res. 22, 781–788 (2007).

    Article  PubMed  Google Scholar 

  93. van der Weijden, M. A. et al. Low bone mineral density is related to male gender and decreased functional capacity in early spondylarthropathies. Clin. Rheumatol. 30, 497–503 (2011).

    Article  PubMed  Google Scholar 

  94. Briot, K. et al. Bone oedema on MRI is highly associated with low bone mineral density in patients with early inflammatory back pain: results from the DESIR cohort. Ann. Rheum. Dis. 72, 1914–1919 (2013).

    Article  PubMed  Google Scholar 

  95. Wang, D. M. et al. Prevalence and risk factors of osteoporosis in patients with ankylosing spondylitis: a 5-year follow-up study of 504 cases. Clin. Exp. Rheumatol. 33, 465–470 (2015).

    CAS  PubMed  Google Scholar 

  96. Caparbo, V. F., Saad, C. G. S., Moraes, J. C., de Brum-Fernandes, A. J. & Pereira, R. M. R. Monocytes from male patients with ankylosing spondylitis display decreased osteoclastogenesis and decreased RANKL/OPG ratio. Osteoporos. Int. 29, 2565–2573 (2018).

    Article  CAS  PubMed  Google Scholar 

  97. Heslinga, S. C. et al. Cardiovascular risk management in patients with active ankylosing spondylitis: a detailed evaluation. BMC Musculoskelet. Disord. 16, 80 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  98. Moltó, A. & Nikiphorou, E. Comorbidities in spondyloarthritis. Front. Med. 5, 62 (2018).

    Article  Google Scholar 

  99. Bairey Merz, C. N., Ramineni, T. & Leong, D. Sex-specific risk factors for cardiovascular disease in women-making cardiovascular disease real. Curr. Opin. Cardiol. 33, 500–505 (2018).

    Article  PubMed  Google Scholar 

  100. Bots, S. H., Peters, S. A. E. & Woodward, M. Sex differences in coronary heart disease and stroke mortality: a global assessment of the effect of ageing between 1980 and 2010. BMJ Glob. Health 2, e000298 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  101. Appelman, Y., van Rijn, B. B., Ten Haaf, M. E., Boersma, E. & Peters, S. A. Sex differences in cardiovascular risk factors and disease prevention. Atherosclerosis 241, 211–218 (2015).

    Article  CAS  PubMed  Google Scholar 

  102. Geraghty, L. et al. Cardiovascular disease in women: from pathophysiology to novel and emerging risk factors. Heart Lung Circ. 30, 9–17 (2021).

    Article  PubMed  Google Scholar 

  103. Agarwala, A., Michos, E. D., Samad, Z., Ballantyne, C. M. & Virani, S. S. The use of sex-specific factors in the assessment of women’s cardiovascular risk. Circulation 141, 592–599 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  104. Maas, F. et al. Obesity is common in axial spondyloarthritis and is associated with poor clinical outcome. J. Rheumatol. 43, 383–387 (2016).

    Article  CAS  PubMed  Google Scholar 

  105. Rubio Vargas, R. et al. Does body mass index (BMI) influence the Ankylosing Spondylitis Disease Activity Score in axial spondyloarthritis?: data from the SPACE cohort. RMD Open 2, e000283 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  106. Ibáñez Vodnizza, S. E. et al. Fat mass lowers the response to tumor necrosis factor-α blockers in patients with ankylosing spondylitis. J. Rheumatol. 44, 1355–1361 (2017).

    Article  PubMed  Google Scholar 

  107. Deminger, A. et al. A five-year prospective study of spinal radiographic progression and its predictors in men and women with ankylosing spondylitis. Arthritis Res. Ther. 20, 162 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  108. Hartl, A. et al. Serum levels of leptin and high molecular weight adiponectin are inversely associated with radiographic spinal progression in patients with ankylosing spondylitis: results from the ENRADAS trial. Arthritis Res. Ther. 19, 140 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  109. Jovaní, V., Blasco-Blasco, M., Ruiz-Cantero, M. T. & Pascual, E. Understanding how the diagnostic delay of spondyloarthritis differs between women and men: a systematic review and metaanalysis. J. Rheumatol. 44, 174–183 (2017).

    Article  PubMed  Google Scholar 

  110. Wright, G. C., Kaine, J. & Deodhar, A. Understanding differences between men and women with axial spondyloarthritis. Semin. Arthritis Rheum. 50, 687–694 (2020).

    Article  PubMed  Google Scholar 

  111. Roussou, E. & Sultana, S. Spondyloarthritis in women: differences in disease onset, clinical presentation, and bath ankylosing spondylitis disease activity and functional indices (BASDAI and BASFI) between men and women with spondyloarthritides. Clin. Rheumatol. 30, 121–127 (2011).

    Article  PubMed  Google Scholar 

  112. Braun, J. & van der Heijde, D. Imaging and scoring in ankylosing spondylitis. Best. Pract. Res. Clin. Rheumatol. 16, 573–604 (2002).

    Article  CAS  PubMed  Google Scholar 

  113. Bollow, M. et al. Use of contrast enhanced magnetic resonance imaging to detect spinal inflammation in patients with spondyloarthritides. Clin. Exp. Rheumatol. 20, S167–S174 (2002).

    CAS  PubMed  Google Scholar 

  114. O’Shea, F. D. et al. Inflammatory and degenerative sacroiliac joint disease in a primary back pain cohort. Arthritis Care Res. 62, 447–454 (2010).

    Article  Google Scholar 

  115. Seven, S. et al. Anatomic distribution of sacroiliac joint lesions on magnetic resonance imaging in patients with axial spondyloarthritis and control subjects: a prospective cross-sectional study, including postpartum women, patients with disc herniation, cleaning staff, runners, and healthy individuals. Arthritis Care Res. 73, 742–754 (2021).

    Article  CAS  Google Scholar 

  116. Agten, C. A. et al. Postpartum bone marrow edema at the sacroiliac joints may mimic sacroiliitis of axial spondyloarthritis on MRI. AJR Am. J. Roentgenol. 211, 1306–1312 (2018).

    Article  PubMed  Google Scholar 

  117. Marchesoni, A. et al. The problem in differentiation between psoriatic-related polyenthesitis and fibromyalgia. Rheumatology 57, 32–40 (2018).

    Article  PubMed  Google Scholar 

  118. Nhan, D. T. & Caplan, L. Patient-reported outcomes in axial spondyloarthritis. Rheum. Dis. Clin. North. Am. 42, 285–299 (2016).

    Article  PubMed  Google Scholar 

  119. Swinnen, T. W., Westhovens, R., Dankaerts, W. & de Vlam, K. Widespread pain in axial spondyloarthritis: clinical importance and gender differences. Arthritis Res. Ther. 20, 156 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  120. Meeus, M. et al. Central sensitization in patients with rheumatoid arthritis: a systematic literature review. Semin. Arthritis Rheum. 41, 556–567 (2012).

    Article  PubMed  Google Scholar 

  121. Mundal, I., Grawe, R. W., Bjorngaard, J. H., Linaker, O. M. & Fors, E. A. Prevalence and long-term predictors of persistent chronic widespread pain in the general population in an 11-year prospective study: the HUNT study. BMC Musculoskelet. Disord. 15, 213 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  122. Rifbjerg-Madsen, S. et al. Pain and pain mechanisms in patients with inflammatory arthritis: a Danish nationwide cross-sectional DANBIO registry survey. PLoS One 12, e0180014 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Andreasen, R. A. et al. The impact of sex and disease classification on patient-reported outcome measures in axial spondyloarthritis: a descriptive prospective cross-sectional study. Arthritis Res. Ther. 21, 221 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  124. Barlow, J. H., Macey, S. J. & Struthers, G. R. Gender, depression, and ankylosing spondylitis. Arthritis Care Res. 6, 45–51 (1993).

    Article  CAS  PubMed  Google Scholar 

  125. Kilic, G., Kilic, E. & Ozgocmen, S. Is there any gender-specific difference in the cut-off values of ankylosing spondylitis disease activity score in patients with axial spondyloarthritis? Int. J. Rheum. Dis. 20, 1201–1211 (2017).

    Article  CAS  PubMed  Google Scholar 

  126. Mogard, E., Bremander, A., Lindqvist, E. & Bergman, S. Prevalence of chronic widespread pain in a population-based cohort of patients with spondyloarthritis — a cross-sectional study. BMC Rheumatol. 2, 11 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  127. van der Horst-Bruinsma, I. E., Zack, D. J., Szumski, A. & Koenig, A. S. Female patients with ankylosing spondylitis: analysis of the impact of gender across treatment studies. Ann. Rheum. Dis. 72, 1221–1224 (2013).

    Article  PubMed  Google Scholar 

  128. Wallenius, M. et al. Work disability and health-related quality of life in males and females with psoriatic arthritis. Ann. Rheum. Dis. 68, 685–689 (2009).

    Article  CAS  PubMed  Google Scholar 

  129. Désirée van der Heijde, R. L. Ankylosing Spondylitis and the Spondyloarthropathies. 206–213 (Elsevier, 2006).

  130. Kılıç, G. et al. Comparison of ASDAS and BASDAI as a measure of disease activity in axial psoriatic arthritis. Clin. Rheumatol. 34, 515–521 (2015).

    Article  PubMed  Google Scholar 

  131. Kwan, Y. H. et al. Validity and reliability of the Ankylosing Spondylitis Disease Activity Score with C-reactive protein (ASDAS-CRP) and Bath Ankylosing Spondylitis Disease Activity Index (BASDAI) in patients with axial spondyloarthritis (axSpA) in Singapore. Int. J. Rheum. Dis. 22, 2206–2212 (2019).

    Article  CAS  PubMed  Google Scholar 

  132. da Costa, I. P. et al. [Evaluation of performance of BASDAI (Bath Ankylosing Spondylitis Disease Activity Index) in a Brazilian cohort of 1,492 patients with spondyloarthritis: data from the Brazilian Registry of Spondyloarthritides (RBE)]. Rev. Bras. Reumatol. 55, 48–54 (2015).

    Article  PubMed  Google Scholar 

  133. Garrett, S. et al. A new approach to defining disease status in ankylosing spondylitis: the Bath Ankylosing Spondylitis Disease Activity Index. J. Rheumatol. 21, 2286–2291 (1994).

    CAS  PubMed  Google Scholar 

  134. Sengupta, R. & Stone, M. A. The assessment of ankylosing spondylitis in clinical practice. Nat. Clin. Pract. Rheumatol. 3, 496–503 (2007).

    Article  CAS  PubMed  Google Scholar 

  135. Machado, P. & Landewé, R. Spondyloarthritis: is it time to replace BASDAI with ASDAS? Nat. Rev. Rheumatol. 9, 388–390 (2013).

    Article  PubMed  Google Scholar 

  136. Machado, P. & van der Heijde, D. How to measure disease activity in axial spondyloarthritis? Curr. Opin. Rheumatol. 23, 339–345 (2011).

    Article  PubMed  Google Scholar 

  137. Ibn Yacoub, Y., Amine, B., Laatiris, A. & Hajjaj-Hassouni, N. Gender and disease features in Moroccan patients with ankylosing spondylitis. Clin. Rheumatol. 31, 293–297 (2012).

    Article  PubMed  Google Scholar 

  138. Lukas, C. et al. Development of an ASAS-endorsed disease activity score (ASDAS) in patients with ankylosing spondylitis. Ann. Rheum. Dis. 68, 18–24 (2009).

    Article  CAS  PubMed  Google Scholar 

  139. Doward, L. C. et al. Development of the ASQoL: a quality of life instrument specific to ankylosing spondylitis. Ann. Rheum. Dis. 62, 20–26 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Torre-Alonso, J. C., Queiro, R., Comellas, M., Lizan, L. & Blanch, C. Patient-reported outcomes in European spondyloarthritis patients: a systematic review of the literature. Patient Prefer. Adherence 12, 733–747 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  141. Rusman, T., van Vollenhoven, R. F. & van der Horst-Bruinsma, I. E. Gender differences in axial spondyloarthritis: women are not so lucky. Curr. Rheumatol. Rep. 20, 35 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Kiltz, U. et al. Development of a health index in patients with ankylosing spondylitis (ASAS HI): final result of a global initiative based on the ICF guided by ASAS. Ann. Rheum. Dis. 74, 830–835 (2015).

    Article  CAS  PubMed  Google Scholar 

  143. Kiltz, U. et al. Measurement properties of the ASAS Health Index: results of a global study in patients with axial and peripheral spondyloarthritis. Ann. Rheum. Dis. 77, 1311–1317 (2018).

    Article  PubMed  Google Scholar 

  144. Chen, H. H. et al. Gender difference in ASAS HI among patients with ankylosing spondylitis. PLoS One 15, e0235678 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. van der Heijde, D. et al. Ixekizumab, an interleukin-17A antagonist in the treatment of ankylosing spondylitis or radiographic axial spondyloarthritis in patients previously untreated with biological disease-modifying anti-rheumatic drugs (COAST-V): 16 week results of a phase 3 randomised, double-blind, active-controlled and placebo-controlled trial. Lancet 392, 2441–2451 (2018).

    Article  PubMed  Google Scholar 

  146. Deodhar, A. et al. A fifty-two-week, randomized, placebo-controlled trial of certolizumab pegol in nonradiographic axial spondyloarthritis. Arthritis Rheumatol. 71, 1101–1111 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. van der Heijde, D. et al. Efficacy and safety of adalimumab in patients with ankylosing spondylitis: results of a multicenter, randomized, double-blind, placebo-controlled trial. Arthritis Rheum. 54, 2136–2146 (2006).

    Article  PubMed  Google Scholar 

  148. Brandt, J. et al. Six-month results of a double-blind, placebo-controlled trial of etanercept treatment in patients with active ankylosing spondylitis. Arthritis Rheum. 48, 1667–1675 (2003).

    Article  CAS  PubMed  Google Scholar 

  149. Deodhar, A. et al. Three multicenter, randomized, double-blind, placebo-controlled studies evaluating the efficacy and safety of ustekinumab in axial spondyloarthritis. Arthritis Rheumatol. 71, 258–270 (2019).

    Article  CAS  PubMed  Google Scholar 

  150. Landewé, R. et al. Efficacy of certolizumab pegol on signs and symptoms of axial spondyloarthritis including ankylosing spondylitis: 24-week results of a double-blind randomised placebo-controlled Phase 3 study. Ann. Rheum. Dis. 73, 39–47 (2014).

    Article  PubMed  Google Scholar 

  151. van der Slik, B. et al. Although female patients with ankylosing spondylitis score worse on disease activity than male patients and improvement in disease activity is comparable, male patients show more radiographic progression during treatment with TNF-α inhibitors. Semin. Arthritis Rheum. 48, 828–833 (2019).

    Article  PubMed  Google Scholar 

  152. Deodhar, A. & Yu, D. Switching tumor necrosis factor inhibitors in the treatment of axial spondyloarthritis. Semin. Arthritis Rheum. 47, 343–350 (2017).

    Article  CAS  PubMed  Google Scholar 

  153. Horst-Bruinsma I, R. C., Braun, J., Bao, W., Porter, B. & Pournara, E. FRI0418 secukinumab provided similar efficacy in males and females with active ankylosing spondylitis over 52 weeks: post hoc pooled analysis of the measure trials. Ann. Rheum. Dis. 78, 897–898 (2019).

    Google Scholar 

  154. Gracey, E. et al. Sexual dimorphism in the Th17 signature of ankylosing spondylitis. Arthritis Rheumatol. 68, 679–689 (2016).

    Article  CAS  PubMed  Google Scholar 

  155. Neuenschwander, R. et al. Differences between men and women with nonradiographic axial spondyloarthritis: clinical characteristics and treatment effectiveness in a real-life prospective cohort. Arthritis Res. Ther. 22, 233 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. de Jong, H., Paramarta, J. E., de Winter, J., Baeten, D. & van de Sande, M. Differences between females and males in axial spondyloarthritis: data from a real-life cross-sectional cohort. Scand. J. Rheumatol. 49, 28–32 (2020).

    Article  PubMed  Google Scholar 

  157. Lubrano, E. et al. The sex influence on response to tumor necrosis factor-α inhibitors and remission in axial spondyloarthritis. J. Rheumatol. 45, 195–201 (2018).

    Article  CAS  PubMed  Google Scholar 

  158. Hebeisen, M. et al. Response to tumor necrosis factor inhibition in male and female patients with ankylosing spondylitis: data from a Swiss cohort. J. Rheumatol. 45, 506–512 (2018).

    Article  CAS  PubMed  Google Scholar 

  159. Haroon M, S. S. & Gheita, T. Gender differences in ankylosing spondylitis patients: relation to clinical characteristics, functional status and disease activity. Int. J. Clin. Rheumatol. 13, 258–262 (2018).

    Article  Google Scholar 

  160. Law, L. et al. Factors related to health-related quality of life in ankylosing spondylitis, overall and stratified by sex. Arthritis Res. Ther. 20, 284 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  161. Gremese, E. et al. Body weight, gender and response to TNF-α blockers in axial spondyloarthritis. Rheumatology 53, 875–881 (2014).

    Article  CAS  PubMed  Google Scholar 

  162. Bodur, H. et al. Description of the registry of patients with ankylosing spondylitis in Turkey: TRASD-IP. Rheumatol. Int. 32, 169–176 (2012).

    Article  PubMed  Google Scholar 

  163. Jung, Y. O. et al. Clinical and radiographic features of adult-onset ankylosing spondylitis in Korean patients: comparisons between males and females. J. Korean Med. Sci. 25, 532–535 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  164. Lee, W. et al. Are there gender differences in severity of ankylosing spondylitis? Results from the PSOAS cohort. Ann. Rheum. Dis. 66, 633–638 (2007).

    Article  PubMed  Google Scholar 

  165. Rusman, T., van Bentum, R. E. & van der Horst-Bruinsma, I. E. Sex and gender differences in axial spondyloarthritis: myths and truths. Rheumatology 59, iv38–iv46 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  166. Sieper, J. et al. Predictors of remission in patients with non-radiographic axial spondyloarthritis receiving open-label adalimumab in the ABILITY-3 study. RMD Open 5, e000917 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  167. Laganà, B. et al. Sex differences in response to TNF-inhibiting drugs in patients with spondyloarthropathies or inflammatory bowel diseases. Front. Pharmacol. 10, 47 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  168. Paccou, J., Baclé-Boutry, M. A., Solau-Gervais, E., Bele-Philippe, P. & Flipo, R. M. Dosage adjustment of anti-tumor necrosis factor-α inhibitor in ankylosing spondylitis is effective in maintaining remission in clinical practice. J. Rheumatol. 39, 1418–1423 (2012).

    Article  CAS  PubMed  Google Scholar 

  169. Lorenzin, M. et al. Predictors of response and drug survival in ankylosing spondylitis patients treated with infliximab. BMC Musculoskelet. Disord. 16, 166 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  170. Arends, S. et al. Baseline predictors of response and discontinuation of tumor necrosis factor-alpha blocking therapy in ankylosing spondylitis: a prospective longitudinal observational cohort study. Arthritis Res. Ther. 13, R94 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Glintborg, B. et al. Predictors of treatment response and drug continuation in 842 patients with ankylosing spondylitis treated with anti-tumour necrosis factor: results from 8 years’ surveillance in the Danish nationwide DANBIO registry. Ann. Rheum. Dis. 69, 2002–2008 (2010).

    Article  CAS  PubMed  Google Scholar 

  172. Flouri, I. D. et al. Comparative analysis and predictors of 10-year tumor necrosis factor inhibitors drug survival in patients with spondyloarthritis: first-year response predicts longterm drug persistence. J. Rheumatol. 45, 785–794 (2018).

    Article  CAS  PubMed  Google Scholar 

  173. Al Arashi, W. et al. Comment on: tumour necrosis factor inhibitor survival and predictors of response in axial spondyloarthritis-findings from a United Kingdom cohort. Rheumatol. Adv. Pract. 2, rky036 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  174. Yahya, F. et al. Tumour necrosis factor inhibitor survival and predictors of response in axial spondyloarthritis — findings from a United Kingdom cohort. Rheumatology 57, 619–624 (2018).

    Article  CAS  PubMed  Google Scholar 

  175. Iannone, F. et al. Golimumab in real-life settings: 2 years drug survival and predictors of clinical outcomes in rheumatoid arthritis, spondyloarthritis, and psoriatic arthritis. Semin. Arthritis Rheum. 47, 108–114 (2017).

    Article  CAS  PubMed  Google Scholar 

  176. Kristensen, L. E. et al. Presence of peripheral arthritis and male sex predicting continuation of anti-tumor necrosis factor therapy in ankylosing spondylitis: an observational prospective cohort study from the South Swedish Arthritis Treatment Group Register. Arthritis Care Res. 62, 1362–1369 (2010).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by a charitable contribution to the UMass Memorial Foundation from Timothy S. and Elaine L. Peterson (S.H.L.), by the SAA/Jane Bruckel Early Career Investigator in AxSpA Award (S.H.L.), and by the National Center for Advancing Translational Sciences, NIH, through UCSF-CTSI Grant Number TL1 TR001871 (R.S.). Its contents are solely the responsibility of the authors and do not necessarily represent the official views of the NIH.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to Lianne S. Gensler.

Ethics declarations

Competing interests

I.E.v.d.H.-B. has received honoraria, consultancy fees and/or research grants from AbbVie, Eli Lilly, BMS, MSD, Novartis, Pfizer and UCB Pharma. L.S.G. has received consultancy fees from AbbVie, Eli Lilly, Gilead, GSK, Janssen, Novartis, Pfizer and UCB, and research grants from Pfizer. T.R. has received research funding from Pfizer. The remaining authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Rheumatology thanks L. E. Kristensen and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stovall, R., van der Horst-Bruinsma, I.E., Liu, SH. et al. Sexual dimorphism in the prevalence, manifestation and outcomes of axial spondyloarthritis. Nat Rev Rheumatol 18, 657–669 (2022). https://doi.org/10.1038/s41584-022-00833-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41584-022-00833-0

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing