Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Critical appraisal of serum urate targets in the management of gout

Abstract

Gout management involves two broad aspects: treatment of gout flares to provide rapid symptomatic relief and long-term urate-lowering therapy to lower serum urate sufficiently to prevent gout flares from occurring. All of the major rheumatology societies recommend a target serum urate of <5 mg/dl (<0.30 mmol/l) or <6 mg/dl (<0.36 mmol/l), both of which are below the point of saturation for urate and therefore lead to monosodium urate crystal dissolution. In this Review, we describe the rationale for treat-to-target urate approach in the long-term management of gout and the current evidence and controversy around the appropriate serum urate targets.

Key points

  • The major rheumatology societies all recommend a treat-to target serum urate approach with the targets being <5 mg/dl (0.30 mmol/l) or <6 mg/dl (<0.36 mmol/l).

  • The treat-to target serum urate strategy for the management of gout has been questioned with the American College of Physicians, which states that insufficient evidence exists for such an approach.

  • Sustained reduction in serum urate to levels <6 mg/dl (<0.36 mmol/l) is associated with a reduction in the dissolution of gout flares and tophi but these clinical benefits take time to occur.

  • More than one target might be appropriate during gout management, with a lower target (<5 mg/dl (0.30 mmol/l)) in the initial phase of urate-lowering treatment and a higher target (<6 mg/dl (< 0.36 mmol/l)) once the flares and tophi have resolved.

  • Which serum urate target results in the best clinical outcomes for people with gout remains to be determined.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Treat-to-target strategy in gout.
Fig. 2: Time to recurrence of gout flare after withdrawal of urate-lowering therapy.

Similar content being viewed by others

Nicola Dalbeth, Hyon K. Choi, … Lisa K. Stamp

References

  1. Dehlin, M., Jacobsson, L. & Roddy, E. Global epidemiology of gout: prevalence, incidence, treatment patterns and risk factors. Nat. Rev. Rheumatol. 16, 380–390 (2020).

    Article  PubMed  Google Scholar 

  2. FitzGerald, J. et al. 2020 American College of Rheumatology Guideline for the Management of Gout. Arthritis Care Res. 72, 744–760 (2020).

    Article  Google Scholar 

  3. Richette, P. et al. 2016 updated EULAR evidence-based recommendations for the management of gout. Ann. Rheum. Dis. 76, 29–42 (2017).

    Article  CAS  PubMed  Google Scholar 

  4. Hui, M. et al. The British Society for Rheumatology guideline for the management of gout. Manag. Gout. Rheumatol. 56, e1–e20 (2017).

    CAS  Google Scholar 

  5. Ford, J. A. & Solomon, D. H. Challenges in implementing treat-to-target strategies in rheumatology. Rheum. Dis. Clin. North. Am. 45, 101–112 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Qaseem, A. et al. Management of acute and recurrent gout: a clinical practice guideline from the American College of Physicians. Ann. Int. Med. 166, 58–68 (2017).

    Article  PubMed  Google Scholar 

  7. Dalbeth, N. et al. Discordant American College of Physicians and international rheumatology guidelines for gout management: consensus statement of the Gout, Hyperuricemia and Crystal-Associated Disease Network (G-CAN). Nat. Rev. Rheumatol. 13, 561–568 (2017).

    Article  PubMed  Google Scholar 

  8. Garrod, A. B. Observations on certain pathological conditions of the blood and urine, in gout, rheumatism, and Bright’s disease. Med. Chir. Trans. 31, 83–97 (1848).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Narang, R. K. & Dalbeth, N. Pathophysiology of gout. Semin. Nephrol. 40, 550–563 (2020).

    Article  CAS  PubMed  Google Scholar 

  10. Loeb, J. The influence of temperature on the solubility of monosodium urate. Arthritis Rheum. 15, 189–192 (1972).

    Article  CAS  PubMed  Google Scholar 

  11. Campion, E., Glynn, R. & DeLabry, L. Asymptomatic hyperuricaemia: risks and consequence in the normative aging study. Am. J. Med. 82, 421–426 (1987).

    Article  CAS  PubMed  Google Scholar 

  12. Dalbeth, N. et al. Relationship between serum urate concentration and clinically evident incident gout: an individual participant data analysis. Ann. Rheum. Dis. 77, 1048–1052 (2018).

    Article  CAS  PubMed  Google Scholar 

  13. Faires, J. & McCarty, D. J. Acute arthritis in man and dog after intra-synovial injection of sodium urate crystals. Lancet 280, 682–685 (1962).

    Article  Google Scholar 

  14. Schumacher, H. Pathology of the synovial membrane in gout. Light and electron microscopic studies. Interpretation of crystals in electron micrographs. Arthritis Rheum. 18, 771–782 (1975).

    Article  CAS  PubMed  Google Scholar 

  15. So, A. K. & Martinon, F. Inflammation in gout: mechanisms and therapeutic targets. Nat. Rev. Rheumatol. 13, 639–647 (2017).

    Article  CAS  PubMed  Google Scholar 

  16. Trost, J. R. & Konstantinov, K. N. The consequences of untreated gout: is this a tophus? Am. J. Med. 132, e805–e806 (2019).

    Article  PubMed  Google Scholar 

  17. Towiwat, P. et al. Urate crystal deposition and bone erosion in gout: ‘inside-out’ or ‘outside-in’? A dual-energy computed tomography study. Arthritis Res. Ther. 18, 208 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Khanna, P. et al. Tophi and frequent gout flares are associated with impairments to quality of life, productivity, and increased healthcare resource use: results from a cross-sectional survey. Health Qual. Life Outcomes 10, 117 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Abhishek, A., Valdes., A. M., Zhang, W. & Doherty, M. Association of serum uric acid and disease duration with frequent gout attacks: a case–control study. Arthritis Care Res. 68, 1573–1577 (2016).

    Article  CAS  Google Scholar 

  20. Shiozawa, A., Buysman, E. K. & Korrer, S. Serum uric acid levels and the risk of flares among gout patients in a US managed care setting. Curr. Med. Res. Opin. 33, 117–124 (2017).

    Article  CAS  PubMed  Google Scholar 

  21. Shiozawa, A., Szabo, S. M., Bolzani, A., Cheung, A. & Choi, H. K. Serum uric acid and the risk of incident and recurrent gout: a systematic review. J. Rheumatol. 44, 388–396 (2017).

    Article  CAS  PubMed  Google Scholar 

  22. Lu, B. et al. Risk factors of ultrasound-detected tophi in patients with gout. Clin. Rheumatol. 39, 1953–1960 (2020).

    Article  PubMed  Google Scholar 

  23. Lam-Erwin, C. & Nancollas, G. H. The crystallization and dissolution of sodium urate. J. Cryst. Growth 53, 215–223 (1981).

    Article  Google Scholar 

  24. Perez-Ruiz, F., Calabozo, M., Pijoan, J., Herrero-Beites, A. & Ruibal, A. Effect of urate-lowering therapy on the velocity of size reduction of tophi in chronic gout. Arthritis Care Res. 47, 356–360 (2002).

    Article  CAS  Google Scholar 

  25. Sivera, F. et al. Multinational evidence-based recommendations for the diagnosis and management of gout: integrating systematic literature review and expert opinion of a broad panel of rheumatologists in the 3e initiative. Ann. Rheum. Dis. 73, 328–335 (2014).

    Article  PubMed  Google Scholar 

  26. Khanna, D. et al. 2012 American College of Rheumatology guidelines for the management of gout. Part 1: systematic nonpharmacologic and pharmacologic therapeutic approaches to hyperuricaemia. Arthritis Care Res. 64, 1431–1446 (2012).

    Article  CAS  Google Scholar 

  27. Becker, M. et al. Febuxostat compared with allopurinol in patients with hyperuricaemia and gout. N. Engl. J. Med. 353, 2450–2461 (2005).

    Article  CAS  PubMed  Google Scholar 

  28. Sundy, J. et al. Efficacy and tolerability of pegloticase for the treatment of chronic gout in patients refractory to conventional treatment: two randomized controlled trials. JAMA 306, 711–720 (2011).

    Article  CAS  PubMed  Google Scholar 

  29. Pui, K., Gow, P. & Dalbeth, N. Efficacy and tolerability of probenecid as urate-lowering therapy in gout; clinical experience in high-prevalence population. J. Rheumatol. 40, 872–876 (2013).

    Article  CAS  PubMed  Google Scholar 

  30. Stamp, L. et al. A randomised controlled trial of the efficacy and safety of allopurinol dose escalation to achieve target serum urate in people with gout. Ann. Rheum. Dis. 76, 1522–1528 (2017).

    Article  CAS  PubMed  Google Scholar 

  31. Stamp, L. et al. Allopurinol dose escalation to achieve serum urate below 6mg/dl: an open label extension study. Ann. Rheum. Dis. 76, 2065–2070 (2017).

    Article  CAS  PubMed  Google Scholar 

  32. Doherty, M. et al. Efficacy and cost-effectiveness of nurse-led care involving education and engagement of patients and a treat-to-target urate-lowering strategy versus usual care for gout: a randomised controlled trial. Lancet 392, 1403–1412 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Schumacher, H. et al. Outcome domains for studies of acute and chronic gout. J. Rheumatol. 36, 2342–2345 (2009).

    Article  PubMed  Google Scholar 

  34. Stamp, L. et al. Serum urate as surrogate endpoint for flares in people with gout: a systematic review and meta-regression analysis. Semin. Arthritis Rheum. 48, 293–301 (2018).

    Article  CAS  PubMed  Google Scholar 

  35. Morillon, M. et al. Serum urate as a surrogate outcome in gout: results from the OMERACT 2020 Virtual Gout Special Interest Group. Semin Arthritis Rheum. 51, 1378–1385 (2021).

    Article  CAS  PubMed  Google Scholar 

  36. Chhana, A., Lee, G. & Dalbeth, N. Factors influencing the crystallization of monosodium urate: a systematic literature review. BMC Musculoskelet. Disord. 16, 296 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Li-Yu, J. et al. Treatment of chronic gout. Can we determine when urate stores are depleted enough to prevent attacks of gout? J. Rheumatol. 28, 577–580 (2001).

    CAS  PubMed  Google Scholar 

  38. Pascual, E. & Sivera, F. Time required for disappearance of urate crystals from synovial fluid after successful hypouricaemic treatment relates to the duration of gout. Ann. Rheum. Dis. 66, 1056–1058 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Gutierrez, M. et al. International consensus for ultrasound lesions in gout: results of Delphi process and web-reliability exercise. Rheumatology 54, 1797–1805 (2015).

    Article  PubMed  Google Scholar 

  40. Choi, H. K. et al. Dual energy computed tomography in tophaceous gout. Ann. Rheum. Dis. 68, 1609–1612 (2009).

    Article  CAS  PubMed  Google Scholar 

  41. Ebstein, E. et al. Ultrasound evaluation in follow-up of urate-lowering therapy in gout: the USEFUL study. Rheumatology 58, 410–417 (2019).

    Article  CAS  PubMed  Google Scholar 

  42. Hammer, H. B. et al. Ultrasound shows rapid reduction of crystal depositions during a treat-to-target approach in gout patients: 12-month results from the NOR-Gout study. Ann. Rheum. Dis. 79, 1500–1505 (2020).

    Article  PubMed  Google Scholar 

  43. Uhlig, T. et al. Two-year reduction of dual-energy CT urate depositions during a treat-to-target strategy in gout in the NOR-Gout longitudinal study. Rheumatology 61, Si81–si85 (2022).

    Article  PubMed  Google Scholar 

  44. Dalbeth, N. et al. Effects of allopurinol dose escalation on bone erosion and urate volume in gout: a dual-energy computed tomography imaging study within a randomized, controlled trial. Arthritis Rheumatol. 71, 1739–1746 (2019).

    Article  CAS  PubMed  Google Scholar 

  45. Stamp, L. et al. Association between serum urate and flares in people with gout and evidence for surrogate status: a secondary analysis of two randomised controlled trials. Lancet Rheumatol. 4, e53–60 (2022).

    Article  Google Scholar 

  46. Uhlig, T. et al. One- and 2-year flare rates after treat-to-target and tight-control therapy of gout: results from the NOR-Gout study. Arthritis Res. Ther. 24, 88 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Baraf, H. et al. Tophus burden reduction with pegloticase: results from phase 3 randomized trials and open-label extension in patients with chronic gout refractory to conventional therapy. Arthritis Res. Ther. 15, R137 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  48. Eason, A. et al. Factors associated with change in radiographic damage scores in gout: a prospective observational study. Ann. Rheum. Dis. 75, 2075–2079 (2016).

    Article  PubMed  Google Scholar 

  49. Dalbeth, N., Doyle, A. J., McQueen, F. M., Sundy, J. & Baraf, H. S. Exploratory study of radiographic change in patients with tophaceous gout treated with intensive urate-lowering therapy. Arthritis Care Res. 66, 82–85 (2014).

    Article  CAS  Google Scholar 

  50. Dalbeth, N., Becce, F., Botson, J. K., Zhao, L. & Kumar, A. Dual-energy CT assessment of rapid monosodium urate depletion and bone erosion remodelling during pegloticase plus methotrexate co-therapy. Rheumatology https://doi.org/10.1093/rheumatology/keac173 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  51. Perez-Ruiz, F., Martin, I. & Canteli, B. Ultrasonographic measurement of tophi as an outcome measure for chronic gout. J. Rheumatol. 34, 1888–1893 (2007).

    PubMed  Google Scholar 

  52. Araujo, E. G. et al. Tophus resolution with pegloticase: a prospective dual-energy CT study. RMD Open 1, e000075 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  53. Dalbeth, N. et al. Lesinurad, a selective uric acid reabsorption inhibitor, in combination with febuxostat in patients with tophaceous gout. Arthritis Rheum. 69, 1903–1913 (2017).

    Article  CAS  Google Scholar 

  54. Dalbeth, N. et al. Intensive serum urate lowering with oral urate-lowering therapy for erosive gout: a randomized double-blind controlled trial. Arthritis Rheumatol. https://doi.org/10.1002/art.42055 (2021).

    Article  PubMed  Google Scholar 

  55. Chen, H., Mosley, T. H., Alonso, A. & Huang, X. Plasma urate and Parkinson’s disease in the atherosclerosis risk in communities (ARIC) study. Am. J. Epidemiol. 169, 1064–1069 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  56. Kim, T. S. et al. Decreased plasma antioxidants in patients with Alzheimer’s disease. Int. J. Geriatr. Psychiatry 21, 344–348 (2006).

    Article  PubMed  Google Scholar 

  57. Loebl, W. Y. & Scott, J. T. Withdrawal of allopurinol in patients with gout. Ann. Rheum. Dis. 33, 304–307 (1974).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Gast, L. Withdrawal of longterm antihyperuricemic therapy in tophaceous gout. Clin. Rheumatol. 6, 70–73 (1987).

    Article  CAS  PubMed  Google Scholar 

  59. Perez-Ruiz, F., Atxotegi, J., Hernando, I., Calabozo, M. & Nolla, J. Using serum urate levels to determine the period free of gouty symptoms after withdrawal of long-term urate-lowering therapy: a prospective study. Arthritis Care Res. 55, 786–790 (2006).

    Article  CAS  Google Scholar 

  60. Graham, G. et al. Understanding the dose-response relationship of allopurinol: predicting the optimal dosage. Br. J. Clin. Pharmacol. 76, 932–938 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Perez-Ruiz, F., Herrero-Beites, A. M. & Carmona, L. A two-stage approach to the treatment of hyperuricemia in gout: the “dirty dish” hypothesis. Arthritis Rheum. 63, 4002–4006 (2011).

    Article  CAS  PubMed  Google Scholar 

  62. Saag, K. G. et al. Evaluation of serum urate levels and the clinical manifestation of gout with cardiovascular mortality from the CARES trial. Arthritis Rheumatol. https://doi.org/10.1002/art.42160 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  63. Solomon, D. H. et al. Designing a strategy trial for the management of gout: the use of a modified Delphi panel. ACR Open Rheumatol. 3, 341–348 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  64. Shmerling, R. H. Editorial: the ethics of recent gout trials. Arthritis Rheumatol. 68, 2057–2060 (2016).

    Article  PubMed  Google Scholar 

  65. O’Dell James, R. et al. Comparative effectiveness of allopurinol and febuxostat in gout management. NEJM Evid. 1, EVIDoa2100028 (2022).

    Google Scholar 

  66. Scirè, C. A. et al. Development and first validation of a disease activity score for gout. Arthritis Care Res. 68, 1530–1537 (2016).

    Article  Google Scholar 

  67. de Lautour, H. et al. Development of preliminary remission criteria for gout using Delphi and 1000Minds consensus exercises. Arthritis Care Res. 68, 667–672 (2016).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to Lisa K. Stamp.

Ethics declarations

Competing interests

L.K.S. reports research funding from the New Zealand Health Research Council and consulting fees from Pharmac. N.D. reports research funding from the New Zealand Health Research Council, grants and personal fees from AstraZeneca, grants from Amgen, personal fees from Horizon, Dyve Biosciences, PK Med, JW Pharmaceuticals, Selecta, Arthrosi, Janssen, AbbVie and Cello Health outside the submitted work.

Peer review

Peer review information

Nature Reviews Rheumatology thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stamp, L.K., Dalbeth, N. Critical appraisal of serum urate targets in the management of gout. Nat Rev Rheumatol 18, 603–609 (2022). https://doi.org/10.1038/s41584-022-00816-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41584-022-00816-1

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing