Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Sphingosine 1-phosphate receptor-targeted therapeutics in rheumatic diseases

Abstract

Sphingosine 1-phosphate (S1P), which acts via G protein-coupled S1P receptors (S1PRs), is a bioactive lipid essential for vascular integrity and lymphocyte trafficking. The S1P–S1PR signalling axis is a key component of the inflammatory response in autoimmune rheumatic diseases. Several drugs that target S1PRs have been approved for the treatment of multiple sclerosis and inflammatory bowel disease and are under clinical testing for patients with systemic lupus erythematosus (SLE). Preclinical studies support the hypothesis that targeting the S1P–S1PR axis would be beneficial to patients with SLE, rheumatoid arthritis (RA) and systemic sclerosis (SSc) by reducing pathological inflammation. Whereas most preclinical research and development efforts are focused on reducing lymphocyte trafficking, protective effects of circulating S1P on endothelial S1PRs, which maintain the vascular barrier and enable blood circulation while dampening leukocyte extravasation, have been largely overlooked. In this Review, we take a holistic view of S1P–S1PR signalling in lymphocyte and vascular pathobiology. We focus on the potential of S1PR modulators for the treatment of SLE, RA and SSc and summarize the rationale, pathobiology and evidence from preclinical models and clinical studies. Improved understanding of S1P pathobiology in autoimmune rheumatic diseases and S1PR therapeutic modulation is anticipated to lead to efficacious and safer management of these diseases.

Key points

  • Autoimmune rheumatic diseases are complex and heterogeneous diseases that have fundamental pathophysiological pathways in common.

  • These dysregulated pathways include lymphocyte autoreactivity, myeloid and endothelial cell activation, and extravasation of inflammatory mediators into tissues.

  • Chronic inflammatory damage in autoimmune rheumatic disease leads to end organ damage.

  • Sphingosine 1-phosphate receptor 1 (S1PR1) is expressed on leukocytes and endothelial cells and is an important mediator of lymphocyte trafficking, regulatory T/T helper 17 cell homeostasis and vascular permeability.

  • Use of S1PR1 modulators in preclinical studies of systemic lupus erythematosus, rheumatoid arthritis and systemic sclerosis has shown promise in attenuating inflammatory injury and end organ damage.

  • Modulation of S1PR1 signalling in leukocytes and/or endothelial cells warrants further evaluation in clinical studies in autoimmune rheumatic diseases.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Overview of S1P production, export and chaperones.
Fig. 2: Major physiological roles of S1PR1 signalling.
Fig. 3: Potential mechanisms by which S1PR1 modulators could mitigate disease pathogenesis.
Fig. 4: Contribution of S1P to inflammatory injury and joint destruction in RA.
Fig. 5: S1PR1 modulators act as agonists and/or functional antagonists depending on dose and target cell type.

Similar content being viewed by others

References

  1. Lee, M. J. et al. Vascular endothelial cell adherens junction assembly and morphogenesis induced by sphingosine-1-phosphate. Cell 99, 301–312 (1999).

    Article  CAS  PubMed  Google Scholar 

  2. Galvani, S. et al. HDL-bound sphingosine 1-phosphate acts as a biased agonist for the endothelial cell receptor S1P1 to limit vascular inflammation. Sci. Signal. 8, ra79 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Ruiz, M. et al. High-density lipoprotein-associated apolipoprotein M limits endothelial inflammation by delivering sphingosine-1-phosphate to the sphingosine-1-phosphate receptor 1. Arterioscler. Thromb. Vasc. Biol. 37, 118–129 (2017).

    Article  CAS  PubMed  Google Scholar 

  4. Jiang, H. et al. Sphingosine 1-phosphate receptor 1 (S1PR1) agonist CYM5442 inhibits expression of intracellular adhesion molecule 1 (ICAM1) in endothelial cells infected with influenza A viruses. PLoS One 12, e0175188 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Teijaro, J. R. et al. Endothelial cells are central orchestrators of cytokine amplification during influenza virus infection. Cell 146, 980–991 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Schwab, S. R. et al. Lymphocyte sequestration through S1P lyase inhibition and disruption of S1P gradients. Science 309, 1735–1739 (2005).

    Article  CAS  PubMed  Google Scholar 

  7. Ramos-Perez, W. D. et al. A map of the distribution of sphingosine 1-phosphate in the spleen. Nat. Immunol. 16, 1245–52. (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Pappu, R. et al. Promotion of lymphocyte egress into blood and lymph by distinct sources of sphingosine-1-phosphate. Science 316, 295–298 (2007).

    Article  CAS  PubMed  Google Scholar 

  9. Cyster, J. G. & Schwab, S. R. Sphingosine-1-phosphate and lymphocyte egress from lymphoid organs. Annu. Rev. Immunol. 30, 69–94 (2012).

    Article  CAS  PubMed  Google Scholar 

  10. Cartier, A. & Hla, T. Sphingosine 1-phosphate: lipid signaling in pathology and therapy. Science 366, eaar5551 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Proia, R. L. & Hla, T. Emerging biology of sphingosine-1-phosphate: its role in pathogenesis and therapy. J. Clin. Invest. 125, 1379–1387 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Sanchez, T. et al. PTEN as an effector in the signaling of antimigratory G protein-coupled receptor. Proc. Natl Acad. Sci. USA 102, 4312–4317 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Sanchez, T. et al. Induction of vascular permeability by the sphingosine-1-phosphate receptor-2 (S1P2R) and its downstream effectors ROCK and PTEN. Arterioscler. Thromb. Vasc. Biol. 27, 1312–1318 (2007).

    Article  CAS  PubMed  Google Scholar 

  14. Cruz-Orengo, L. et al. Enhanced sphingosine-1-phosphate receptor 2 expression underlies female CNS autoimmunity susceptibility. J. Clin. Invest. 124, 2571–84. (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Michaud, J., Im, D. S. & Hla, T. Inhibitory role of sphingosine 1-phosphate receptor 2 in macrophage recruitment during inflammation. J. Immunol. 184, 1475–1483 (2010).

    Article  CAS  PubMed  Google Scholar 

  16. Laidlaw, B. J. et al. Sphingosine-1-phosphate receptor 2 restrains egress of γδ T cells from the skin. J. Exp. Med. 216, 1487–1496 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Muppidi, J. R. et al. Loss of signalling via Gα13 in germinal centre B-cell-derived lymphoma. Nature 516, 254–258 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Sun, X. et al. Sphingosine-1-phosphate receptor-3 is a novel biomarker in acute lung injury. Am. J. Respir. Cell Mol. Biol. 47, 628–636 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Cantalupo, A. et al. S1PR1 (sphingosine-1-phosphate receptor 1) signaling regulates blood flow and pressure. Hypertension 70, 426–434 (2017).

    Article  CAS  PubMed  Google Scholar 

  20. Murakami, K. et al. Knock out of S1P3 receptor signaling attenuates inflammation and fibrosis in bleomycin-induced lung injury mice model. PLoS One 9, e106792 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Takuwa, N. et al. S1P3-mediated cardiac fibrosis in sphingosine kinase 1 transgenic mice involves reactive oxygen species. Cardiovasc. Res. 85, 484–93. (2010).

    Article  CAS  PubMed  Google Scholar 

  22. Group, C. C. H. W. Meta-analysis of rare and common exome chip variants identifies S1PR4 and other loci influencing blood cell traits. Nat. Genet. 48, 867–876 (2016).

    Article  CAS  Google Scholar 

  23. Drouillard, A. et al. S1PR5 is essential for human natural killer cell migration toward sphingosine-1 phosphate. J. Allergy Clin. Immunol. 141, 2265–2268.e1 (2018).

    Article  CAS  PubMed  Google Scholar 

  24. Kharel, Y. et al. Sphingosine kinase 2 is required for modulation of lymphocyte traffic by FTY720. J. Biol. Chem. 280, 36865–36872 (2005).

    Article  CAS  PubMed  Google Scholar 

  25. Chun, J. & Hartung, H. Mechanism of action of oral fingolimod (FTY720) in multiple sclerosis. Clin. Neuropharmacol. 33, 91–101 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Fryer, R. M. et al. The clinically-tested S1P receptor agonists, FTY720 and BAF312, demonstrate subtype-specific bradycardia (S1P1) and hypertension (S1P3) in rat. PLoS One 7, e52985 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Camm, J. et al. Cardiac and vascular effects of fingolimod: mechanistic basis and clinical implications. Am. Heart J. 168, 632–644 (2014).

    Article  CAS  PubMed  Google Scholar 

  28. Gonzalez-Cabrera, P. J. et al. S1P signaling: new therapies and opportunities. F1000Prime Rep. 6, 109 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Oo, M. L. et al. Engagement of S1P1-degradative mechanisms leads to vascular leak in mice. J. Clin. Invest. 121, 2290–2300 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Jain, N. & Bhatti, M. T. Fingolimod-associated macular edema: incidence, detection, and management. Neurology 78, 672–680 (2012).

    Article  CAS  PubMed  Google Scholar 

  31. Chae, S. S., Proia, R. L. & Hla, T. Constitutive expression of the S1P1 receptor in adult tissues. Prostaglandins Other Lipid Mediat. 73, 141–150 (2004).

    Article  CAS  PubMed  Google Scholar 

  32. Yanagida, K. et al. Sphingosine 1-phosphate receptor signaling establishes AP-1 gradients to allow for retinal endothelial cell specialization. Dev. Cell 52, 779–793.e7 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Ancellin, N. et al. Extracellular export of sphingosine kinase-1 enzyme. Sphingosine 1-phosphate generation and the induction of angiogenic vascular maturation. J. Biol. Chem. 277, 6667–6675 (2002).

    Article  CAS  PubMed  Google Scholar 

  34. Igarashi, N. et al. Sphingosine kinase 2 is a nuclear protein and inhibits DNA synthesis. J. Biol. Chem. 278, 46832–46839 (2003).

    Article  CAS  PubMed  Google Scholar 

  35. Allende, M. L. et al. Mice deficient in sphingosine kinase 1 are rendered lymphopenic by FTY720. J. Biol. Chem. 279, 52487–52492 (2004).

    Article  CAS  PubMed  Google Scholar 

  36. Zemann, B. et al. Sphingosine kinase type 2 is essential for lymphopenia induced by the immunomodulatory drug FTY720. Blood 107, 1454–1458 (2006).

    Article  CAS  PubMed  Google Scholar 

  37. Kharel, Y. et al. Sphingosine kinase type 2 inhibition elevates circulating sphingosine 1-phosphate. Biochem. J. 447, 149–157 (2012).

    Article  CAS  PubMed  Google Scholar 

  38. Kharel, Y. et al. Sphingosine kinase 2 inhibition and blood sphingosine 1-phosphate levels. J. Pharmacol. Exp. Ther. 355, 23–31 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Mizugishi, K. et al. Essential role for sphingosine kinases in neural and vascular development. Mol. Cell Biol. 25, 11113–11121 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Camerer, E. et al. Sphingosine-1-phosphate in the plasma compartment regulates basal and inflammation-induced vascular leak in mice. J. Clin. Invest. 119, 1871–1879 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Smyth, S. S. et al. Roles for lysophosphatidic acid signaling in vascular development and disease. Biochim. Biophys. Acta 1865, 158734 (2020).

    Article  CAS  Google Scholar 

  42. Engelbrecht, E., MacRae, C. A. & Hla, T. Lysolipids in vascular development, biology, and disease. Arterioscler. Thromb. Vasc. Biol. 41, 564–584 (2021).

    Article  CAS  PubMed  Google Scholar 

  43. Panchatcharam, M. et al. Mice with targeted inactivation of ppap2b in endothelial and hematopoietic cells display enhanced vascular inflammation and permeability. Arterioscler. Thromb. Vasc. Biol. 34, 837–845 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Chatterjee, I. et al. Endothelial lipid phosphate phosphatase-3 deficiency that disrupts the endothelial barrier function is a modifier of cardiovascular development. Cardiovasc. Res. 111, 105–118 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Breart, B. et al. Lipid phosphate phosphatase 3 enables efficient thymic egress. J. Exp. Med. 208, 1267–1278 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Pham, T. H. et al. Lymphatic endothelial cell sphingosine kinase activity is required for lymphocyte egress and lymphatic patterning. J. Exp. Med. 207, 17–27 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Venkataraman, K. et al. Vascular endothelium as a contributor of plasma sphingosine 1-phosphate. Circ. Res. 102, 669–676 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Xiong, Y. et al. Erythrocyte-derived sphingosine 1-phosphate is essential for vascular development. J. Clin. Invest. 124, 4823–4828 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  49. Urtz, N. et al. Sphingosine 1-cphosphate produced by sphingosine kinase 2 intrinsically controls platelet aggregation in vitro and in vivo. Circ. Res. 117, 376–387 (2015).

    Article  CAS  PubMed  Google Scholar 

  50. Chandrakanthan, M. et al. Deletion of Mfsd2b impairs thrombotic functions of platelets. Nat. Commun. 12, 2286 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Jonnalagadda, D. et al. Granule-mediated release of sphingosine-1-phosphate by activated platelets. Biochim. Biophys. Acta 1841, 1581–1589 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Gazit, S. L. et al. Platelet and erythrocyte sources of S1P are redundant for vascular development and homeostasis, but both rendered essential after plasma S1P depletion in anaphylactic shock. Circ. Res. 119, e110–126 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Schaphorst, K. L. et al. Role of sphingosine-1 phosphate in the enhancement of endothelial barrier integrity by platelet-released products. Am. J. Physiol. Lung Cell Mol. Physiol. 285, L258–L267 (2003).

    Article  CAS  PubMed  Google Scholar 

  54. Herzog, B. H. et al. Podoplanin maintains high endothelial venule integrity by interacting with platelet CLEC-2. Nature 502, 105–109 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Kawahara, A. et al. The sphingolipid transporter spns2 functions in migration of zebrafish myocardial precursors. Science 323, 524–527 (2009).

    Article  CAS  PubMed  Google Scholar 

  56. Vu, T. M. et al. Mfsd2b is essential for the sphingosine-1-phosphate export in erythrocytes and platelets. Nature 550, 524–528 (2017).

    Article  CAS  PubMed  Google Scholar 

  57. Fukuhara, S. et al. The sphingosine-1-phosphate transporter Spns2 expressed on endothelial cells regulates lymphocyte trafficking in mice. J. Clin. Invest. 122, 1416–1426 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Hisano, Y. et al. Mouse SPNS2 functions as a sphingosine-1-phosphate transporter in vascular endothelial cells. PLoS One 7, e38941 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Ding, B. S. et al. Aging suppresses sphingosine-1-phosphate chaperone ApoM in circulation resulting in maladaptive organ repair. Dev. Cell 53, 677–690.e4 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Winkler, M. S. et al. Decreased serum concentrations of sphingosine-1-phosphate in sepsis. Crit. Care 19, 372 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  61. Winkler, M. S. et al. Sphingosine-1-phosphate: a potential biomarker and therapeutic target for endothelial dysfunction and sepsis? Shock 47, 666–672 (2017).

    Article  CAS  PubMed  Google Scholar 

  62. Christoffersen, C. et al. Endothelium-protective sphingosine-1-phosphate provided by HDL-associated apolipoprotein M. Proc. Natl Acad. Sci. USA 108, 9613–9618 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Christoffersen, C. et al. The apolipoprotein M/S1P axis controls triglyceride metabolism and brown fat activity. Cell Rep. 22, 175–188 (2018).

    Article  CAS  PubMed  Google Scholar 

  64. Christoffersen, C. et al. Effect of apolipoprotein M on high density lipoprotein metabolism and atherosclerosis in low density lipoprotein receptor knock-out mice. J. Biol. Chem. 283, 1839–1847 (2008).

    Article  CAS  PubMed  Google Scholar 

  65. Elsoe, S. et al. Apolipoprotein M binds oxidized phospholipids and increases the antioxidant effect of HDL. Atherosclerosis 221, 91–97 (2012).

    Article  PubMed  CAS  Google Scholar 

  66. Dahlback, B. & Nielsen, L. B. Apolipoprotein M — a novel player in high-density lipoprotein metabolism and atherosclerosis. Curr. Opin. Lipidol. 17, 291–295 (2006).

    Article  PubMed  CAS  Google Scholar 

  67. Blaho, V. A. et al. HDL-bound sphingosine-1-phosphate restrains lymphopoiesis and neuroinflammation. Nature 523, 342–346 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Wilkerson, B. A. et al. Sphingosine 1-phosphate (S1P) carrier-dependent regulation of endothelial barrier: high density lipoprotein (HDL)-S1P prolongs endothelial barrier enhancement as compared with albumin-S1P via effects on levels, trafficking, and signaling of S1P1. J. Biol. Chem. 287, 44645–44653 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Swendeman, S. L. et al. An engineered S1P chaperone attenuates hypertension and ischemic injury. Sci. Signal. 10, eaal2722 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  70. Christensen, P. M. et al. Impaired endothelial barrier function in apolipoprotein M-deficient mice is dependent on sphingosine-1-phosphate receptor 1. FASEB J. 30, 2351–2359 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Matloubian, M. et al. Lymphocyte egress from thymus and peripheral lymphoid organs is dependent on S1P receptor 1. Nature 427, 355–360 (2004).

    Article  CAS  PubMed  Google Scholar 

  72. Allende, M. L. et al. Expression of the sphingosine 1-phosphate receptor, S1P1, on T-cells controls thymic emigration. J. Biol. Chem. 279, 15396–15401 (2004).

    Article  CAS  PubMed  Google Scholar 

  73. Allende, M. L. et al. S1P1 receptor directs the release of immature B cells from bone marrow into blood. J. Exp. Med. 207, 1113–1124 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Mendoza, A. et al. The transporter Spns2 is required for secretion of lymph but not plasma sphingosine-1-phosphate. Cell Rep. 2, 1104–1110 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Pham, T. H. et al. S1P1 receptor signaling overrides retention mediated by Gαi-coupled receptors to promote T cell egress. Immunity 28, 122–133 (2008).

    Article  CAS  PubMed  Google Scholar 

  76. Birker-Robaczewska, M. et al. S1P1 modulator-induced Gαi signaling and β-arrestin recruitment are both necessary to induce rapid and efficient reduction of blood lymphocyte count in vivo. Mol. Pharmacol. 93, 109–118 (2018).

    Article  CAS  PubMed  Google Scholar 

  77. Sykes, D. A. et al. Investigating the molecular mechanisms through which FTY720-P causes persistent S1P1 receptor internalization. Br. J. Pharmacol. 171, 4797–4807 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Lim, K. G. et al. FTY720 analogues as sphingosine kinase 1 inhibitors: enzyme inhibition kinetics, allosterism, proteasomal degradation, and actin rearrangement in MCF-7 breast cancer cells. J. Biol. Chem. 286, 18633–18640 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Mehling, M. et al. FTY720 therapy exerts differential effects on T cell subsets in multiple sclerosis. Neurology 71, 1261–1267 (2008).

    Article  CAS  PubMed  Google Scholar 

  80. Harris, S. et al. Effect of the sphingosine-1-phosphate receptor modulator ozanimod on leukocyte subtypes in relapsing MS. Neurol. Neuroimmunol. Neuroinflamm. 7, e839 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  81. Luna, G. et al. Infection risks among patients with multiple sclerosis treated with fingolimod, natalizumab, rituximab, and injectable therapies. JAMA Neurol. 77, 184–191 (2020).

    Article  PubMed  Google Scholar 

  82. Zhao, Z. et al. Incidence and risk of infection associated with fingolimod in patients with multiple sclerosis: a systematic review and meta-analysis of 8,448 patients from 12 randomized controlled trials. Front. Immunol. 12, 611711 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Shiow, L. R. et al. CD69 acts downstream of interferon-alpha/beta to inhibit S1P1 and lymphocyte egress from lymphoid organs. Nature 440, 540–544 (2006).

    Article  CAS  PubMed  Google Scholar 

  84. Baeyens, A. et al. Monocyte-derived S1P in the lymph node regulates immune responses. Nature 592, 290–295 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Mike, E. V. et al. Neuropsychiatric systemic lupus erythematosus is dependent on sphingosine-1-phosphate signaling. Front. Immunol. 9, 2189 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  86. Wenderfer, S. E., Stepkowski, S. M. & Braun, M. C. Increased survival and reduced renal injury in MRL/lpr mice treated with a novel sphingosine-1-phosphate receptor agonist. Kidney Int. 74, 1319–1326 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Sugahara, K. et al. Amiselimod (MT-1303), a novel sphingosine 1-phosphate receptor-1 modulator, potently inhibits the progression of lupus nephritis in two murine SLE models. J. Immunol. Res. 2019, 5821589 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  88. Suzuki, S. et al. A new immunosuppressant, FTY720, induces bcl-2-associated apoptotic cell death in human lymphocytes. Immunology 89, 518–523 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Nagahara, Y. et al. Evidence that FTY720 induces T cell apoptosis in vivo. Immunopharmacology 48, 75–85 (2000).

    Article  CAS  PubMed  Google Scholar 

  90. Suzuki, S. et al. The in vivo induction of lymphocyte apoptosis in MRL-lpr/lpr mice treated with FTY720. Clin. Exp. Immunol. 107, 103–111 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Morris, M. A. et al. Transient T cell accumulation in lymph nodes and sustained lymphopenia in mice treated with FTY720. Eur. J. Immunol. 35, 3570–3580 (2005).

    Article  CAS  PubMed  Google Scholar 

  92. Han, Y. et al. FTY720 abrogates collagen-induced arthritis by hindering dendritic cell migration to local lymph nodes. J. Immunol. 195, 4126–4135 (2015).

    Article  CAS  PubMed  Google Scholar 

  93. Lan, Y. Y. et al. The sphingosine-1-phosphate receptor agonist FTY720 modulates dendritic cell trafficking in vivo. Am. J. Transpl. 5, 2649–2659. (2005).

    Article  CAS  Google Scholar 

  94. Han, S. et al. FTY720 suppresses humoral immunity by inhibiting germinal center reaction. Blood 104, 4129–4133 (2004).

    Article  CAS  PubMed  Google Scholar 

  95. Moser, T. et al. The role of TH17 cells in multiple sclerosis: therapeutic implications. Autoimmun. Rev. 19, 102647 (2020).

    Article  CAS  PubMed  Google Scholar 

  96. Eken, A. et al. S1P1 deletion differentially affects TH17 and regulatory T cells. Sci. Rep. 7, 12905 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  97. Liao, J. J., Huang, M. C. & Goetzl, E. J. Cutting edge: alternative signaling of Th17 cell development by sphingosine 1-phosphate. J. Immunol. 178, 5425–5428 (2007).

    Article  CAS  PubMed  Google Scholar 

  98. Garris, C. S. et al. Defective sphingosine 1-phosphate receptor 1 (S1P1) phosphorylation exacerbates TH17-mediated autoimmune neuroinflammation. Nat. Immunol. 14, 1166–1172 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Khattri, R. et al. An essential role for Scurfin in CD4+CD25+ T regulatory cells. Nat. Immunol. 4, 337–342 (2003).

    Article  CAS  PubMed  Google Scholar 

  100. Fontenot, J. D., Gavin, M. A. & Rudensky, A. Y. Foxp3 programs the development and function of CD4+CD25+ regulatory T cells. Nat. Immunol. 4, 330–336 (2003).

    Article  CAS  PubMed  Google Scholar 

  101. Ochs, H. D., Gambineri, E. & Torgerson, T. R. IPEX, FOXP3 and regulatory T-cells: a model for autoimmunity. Immunol. Res. 38, 112–121 (2007).

    Article  CAS  PubMed  Google Scholar 

  102. Ohl, K. & Tenbrock, K. Regulatory T cells in systemic lupus erythematosus. Eur. J. Immunol. 45, 344–355 (2015).

    Article  CAS  PubMed  Google Scholar 

  103. Scalapino, K. J. et al. Suppression of disease in New Zealand Black/New Zealand White lupus-prone mice by adoptive transfer of ex vivo expanded regulatory T cells. J. Immunol. 177, 1451–1459 (2006).

    Article  CAS  PubMed  Google Scholar 

  104. Liu, G. et al. The receptor S1P1 overrides regulatory T cell-mediated immune suppression through Akt-mTOR. Nat. Immunol. 10, 769–777 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Priceman, S. J. et al. S1PR1 is crucial for accumulation of regulatory T cells in tumors via STAT3. Cell Rep. 6, 992–999 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Sawicka, E. et al. The sphingosine 1-phosphate receptor agonist FTY720 differentially affects the sequestration of CD4+/CD25+ T-regulatory cells and enhances their functional activity. J. Immunol. 175, 7973–7980 (2005).

    Article  CAS  PubMed  Google Scholar 

  107. Daniel, C. et al. FTY720 ameliorates Th1-mediated colitis in mice by directly affecting the functional activity of CD4+CD25+ regulatory T cells. J. Immunol. 178, 2458–2468 (2007).

    Article  CAS  PubMed  Google Scholar 

  108. Miller, D. C. et al. The CII-specific autoimmune T-cell response develops in the presence of FTY720 but is regulated by enhanced Treg cells that inhibit the development of autoimmune arthritis. Arthritis Res. Ther. 18, 8 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  109. Haas, J. et al. Fingolimod does not impair T-cell release from the thymus and beneficially affects Treg function in patients with multiple sclerosis. Mult. Scler. 21, 1521–1532 (2015).

    Article  CAS  PubMed  Google Scholar 

  110. Hjorth, M., Dandu, N. & Mellergard, J. Treatment effects of fingolimod in multiple sclerosis: selective changes in peripheral blood lymphocyte subsets. PLoS One 15, e0228380 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Muls, N. et al. Fingolimod increases CD39-expressing regulatory T cells in multiple sclerosis patients. PLoS One 9, e113025 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  112. Dominguez-Villar, M. et al. Fingolimod modulates T cell phenotype and regulatory T cell plasticity in vivo. J. Autoimmun. 96, 40–49 (2019).

    Article  CAS  PubMed  Google Scholar 

  113. Serpero, L. D. et al. Fingolimod modulates peripheral effector and regulatory T cells in MS patients. J. Neuroimmune Pharmacol. 8, 1106–1113 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  114. Ghadiri, M. et al. Pre-treatment T-cell subsets associate with fingolimod treatment responsiveness in multiple sclerosis. Sci. Rep. 10, 356 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Liu, Y. et al. Edg-1, the G protein-coupled receptor for sphingosine-1-phosphate, is essential for vascular maturation. J. Clin. Invest. 106, 951–961 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Ben Shoham, A. et al. S1P1 inhibits sprouting angiogenesis during vascular development. Development 139, 3859–3869 (2012).

    Article  PubMed  CAS  Google Scholar 

  117. Jung, B. et al. Flow-regulated endothelial S1P receptor-1 signaling sustains vascular development. Dev. Cell 23, 600–610 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Gaengel, K. et al. The sphingosine-1-phosphate receptor S1PR1 restricts sprouting angiogenesis by regulating the interplay between VE-cadherin and VEGFR2. Dev. Cell 23, 587–599 (2012).

    Article  CAS  PubMed  Google Scholar 

  119. Cartier, A. et al. Endothelial sphingosine 1-phosphate receptors promote vascular normalization and antitumor therapy. Proc. Natl Acad. Sci. USA 117, 3157–3166 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Natarajan, V. et al. Sphingosine-1-phosphate, FTY720, and sphingosine-1-phosphate receptors in the pathobiology of acute lung injury. Am. J. Respir. Cell Mol. Biol. 49, 6–17 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Burg, N. et al. Sphingosine 1-phosphate receptor 1 signaling maintains endothelial cell barrier function and protects against immune complex-induced vascular injury. Arthritis Rheumatol. 70, 1879–1889 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Yanagida, K. et al. Size-selective opening of the blood-brain barrier by targeting endothelial sphingosine 1-phosphate receptor 1. Proc. Natl Acad. Sci. USA 114, 4531–4536 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Stone, M. L. et al. Sphingosine-1-phosphate receptor 1 agonism attenuates lung ischemia-reperfusion injury. Am. J. Physiol. Lung Cell Mol. Physiol. 308, L1245–L1252 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  124. Shea, B. S. et al. Prolonged exposure to sphingosine 1-phosphate receptor-1 agonists exacerbates vascular leak, fibrosis, and mortality after lung injury. Am. J. Respir. Cell Mol. Biol. 43, 662–673 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Igarashi, J., Bernier, S. G. & Michel, T. Sphingosine 1-phosphate and activation of endothelial nitric-oxide synthase. differential regulation of Akt and MAP kinase pathways by EDG and bradykinin receptors in vascular endothelial cells. J. Biol. Chem. 276, 12420–12426 (2001).

    Article  CAS  PubMed  Google Scholar 

  126. Guan, Z. et al. Sphingosine-1-phosphate evokes unique segment-specific vasoconstriction of the renal microvasculature. J. Am. Soc. Nephrol. 25, 1774–1785 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Guan, Z. et al. Mechanisms of sphingosine-1-phosphate-mediated vasoconstriction of rat afferent arterioles. Acta Physiol. https://doi.org/10.1111/apha.12913 (2018).

    Article  Google Scholar 

  128. Wolfrum, C., Poy, M. N. & Stoffel, M. Apolipoprotein M is required for prebeta-HDL formation and cholesterol efflux to HDL and protects against atherosclerosis. Nat. Med. 11, 418–422 (2005).

    Article  CAS  PubMed  Google Scholar 

  129. Silver, R. M., Metcalf, J. F. & LeRoy, E. C. Interstitial lung disease in scleroderma. Immune complexes in sera and bronchoalveolar lavage fluid. Arthritis Rheum. 29, 525–531 (1986).

    Article  CAS  PubMed  Google Scholar 

  130. Murdaca, G. et al. Endothelial dysfunction in rheumatic autoimmune diseases. Atherosclerosis 224, 309–317 (2012).

    Article  CAS  PubMed  Google Scholar 

  131. McGinley, M. & Cohen, J. A. Sphingosine 1-phosphate receptor modulators in multiple sclerosis and other conditions. Lancet 398, 1184–1194 (2021).

    Article  CAS  PubMed  Google Scholar 

  132. Perez-Jeldres, T., Alvarez-Lobos, M. & Rivera-Nieves, J. Targeting sphingosine-1-phosphate signaling in immune-mediated diseases: beyond multiple sclerosis. Drugs 81, 985–1002 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Frangou, E., Georgakis, S. & Bertsias, G. Update on the cellular and molecular aspects of lupus nephritis. Clin. Immunol. 216, 108445 (2020).

    Article  CAS  PubMed  Google Scholar 

  134. Katsuyama, T., Tsokos, G. C. & Moulton, V. R. Aberrant T cell signaling and subsets in systemic lupus erythematosus. Front. Immunol. 9, 1088 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  135. Hamilton, J. A., Hsu, H. C. & Mountz, J. D. Autoreactive B cells in SLE, villains or innocent bystanders? Immunol. Rev. 292, 120–138 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Mancardi, D. et al. Endothelial dysfunction and cardiovascular risk in lupus nephritis: New roles for old players? Eur. J. Clin. Invest. 51, e13441 (2021).

    Article  CAS  PubMed  Google Scholar 

  137. Anders, H. J. et al. Lupus nephritis. Nat. Rev. Dis. Prim. 6, 7 (2020).

    Article  PubMed  Google Scholar 

  138. Jorge, A. M. et al. Unchanging premature mortality trends in systemic lupus erythematosus: a general population-based study (1999–2014). Rheumatology 57, 337–344 (2018).

    Article  PubMed  Google Scholar 

  139. Moghaddam, B. et al. All-cause and cause-specific mortality in systemic lupus erythematosus: a population-based study. Rheumatology 61, 367–376 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  140. Ocampo-Piraquive, V. et al. Mortality in systemic lupus erythematosus: causes, predictors and interventions. Expert. Rev. Clin. Immunol. 14, 1043–1053 (2018).

    Article  CAS  PubMed  Google Scholar 

  141. Ballocca, F. et al. Predictors of cardiovascular events in patients with systemic lupus erythematosus (SLE): a systematic review and meta-analysis. Eur. J. Prev. Cardiol. 22, 1435–1441 (2015).

    Article  PubMed  Google Scholar 

  142. Watson, L. et al. Increased serum concentration of sphingosine-1-phosphate in juvenile-onset systemic lupus erythematosus. J. Clin. Immunol. 32, 1019–1025 (2012).

    Article  CAS  PubMed  Google Scholar 

  143. Patyna, S. et al. Blood ceramides as novel markers for renal impairment in systemic lupus erythematosus. Prostaglandins Other Lipid Mediat. 144, 106348 (2019).

    Article  CAS  PubMed  Google Scholar 

  144. Checa, A. et al. Dysregulations in circulating sphingolipids associate with disease activity indices in female patients with systemic lupus erythematosus: a cross-sectional study. Lupus 26, 1023–1033 (2017).

    Article  CAS  PubMed  Google Scholar 

  145. Du, W. et al. Low apolipoprotein M serum levels correlate with systemic lupus erythematosus disease activity and apolipoprotein M gene polymorphisms with lupus. Lipids Health Dis. 16, 88 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  146. Tyden, H. et al. Low plasma concentrations of apolipoprotein M are associated with disease activity and endothelial dysfunction in systemic lupus erythematosus. Arthritis Res. Ther. 21, 110 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  147. Axtell, A. L., Gomari, F. A. & Cooke, J. Assessing endothelial vasodilator function with the Endo-PAT 2000. J. Vis. Exp. https://doi.org/10.3791/2167 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  148. Feingold, K. R. et al. Infection and inflammation decrease apolipoprotein M expression. Atherosclerosis 199, 19–26 (2008).

    Article  CAS  PubMed  Google Scholar 

  149. Crow, M. K. Interferon-alpha: a therapeutic target in systemic lupus erythematosus. Rheum. Dis. Clin. North. Am. 36, 173–186 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  150. Crow, M. K. & Wohlgemuth, J. Microarray analysis of gene expression in lupus. Arthritis Res. Ther. 5, 279–287 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Niewold, T. B. et al. High serum IFN-α activity is a heritable risk factor for systemic lupus erythematosus. Genes. Immun. 8, 492–502 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Ronnblom, L., Alm, G. V. & Eloranta, M. L. The type I interferon system in the development of lupus. Semin. Immunol. 23, 113–121 (2011).

    Article  PubMed  CAS  Google Scholar 

  153. Zhao, J. et al. Combination of sphingosine-1-phosphate receptor 1 (S1PR1) agonist and antiviral drug: a potential therapy against pathogenic influenza virus. Sci. Rep. 9, 5272 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  154. Garcia-Romo, G. S. et al. Netting neutrophils are major inducers of type I IFN production in pediatric systemic lupus erythematosus. Sci. Transl. Med. 3, 73ra20 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  155. Blanco, L. P. et al. RNA externalized by neutrophil extracellular traps promotes inflammatory pathways in endothelial cells. Arthritis Rheumatol. 73, 2282–2292 (2021).

    Article  CAS  PubMed  Google Scholar 

  156. Taylor Meadows, K. R. et al. Ozanimod (RPC1063), a selective S1PR1 and S1PR5 modulator, reduces chronic inflammation and alleviates kidney pathology in murine systemic lupus erythematosus. PLoS One 13, e0193236 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  157. Strasser, D. S. et al. Preclinical to clinical translation of cenerimod, a novel S1P1 receptor modulator, in systemic lupus erythematosus. RMD Open 6, e001261 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  158. Liu, J. et al. Genomic view of systemic autoimmunity in MRLlpr mice. Genes Immun. 7, 156–168 (2006).

    Article  CAS  PubMed  Google Scholar 

  159. Singer, G. G. et al. Apoptosis, Fas and systemic autoimmunity: the MRL-lpr/lpr model. Curr. Opin. Immunol. 6, 913–920 (1994).

    Article  CAS  PubMed  Google Scholar 

  160. Okazaki, H. et al. Effects of FTY720 in MRL-lpr/lpr mice: therapeutic potential in systemic lupus erythematosus. J. Rheumatol. 29, 707–716 (2002).

    CAS  PubMed  Google Scholar 

  161. Shi, D. et al. FTY720 attenuates behavioral deficits in a murine model of systemic lupus erythematosus. Brain Behav. Immun. 70, 293–304 (2018).

    Article  CAS  PubMed  Google Scholar 

  162. Subramanian, S. et al. A Tlr7 translocation accelerates systemic autoimmunity in murine lupus. Proc. Natl Acad. Sci. USA 103, 9970–9975 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Ando, S. et al. FTY720 exerts a survival advantage through the prevention of end-stage glomerular inflammation in lupus-prone BXSB mice. Biochem. Biophys. Res. Commun. 394, 804–810 (2010).

    Article  CAS  PubMed  Google Scholar 

  164. Comi, G. et al. Benefit-risk profile of sphingosine-1-phosphate receptor modulators in relapsing and secondary progressive multiple sclerosis. Drugs 77, 1755–1768 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Piali, L. et al. Cenerimod, a novel selective S1P1 receptor modulator with unique signaling properties. Pharmacol. Res. Perspect. 5, e00370 (2017).

    Article  PubMed Central  CAS  Google Scholar 

  166. Sugahara, K. et al. Amiselimod, a novel sphingosine 1-phosphate receptor-1 modulator, has potent therapeutic efficacy for autoimmune diseases, with low bradycardia risk. Br. J. Pharmacol. 174, 15–27 (2017).

    Article  CAS  PubMed  Google Scholar 

  167. Tanaka, Y. et al. Amiselimod, a sphingosine 1-phosphate receptor-1 modulator, for systemic lupus erythematosus: a multicenter, open-label exploratory study. Lupus 29, 1902–1913 (2020).

    Article  CAS  PubMed  Google Scholar 

  168. Smolen, J. S., Aletaha, D. & McInnes, I. B. Rheumatoid arthritis. Lancet 388, 2023–2038 (2016).

    Article  CAS  PubMed  Google Scholar 

  169. Buch, M. H., Eyre, S. & McGonagle, D. Persistent inflammatory and non-inflammatory mechanisms in refractory rheumatoid arthritis. Nat. Rev. Rheumatol. 17, 17–33 (2021).

    Article  PubMed  Google Scholar 

  170. Solomon, D. H. et al. Explaining the cardiovascular risk associated with rheumatoid arthritis: traditional risk factors versus markers of rheumatoid arthritis severity. Ann. Rheum. Dis. 69, 1920–1925 (2010).

    Article  PubMed  Google Scholar 

  171. Amigues, I. et al. Myocardial inflammation, measured using 18-fluorodeoxyglucose positron emission tomography with computed tomography, is associated with disease activity in rheumatoid arthritis. Arthritis Rheumatol. 71, 496–506 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Jagpal, A. & Navarro-Millan, I. Cardiovascular co-morbidity in patients with rheumatoid arthritis: a narrative review of risk factors, cardiovascular risk assessment and treatment. BMC Rheumatol. 2, 10 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  173. Solomon, D. H. et al. Cardiovascular morbidity and mortality in women diagnosed with rheumatoid arthritis. Circulation 107, 1303–1307 (2003).

    Article  PubMed  Google Scholar 

  174. Sluiter, T. J. et al. Endothelial barrier function and leukocyte transmigration in atherosclerosis. Biomedicines 9, 328 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Nofer, J. R. High-density lipoprotein, sphingosine 1-phosphate, and atherosclerosis. J. Clin. Lipidol. 2, 4–11 (2008).

    Article  PubMed  Google Scholar 

  176. Kitano, M. et al. Sphingosine 1-phosphate/sphingosine 1-phosphate receptor 1 signaling in rheumatoid synovium: regulation of synovial proliferation and inflammatory gene expression. Arthritis Rheum. 54, 742–753 (2006).

    Article  CAS  PubMed  Google Scholar 

  177. Endresen, G. K. Evidence for activation of platelets in the synovial fluid from patients with rheumatoid arthritis. Rheumatol. Int. 9, 19–24 (1989).

    Article  CAS  PubMed  Google Scholar 

  178. Boilard, E. et al. Platelets amplify inflammation in arthritis via collagen-dependent microparticle production. Science 327, 580–583 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Zhao, C. et al. Chemical hypoxia brings to light altered autocrine sphingosine-1-phosphate signalling in rheumatoid arthritis synovial fibroblasts. Mediators Inflamm. 2015, 436525 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  180. Lai, W. Q., Melendez, A. J. & Leung, B. Role of sphingosine kinase and sphingosine-1-phosphate in inflammatory arthritis. World J. Biol. Chem. 1, 321–326 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  181. Zhao, C. et al. Specific and overlapping sphingosine-1-phosphate receptor functions in human synoviocytes: impact of TNF-alpha. J. Lipid Res. 49, 2323–2337 (2008).

    Article  CAS  PubMed  Google Scholar 

  182. Ishii, M. et al. Sphingosine-1-phosphate mobilizes osteoclast precursors and regulates bone homeostasis. Nature 458, 524–528 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Jaigirdar, S. A. et al. Sphingosine-1-phosphate promotes the persistence of activated CD4 T cells in inflamed sites. Front. Immunol. 8, 1627 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  184. Ledgerwood, L. G. et al. The sphingosine 1-phosphate receptor 1 causes tissue retention by inhibiting the entry of peripheral tissue T lymphocytes into afferent lymphatics. Nat. Immunol. 9, 42–53 (2008).

    Article  CAS  PubMed  Google Scholar 

  185. Lai, W. Q. et al. Anti-inflammatory effects of sphingosine kinase modulation in inflammatory arthritis. J. Immunol. 181, 8010–8017 (2008).

    Article  CAS  PubMed  Google Scholar 

  186. Lai, W. Q. et al. Distinct roles of sphingosine kinase 1 and 2 in murine collagen-induced arthritis. J. Immunol. 183, 2097–2103 (2009).

    Article  CAS  PubMed  Google Scholar 

  187. Baker, D. A. et al. Genetic sphingosine kinase 1 deficiency significantly decreases synovial inflammation and joint erosions in murine TNF-alpha-induced arthritis. J. Immunol. 185, 2570–2579 (2010).

    Article  CAS  PubMed  Google Scholar 

  188. Pi, X. et al. Sphingosine kinase 1-mediated inhibition of Fas death signaling in rheumatoid arthritis B lymphoblastoid cells. Arthritis Rheum. 54, 754–764 (2006).

    Article  CAS  PubMed  Google Scholar 

  189. Michaud, J. et al. Normal acute and chronic inflammatory responses in sphingosine kinase 1 knockout mice. FEBS Lett. 580, 4607–4612 (2006).

    Article  CAS  PubMed  Google Scholar 

  190. Baker, D. A. et al. Impact of sphingosine kinase 2 deficiency on the development of TNF-alpha-induced inflammatory arthritis. Rheumatol. Int. 33, 2677–2681 (2013).

    Article  CAS  PubMed  Google Scholar 

  191. Yoshimoto, T. et al. Positive modulation of IL-12 signaling by sphingosine kinase 2 associating with the IL-12 receptor beta 1 cytoplasmic region. J. Immunol. 171, 1352–1359 (2003).

    Article  CAS  PubMed  Google Scholar 

  192. Pyne, S., Adams, D. R. & Pyne, N. J. Sphingosine kinases as druggable targets. Handb. Exp. Pharmacol. 259, 49–76 (2020).

    Article  CAS  PubMed  Google Scholar 

  193. Fitzpatrick, L. R. et al. Attenuation of arthritis in rodents by a novel orally-available inhibitor of sphingosine kinase. Inflammopharmacology 19, 75–87 (2011).

    Article  CAS  PubMed  Google Scholar 

  194. Hu, H. J. et al. Common variants at the promoter region of the APOM confer a risk of rheumatoid arthritis. Exp. Mol. Med. 43, 613–621 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Park, Y. J. et al. The APOM polymorphism as a novel risk factor for dyslipidaemia in rheumatoid arthritis: a possible shared link between disease susceptibility and dyslipidaemia. Clin. Exp. Rheumatol. 31, 180–188 (2013).

    PubMed  Google Scholar 

  196. Huang, Y. et al. Apolipoprotein m (APOM) levels and APOM rs805297 G/T polymorphism are associated with increased risk of rheumatoid arthritis. Joint Bone Spine 81, 32–36 (2014).

    Article  CAS  PubMed  Google Scholar 

  197. van Halm, V. P. et al. Lipids and inflammation: serial measurements of the lipid profile of blood donors who later developed rheumatoid arthritis. Ann. Rheum. Dis. 66, 184–188 (2007).

    Article  PubMed  CAS  Google Scholar 

  198. Matsuura, M. et al. Effect of FTY720, a novel immunosuppressant, on adjuvant-induced arthritis in rats. Inflamm. Res. 49, 404–410 (2000).

    Article  CAS  PubMed  Google Scholar 

  199. Matsuura, M., Imayoshi, T. & Okumoto, T. Effect of FTY720, a novel immunosuppressant, on adjuvant- and collagen-induced arthritis in rats. Int. J. Immunopharmacol. 22, 323–331 (2000).

    Article  CAS  PubMed  Google Scholar 

  200. Zhu, C. et al. FTY720 inhibits the development of collagen-induced arthritis in mice by suppressing the recruitment of CD4+ T lymphocytes. Drug Des. Devel. Ther. 15, 1981–1992 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  201. Wang, F. et al. Reduction of CD4 positive T cells and improvement of pathological changes of collagen-induced arthritis by FTY720. Eur. J. Pharmacol. 573, 230–240 (2007).

    Article  CAS  PubMed  Google Scholar 

  202. Jin, J. et al. Sphingosine-1-phosphate receptor subtype 1 (S1P1) modulator IMMH001 regulates adjuvant- and collagen-induced arthritis. Front. Pharmacol. 10, 1085 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Sakaguchi, N. et al. Altered thymic T-cell selection due to a mutation of the ZAP-70 gene causes autoimmune arthritis in mice. Nature 426, 454–460 (2003).

    Article  CAS  PubMed  Google Scholar 

  204. Tsunemi, S. et al. Effects of the novel immunosuppressant FTY720 in a murine rheumatoid arthritis model. Clin. Immunol. 136, 197–204 (2010).

    Article  CAS  PubMed  Google Scholar 

  205. Karuppuchamy, T. et al. Sphingosine-1-phosphate receptor-1 (S1P1) is expressed by lymphocytes, dendritic cells, and endothelium and modulated during inflammatory bowel disease. Mucosal Immunol. 10, 162–171 (2017).

    Article  CAS  PubMed  Google Scholar 

  206. Fujii, Y. et al. Amelioration of collagen-induced arthritis by a novel S1P1 antagonist with immunomodulatory activities. J. Immunol. 188, 206–215 (2012).

    Article  CAS  PubMed  Google Scholar 

  207. Bigaud, M. et al. Pathophysiological consequences of a break in S1P1-dependent homeostasis of vascular permeability revealed by S1P1 competitive antagonism. PLoS One 11, e0168252 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  208. Bongartz, T. et al. Incidence and mortality of interstitial lung disease in rheumatoid arthritis: a population-based study. Arthritis Rheum. 62, 1583–1591 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  209. Kadura, S. & Raghu, G. Rheumatoid arthritis-interstitial lung disease: manifestations and current concepts in pathogenesis and management. Eur. Respir. Rev. 30, 210011 (2021).

    Article  PubMed  Google Scholar 

  210. Huang, S. et al. Rheumatoid arthritis-associated interstitial lung disease: current update on prevalence, risk factors, and pharmacologic treatment. Curr. Treatm. Opt. Rheumatol. 6, 337–353 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  211. Bagdanoff, J. T. et al. Inhibition of sphingosine 1-phosphate lyase for the treatment of rheumatoid arthritis: discovery of (E)-1-(4-((1R,2S,3R)-1,2,3,4-tetrahydroxybutyl)-1H-imidazol-2-yl)ethanone oxime (LX2931) and (1R,2S,3R)-1-(2-(isoxazol-3-yl)-1H-imidazol-4-yl)butane-1,2,3,4-tetraol (LX2932). J. Med. Chem. 53, 8650–8662 (2010).

    Article  CAS  PubMed  Google Scholar 

  212. Fleischmann, R. Novel small-molecular therapeutics for rheumatoid arthritis. Curr. Opin. Rheumatol. 24, 335–341 (2012).

    Article  CAS  PubMed  Google Scholar 

  213. Allende, M. L. et al. Sphingosine-1-phosphate lyase deficiency produces a pro-inflammatory response while impairing neutrophil trafficking. J. Biol. Chem. 286, 7348–7358 (2011).

    Article  CAS  PubMed  Google Scholar 

  214. Ruaro, B. et al. The treatment of lung involvement in systemic sclerosis. Pharmaceuticals 14, 154 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  215. Denton, C. P., Wells, A. U. & Coghlan, J. G. Major lung complications of systemic sclerosis. Nat. Rev. Rheumatol. 14, 511–527 (2018).

    Article  PubMed  Google Scholar 

  216. Volkmann, E. R. & Fischer, A. Update on morbidity and mortality in systemic sclerosis-related interstitial lung disease. J. Scleroderma Relat. Disord. 6, 11–20 (2021).

    Article  PubMed  Google Scholar 

  217. Tashkin, D. P. et al. Mycophenolate mofetil versus oral cyclophosphamide in scleroderma-related interstitial lung disease (SLS II): a randomised controlled, double-blind, parallel group trial. Lancet Respir. Med. 4, 708–719 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  218. Chung, L. et al. Survival and predictors of mortality in systemic sclerosis-associated pulmonary arterial hypertension: outcomes from the pulmonary hypertension assessment and recognition of outcomes in scleroderma registry. Arthritis Care Res. 66, 489–495 (2014).

    Article  Google Scholar 

  219. Rubio-Rivas, M. et al. Mortality and survival in systemic sclerosis: systematic review and meta-analysis. Semin. Arthritis Rheum. 44, 208–219 (2014).

    Article  PubMed  Google Scholar 

  220. Teijaro, J. R. et al. S1PR1-mediated IFNAR1 degradation modulates plasmacytoid dendritic cell interferon-alpha autoamplification. Proc. Natl Acad. Sci. USA 113, 1351–1356 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  221. Assassi, S. et al. Systemic sclerosis and lupus: points in an interferon-mediated continuum. Arthritis Rheum. 62, 589–598 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  222. Brkic, Z. et al. The interferon type I signature is present in systemic sclerosis before overt fibrosis and might contribute to its pathogenesis through high BAFF gene expression and high collagen synthesis. Ann. Rheum. Dis. 75, 1567–1573 (2016).

    Article  CAS  PubMed  Google Scholar 

  223. Goldberg, A. et al. Dose-escalation of human anti-interferon-alpha receptor monoclonal antibody MEDI-546 in subjects with systemic sclerosis: a phase 1, multicenter, open label study. Arthritis Res. Ther. 16, R57 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  224. Ciechomska, M. & Skalska, U. Targeting interferons as a strategy for systemic sclerosis treatment. Immunol. Lett. 195, 45–54 (2018).

    Article  CAS  PubMed  Google Scholar 

  225. Chrobak, I. et al. Interferon-gamma promotes vascular remodeling in human microvascular endothelial cells by upregulating endothelin (ET)-1 and transforming growth factor (TGF) β2. J. Cell Physiol. 228, 1774–1783 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  226. Ah Kioon, M. D. et al. Plasmacytoid dendritic cells promote systemic sclerosis with a key role for TLR8. Sci. Transl. Med. 10, eaam8458 (2018).

    Article  PubMed  CAS  Google Scholar 

  227. Radstake, T. R. et al. The pronounced Th17 profile in systemic sclerosis (SSc) together with intracellular expression of TGFβ and IFNγ distinguishes SSc phenotypes. PLoS One 4, e5903 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  228. Gabsi, A. et al. TH17 cells expressing CD146 are significantly increased in patients with systemic sclerosis. Sci. Rep. 9, 17721 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  229. Goncalves, R. S. G. et al. IL-17 and related cytokines involved in systemic sclerosis: perspectives. Autoimmunity 51, 1–9 (2018).

    Article  PubMed  CAS  Google Scholar 

  230. Park, M. J. et al. IL-1-IL-17 signaling axis contributes to fibrosis and inflammation in two different murine models of systemic sclerosis. Front. Immunol. 9, 1611 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  231. Moon, J. et al. Metformin ameliorates scleroderma via inhibiting Th17 cells and reducing mTOR-STAT3 signaling in skin fibroblasts. J. Transl. Med. 19, 192 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  232. Frantz, C. et al. Regulatory T cells in systemic sclerosis. Front. Immunol. 9, 2356 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  233. Igarashi, J. & Michel, T. Sphingosine-1-phosphate and modulation of vascular tone. Cardiovasc. Res. 82, 212–220 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  234. Frech, T. M. et al. Vascular leak is a central feature in the pathogenesis of systemic sclerosis. J. Rheumatol. 39, 1385–1391 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  235. Bruni, C. et al. Vascular leaking, a pivotal and early pathogenetic event in systemic sclerosis: should the door be closed? Front. Immunol. 9, 2045 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  236. Fleming, J. N. & Schwartz, S. M. The pathology of scleroderma vascular disease. Rheum. Dis. Clin. North Am. 34, 41–55 (2008).

    Article  PubMed  Google Scholar 

  237. Asano, Y. et al. Endothelial Fli1 deficiency impairs vascular homeostasis: a role in scleroderma vasculopathy. Am. J. Pathol. 176, 1983–1998 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  238. Shea, B. S. et al. Uncoupling of the profibrotic and hemostatic effects of thrombin in lung fibrosis. JCI Insight 2, e86608 (2017).

    Article  PubMed Central  Google Scholar 

  239. Knipe, R. S. et al. Endothelial-specific loss of sphingosine-1-phosphate receptor 1 increases vascular permeability and exacerbates bleomycin-induced pulmonary fibrosis. Am. J. Respir. Cell Mol. Biol. 66, 38–52 (2021).

    Article  Google Scholar 

  240. Kano, M. et al. Attenuation of murine sclerodermatous models by the selective S1P1 receptor modulator cenerimod. Sci. Rep. 9, 658 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  241. Schmidt, K. G. et al. Sphingosine-1-phosphate receptor 5 modulates early-stage processes during fibrogenesis in a mouse model of systemic sclerosis: a pilot study. Front. Immunol. 8, 1242 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  242. Salmon, J. E. & Roman, M. J. Subclinical atherosclerosis in rheumatoid arthritis and systemic lupus erythematosus. Am. J. Med. 121, S3–S8 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  243. Roman, M. J. et al. Prevalence and correlates of accelerated atherosclerosis in systemic lupus erythematosus. N. Engl. J. Med. 349, 2399–2406 (2003).

    Article  CAS  PubMed  Google Scholar 

  244. Villanueva, E. et al. Netting neutrophils induce endothelial damage, infiltrate tissues, and expose immunostimulatory molecules in systemic lupus erythematosus. J. Immunol. 187, 538–552 (2011).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

N.B. researched data for the article. All authors contributed substantially to discussion of the content. N.B. wrote the article. All authors reviewed and/or edited the manuscript before submission.

Corresponding author

Correspondence to Timothy Hla.

Ethics declarations

Competing interests

T.H. declares the following potential competing interests in 2021–2022: consultancy — Arena Pharmaceuticals, Bristol Myers-Squibb Inc., Janssen Inc; inventor — patents on ApoM-Fc, S1PR2 modulators; speakers fees — Pfizer Inc. The other authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Rheumatology thanks S. Bourgoin, H. Radeke and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Burg, N., Salmon, J.E. & Hla, T. Sphingosine 1-phosphate receptor-targeted therapeutics in rheumatic diseases. Nat Rev Rheumatol 18, 335–351 (2022). https://doi.org/10.1038/s41584-022-00784-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41584-022-00784-6

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research