Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The role of neutrophils in rheumatic disease-associated vascular inflammation

Abstract

Vascular pathologies underpin and intertwine autoimmune rheumatic diseases and cardiovascular conditions, and atherosclerosis is increasingly recognized as the leading cause of morbidity in conditions such as systemic lupus erythematosus (SLE), rheumatoid arthritis and antineutrophil cytoplasmic antibody-associated vasculitis. Neutrophils, important cells in the innate immune system, exert their functional effects in tissues via a variety of mechanisms, including the generation of neutrophil extracellular traps and the production of reactive oxygen species. Neutrophils have been implicated in the pathogenesis of several rheumatic diseases, and can also intimately interact with the vascular system, either through modulating endothelial barriers at the blood–vessel interface, or through associations with platelets. Emerging data suggest that neutrophils also have an important role maintaining homeostasis in individual organs and can protect the vascular system. Furthermore, studies using high-dimensional omics technologies have advanced our understanding of neutrophil diversity, and immature neutrophils are receiving new attention in rheumatic diseases including SLE and systemic vasculitis. Developments in genomic, imaging and organoid technologies are beginning to enable more in-depth investigations into the pathophysiology of vascular inflammation in rheumatic diseases, making now a good time to re-examine the full scope of roles of neutrophils in these processes.

Key points

  • Neutrophils are heterogeneous and have diversified phenotypes and functions, such as reactive oxygen species-producing immature neutrophils and neutrophil extracellular trap-producing mature neutrophils.

  • Neutrophils participate in the progression of disease from onset to chronic inflammation affecting multiple organs and tissues in rheumatic diseases such as rheumatoid arthritis, systemic lupus erythematosus and vasculitis.

  • Vascular inflammation in rheumatic diseases is associated with cardiovascular complications, such as atherosclerosis, which are a leading cause of morbidity and mortality.

  • Neutrophils, both mature and immature, have an essential role in initial endothelial activation and dysfunction associated with vascular inflammation and atherosclerosis.

  • Immune complexes in rheumatic diseases with well-defined autoantibodies excessively activate neutrophils to induce endothelial damage.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Proposed model of neutrophil-mediated vascular inflammation.

Similar content being viewed by others

References

  1. Summers, C. et al. Neutrophil kinetics in health and disease. Trends Immunol. 31, 318–324 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Silvestre-Roig, C., Fridlender, Z. G., Glogauer, M. & Scapini, P. Neutrophil diversity in health and disease. Trends Immunol. 40, 565–583 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Luqmani, R. Maintenance of clinical remission in ANCA-associated vasculitis. Nat. Rev. Rheumatol. 9, 127–132 (2013).

    CAS  PubMed  Google Scholar 

  4. Nakazawa, D., Masuda, S., Tomaru, U. & Ishizu, A. Pathogenesis and therapeutic interventions for ANCA-associated vasculitis. Nat. Rev. Rheumatol. 15, 91–101 (2019).

    CAS  PubMed  Google Scholar 

  5. Koster, M. J., Warrington, K. J. & Matteson, E. L. Morbidity and mortality of large-vessel vasculitides. Curr. Rheumatol. Rep. 22, 86 (2020).

    PubMed  Google Scholar 

  6. Liu, Y. & Kaplan, M. J. Cardiovascular disease in systemic lupus erythematosus: an update. Curr. Opin. Rheumatol. 30, 441–448 (2018).

    PubMed  Google Scholar 

  7. Skeoch, S. & Bruce, I. N. Atherosclerosis in rheumatoid arthritis: is it all about inflammation? Nat. Rev. Rheumatol. 11, 390–400 (2015).

    CAS  PubMed  Google Scholar 

  8. Soehnlein, O., Steffens, S., Hidalgo, A. & Weber, C. Neutrophils as protagonists and targets in chronic inflammation. Nat. Rev. Immunol. 17, 248–261 (2017).

    CAS  PubMed  Google Scholar 

  9. Nicolas-Avila, J. A., Adrover, J. M. & Hidalgo, A. Neutrophils in homeostasis, immunity, and cancer. Immunity 46, 15–28 (2017).

    CAS  PubMed  Google Scholar 

  10. Casanova-Acebes, M. et al. Neutrophils instruct homeostatic and pathological states in naive tissues. J. Exp. Med. 215, 2778–2795 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Ballesteros, I. et al. Co-option of neutrophil fates by tissue environments. Cell 183, 1282–1297.e18 (2020).

    CAS  PubMed  Google Scholar 

  12. Khoyratty, T. E. et al. Distinct transcription factor networks control neutrophil-driven inflammation. Nat. Immunol. 22, 1093–1106 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Cossio, I., Lucas, D. & Hidalgo, A. Neutrophils as regulators of the hematopoietic niche. Blood 133, 2140–2148 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Manz, M. G. & Boettcher, S. Emergency granulopoiesis. Nat. Rev. Immunol. 14, 302–314 (2014).

    CAS  PubMed  Google Scholar 

  15. Scapini, P., Marini, O., Tecchio, C. & Cassatella, M. A. Human neutrophils in the saga of cellular heterogeneity: insights and open questions. Immunol. Rev. 273, 48–60 (2016).

    CAS  PubMed  Google Scholar 

  16. Grieshaber-Bouyer, R. & Nigrovic, P. A. Neutrophil heterogeneity as therapeutic opportunity in immune-mediated disease. Front. Immunol. 10, 346 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Deniset, J. F. & Kubes, P. Neutrophil heterogeneity: bona fide subsets or polarization states? J. Leukoc. Biol. 103, 829–838 (2018).

    CAS  PubMed  Google Scholar 

  18. Hacbarth, E. & Kajdacsy-Balla, A. Low density neutrophils in patients with systemic lupus erythematosus, rheumatoid arthritis, and acute rheumatic fever. Arthritis Rheum. 29, 1334–1342 (1986).

    CAS  PubMed  Google Scholar 

  19. Denny, M. F. et al. A distinct subset of proinflammatory neutrophils isolated from patients with systemic lupus erythematosus induces vascular damage and synthesizes type I IFNs. J. Immunol. 184, 3284–3297 (2010).

    CAS  PubMed  Google Scholar 

  20. Midgley, A. & Beresford, M. W. Increased expression of low density granulocytes in juvenile-onset systemic lupus erythematosus patients correlates with disease activity. Lupus 25, 407–411 (2016).

    CAS  PubMed  Google Scholar 

  21. Wright, H. L., Makki, F. A., Moots, R. J. & Edwards, S. W. Low-density granulocytes: functionally distinct, immature neutrophils in rheumatoid arthritis with altered properties and defective TNF signalling. J. Leukoc. Biol. 101, 599–611 (2017).

    CAS  PubMed  Google Scholar 

  22. Grayson, P. C. et al. Neutrophil-related gene expression and low-density granulocytes associated with disease activity and response to treatment in antineutrophil cytoplasmic antibody-associated vasculitis. Arthritis Rheumatol. 67, 1922–1932 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Wang, L. et al. ROS-producing immature neutrophils in giant cell arteritis are linked to vascular pathologies. JCI Insight 5, e139163 (2020).

    PubMed Central  Google Scholar 

  24. Jones, B. E. et al. ANCA autoantigen gene expression highlights neutrophil heterogeneity where expression in normal-density neutrophils correlates with ANCA-induced activation. Kidney Int. 98, 744–757 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Mistry, P. et al. Transcriptomic, epigenetic, and functional analyses implicate neutrophil diversity in the pathogenesis of systemic lupus erythematosus. Proc. Natl Acad. Sci. USA 116, 25222–25228 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Winterbourn, C. C., Kettle, A. J. & Hampton, M. B. Reactive oxygen species and neutrophil function. Annu. Rev. Biochem. 85, 765–792 (2016).

    CAS  PubMed  Google Scholar 

  27. Glennon-Alty, L., Hackett, A. P., Chapman, E. A. & Wright, H. L. Neutrophils and redox stress in the pathogenesis of autoimmune disease. Free Radic. Biol. Med. 125, 25–35 (2018).

    CAS  PubMed  Google Scholar 

  28. Davies, M. J. Myeloperoxidase: mechanisms, reactions and inhibition as a therapeutic strategy in inflammatory diseases. Pharmacol. Ther. 218, 107685 (2021).

    CAS  PubMed  Google Scholar 

  29. Forman, H. J. & Zhang, H. Targeting oxidative stress in disease: promise and limitations of antioxidant therapy. Nat. Rev. Drug Discov. 20, 689–709 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Cunninghame Graham, D. S. et al. Association of NCF2, IKZF1, IRF8, IFIH1, and TYK2 with systemic lupus erythematosus. PLoS Genet. 7, e1002341 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Gateva, V. et al. A large-scale replication study identifies TNIP1, PRDM1, JAZF1, UHRF1BP1 and IL10 as risk loci for systemic lupus erythematosus. Nat. Genet. 41, 1228–1233 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Yokoyama, N. et al. Association of NCF1 polymorphism with systemic lupus erythematosus and systemic sclerosis but not with ANCA-associated vasculitis in a Japanese population. Sci. Rep. 9, 16366 (2019).

    PubMed  PubMed Central  Google Scholar 

  33. Zhao, J. et al. A missense variant in NCF1 is associated with susceptibility to multiple autoimmune diseases. Nat. Genet. 49, 433–437 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Olsson, L. M. et al. A single nucleotide polymorphism in the NCF1 gene leading to reduced oxidative burst is associated with systemic lupus erythematosus. Ann. Rheum. Dis. 76, 1607–1613 (2017).

    CAS  PubMed  Google Scholar 

  35. Bengtsson, A. A. et al. Low production of reactive oxygen species in granulocytes is associated with organ damage in systemic lupus erythematosus. Arthritis Res. Ther. 16, R120 (2014).

    PubMed  PubMed Central  Google Scholar 

  36. De Ravin, S. S. et al. Chronic granulomatous disease as a risk factor for autoimmune disease. J. Allergy Clin. Immunol. 122, 1097–1103 (2008).

    PubMed  PubMed Central  Google Scholar 

  37. Kelkka, T. et al. Reactive oxygen species deficiency induces autoimmunity with type 1 interferon signature. Antioxid. Redox Signal. 21, 2231–2245 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Lightfoot, Y. L. & Kaplan, M. J. Disentangling the role of neutrophil extracellular traps in rheumatic diseases. Curr. Opin. Rheumatol. 29, 65–70 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Tan, C., Aziz, M. & Wang, P. The vitals of NETs. J. Leukoc. Biol. 110, 797–808 (2020).

    PubMed  Google Scholar 

  40. Gupta, S. & Kaplan, M. J. The role of neutrophils and NETosis in autoimmune and renal diseases. Nat. Rev. Nephrol. 12, 402–413 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Lande, R. et al. Neutrophils activate plasmacytoid dendritic cells by releasing self-DNA–peptide complexes in systemic lupus erythematosus. Sci. Transl. Med. 3, 73ra19 (2011).

    PubMed  PubMed Central  Google Scholar 

  42. Lood, C. et al. Neutrophil extracellular traps enriched in oxidized mitochondrial DNA are interferogenic and contribute to lupus-like disease. Nat. Med. 22, 146–153 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Khandpur, R. et al. NETs are a source of citrullinated autoantigens and stimulate inflammatory responses in rheumatoid arthritis. Sci. Transl. Med. 5, 178ra140 (2013).

    Google Scholar 

  44. Kessenbrock, K. et al. Netting neutrophils in autoimmune small-vessel vasculitis. Nat. Med. 15, 623–625 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Nakazawa, D. et al. Enhanced formation and disordered regulation of NETs in myeloperoxidase-ANCA-associated microscopic polyangiitis. J. Am. Soc. Nephrol. 25, 990–997 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Warnatsch, A., Ioannou, M., Wang, Q. & Papayannopoulos, V. Inflammation. Neutrophil extracellular traps license macrophages for cytokine production in atherosclerosis. Science 349, 316–320 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Othman, A., Sekheri, M. & Filep, J. G. Roles of neutrophil granule proteins in orchestrating inflammation and immunity. FEBS J. https://doi.org/10.1111/febs.15803 (2021).

    Article  PubMed  Google Scholar 

  48. Yin, C. & Heit, B. Armed for destruction: formation, function and trafficking of neutrophil granules. Cell Tissue Res. 371, 455–471 (2018).

    CAS  PubMed  Google Scholar 

  49. Mayadas, T. N., Cullere, X. & Lowell, C. A. The multifaceted functions of neutrophils. Annu. Rev. Pathol. 9, 181–218 (2014).

    CAS  PubMed  Google Scholar 

  50. von der Mohlen, M. A., van der Poll, T., Jansen, J., Levi, M. & van Deventer, S. J. Release of bactericidal/permeability-increasing protein in experimental endotoxemia and clinical sepsis. Role of tumor necrosis factor. J. Immunol. 156, 4969–4973 (1996).

    PubMed  Google Scholar 

  51. Kegerreis, B. J. et al. Genomic identification of low-density granulocytes and analysis of their role in the pathogenesis of systemic lupus erythematosus. J. Immunol. 202, 3309–3317 (2019).

    CAS  PubMed  Google Scholar 

  52. Ohlsson, S. M. et al. Neutrophils from vasculitis patients exhibit an increased propensity for activation by anti-neutrophil cytoplasmic antibodies. Clin. Exp. Immunol. 176, 363–372 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Walls, C. A. et al. A novel 4-dimensional live-cell imaging system to study leukocyte–endothelial dynamics in ANCA-associated vasculitis. Autoimmunity 53, 148–155 (2020).

    PubMed  Google Scholar 

  54. Brachemi, S. et al. Increased membrane expression of proteinase 3 during neutrophil adhesion in the presence of anti proteinase 3 antibodies. J. Am. Soc. Nephrol. 18, 2330–2339 (2007).

    CAS  PubMed  Google Scholar 

  55. von Vietinghoff, S. et al. NB1 mediates surface expression of the ANCA antigen proteinase 3 on human neutrophils. Blood 109, 4487–4493 (2007).

    Google Scholar 

  56. Rarok, A. A., Stegeman, C. A., Limburg, P. C. & Kallenberg, C. G. Neutrophil membrane expression of proteinase 3 (PR3) is related to relapse in PR3-ANCA-associated vasculitis. J. Am. Soc. Nephrol. 13, 2232–2238 (2002).

    CAS  PubMed  Google Scholar 

  57. Schreiber, A., Busjahn, A., Luft, F. C. & Kettritz, R. Membrane expression of proteinase 3 is genetically determined. J. Am. Soc. Nephrol. 14, 68–75 (2003).

    CAS  PubMed  Google Scholar 

  58. Versteeg, H. H., Heemskerk, J. W., Levi, M. & Reitsma, P. H. New fundamentals in hemostasis. Physiol. Rev. 93, 327–358 (2013).

    CAS  PubMed  Google Scholar 

  59. Dib, P. R. B. et al. Innate immune receptors in platelets and platelet–leukocyte interactions. J. Leukoc. Biol. 108, 1157–1182 (2020).

    CAS  PubMed  Google Scholar 

  60. Clark, S. R. et al. Platelet TLR4 activates neutrophil extracellular traps to ensnare bacteria in septic blood. Nat. Med. 13, 463–469 (2007).

    CAS  PubMed  Google Scholar 

  61. Sreeramkumar, V. et al. Neutrophils scan for activated platelets to initiate inflammation. Science 346, 1234–1238 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Schrottmaier, W. C., Mussbacher, M., Salzmann, M. & Assinger, A. Platelet-leukocyte interplay during vascular disease. Atherosclerosis 307, 109–120 (2020).

    CAS  PubMed  Google Scholar 

  63. Kolaczkowska, E. & Kubes, P. Neutrophil recruitment and function in health and inflammation. Nat. Rev. Immunol. 13, 159–175 (2013).

    CAS  PubMed  Google Scholar 

  64. Phillipson, M. & Kubes, P. The neutrophil in vascular inflammation. Nat. Med. 17, 1381–1390 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Sadik, C. D., Kim, N. D. & Luster, A. D. Neutrophils cascading their way to inflammation. Trends Immunol. 32, 452–460 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Williams, M. R., Azcutia, V., Newton, G., Alcaide, P. & Luscinskas, F. W. Emerging mechanisms of neutrophil recruitment across endothelium. Trends Immunol. 32, 461–469 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Rock, K. L., Latz, E., Ontiveros, F. & Kono, H. The sterile inflammatory response. Annu. Rev. Immunol. 28, 321–342 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Sadik, C. D., Miyabe, Y., Sezin, T. & Luster, A. D. The critical role of C5a as an initiator of neutrophil-mediated autoimmune inflammation of the joint and skin. Semin. Immunol. 37, 21–29 (2018).

    CAS  PubMed  Google Scholar 

  69. Jennette, J. C. & Falk, R. J. Pathogenesis of antineutrophil cytoplasmic autoantibody-mediated disease. Nat. Rev. Rheumatol. 10, 463–473 (2014).

    CAS  PubMed  Google Scholar 

  70. Schreiber, A. et al. Necroptosis controls NET generation and mediates complement activation, endothelial damage, and autoimmune vasculitis. Proc. Natl Acad. Sci. USA 114, E9618–E9625 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Kraaij, T. et al. Excessive neutrophil extracellular trap formation in ANCA-associated vasculitis is independent of ANCA. Kidney Int. 94, 139–149 (2018).

    CAS  PubMed  Google Scholar 

  72. Popat, R. J. & Robson, M. G. Neutrophils are not consistently activated by antineutrophil cytoplasmic antibodies in vitro. Ann. Rheum. Dis. 78, 709–711 (2019).

    CAS  PubMed  Google Scholar 

  73. Hattanda, F. et al. The presence of anti-neutrophil extracellular trap antibody in patients with microscopic polyangiitis. Rheumatology 58, 1293–1298 (2019).

    CAS  PubMed  Google Scholar 

  74. Shida, H. et al. Anti-neutrophil extracellular trap antibody in a patient with relapse of anti-neutrophil cytoplasmic antibody-associated vasculitis: a case report. BMC Nephrol. 19, 145 (2018).

    PubMed  PubMed Central  Google Scholar 

  75. Gill, E. E. et al. Different disease endotypes in phenotypically similar vasculitides affecting small-to-medium sized blood vessels. Front. Immunol. 12, 638571 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Wallace, Z. S. et al. All-cause and cause-specific mortality in ANCA-associated vasculitis: overall and according to ANCA type. Rheumatology 59, 2308–2315 (2020).

    CAS  PubMed  Google Scholar 

  77. Houben, E. et al. Cardiovascular events in anti-neutrophil cytoplasmic antibody-associated vasculitis: a meta-analysis of observational studies. Rheumatology 57, 555–562 (2018).

    PubMed  Google Scholar 

  78. de Leeuw, K. et al. Accelerated atherosclerosis in patients with Wegener’s granulomatosis. Ann. Rheum. Dis. 64, 753–759 (2005).

    PubMed  Google Scholar 

  79. Ito, T., Kakuuchi, M. & Maruyama, I. Endotheliopathy in septic conditions: mechanistic insight into intravascular coagulation. Crit. Care 25, 95 (2021).

    PubMed  PubMed Central  Google Scholar 

  80. Eichhorn, J. et al. Anti-endothelial cell antibodies in Takayasu arteritis. Circulation 94, 2396–2401 (1996).

    CAS  PubMed  Google Scholar 

  81. Nityanand, S., Mishra, K., Shrivastava, S., Holm, G. & Lefvert, A. K. Autoantibodies against cardiolipin and endothelial cells in Takayasu’s arteritis: prevalence and isotype distribution. Br. J. Rheumatol. 36, 923–924 (1997).

    CAS  PubMed  Google Scholar 

  82. Mutoh, T. et al. Identification of two major autoantigens negatively regulating endothelial activation in Takayasu arteritis. Nat. Commun. 11, 1253 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Cats, H. A., Tervaert, J. W., van Wijk, R., Limburg, P. C. & Kallenberg, C. G. Anti-neutrophil cytoplasmic antibodies in giant cell arteritis and polymyalgia rheumatica. Adv. Exp. Med. Biol. 336, 363–366 (1993).

    CAS  PubMed  Google Scholar 

  84. Baerlecken, N. T. et al. Association of ferritin autoantibodies with giant cell arteritis/polymyalgia rheumatica. Ann. Rheum. Dis. 71, 943–947 (2012).

    CAS  PubMed  Google Scholar 

  85. Espinosa, G. et al. Antiphospholipid antibodies and thrombophilic factors in giant cell arteritis. Semin. Arthritis Rheum. 31, 12–20 (2001).

    CAS  PubMed  Google Scholar 

  86. Duhaut, P. et al. Anticardiolipin antibodies and giant cell arteritis: a prospective, multicenter case-control study. Groupe de Recherche sur l’Artérite à Cellules Géantes. Arthritis Rheum. 41, 701–709 (1998).

    CAS  PubMed  Google Scholar 

  87. Nadkarni, S. et al. Investigational analysis reveals a potential role for neutrophils in giant-cell arteritis disease progression. Circ. Res. 114, 242–248 (2014).

    CAS  PubMed  Google Scholar 

  88. van Sleen, Y. et al. Leukocyte dynamics reveal a persistent myeloid dominance in giant cell arteritis and polymyalgia rheumatica. Front. Immunol. 10, 1981 (2019).

    PubMed  PubMed Central  Google Scholar 

  89. Oh, L. J. et al. Full blood count as an ancillary test to support the diagnosis of giant cell arteritis. Intern. Med. J. 48, 408–413 (2018).

    CAS  PubMed  Google Scholar 

  90. Palamidas, D. A. et al. Neutrophil extracellular traps in giant cell arteritis biopsies: presentation, localization and co-expression with inflammatory cytokines. Rheumatology https://doi.org/10.1093/rheumatology/keab505 (2021).

    Article  PubMed  Google Scholar 

  91. Matsumoto, K. et al. Interleukin-1 pathway in active large vessel vasculitis patients with a poor prognosis: a longitudinal transcriptome analysis. Clin. Transl. Immunology 10, 1307 (2021).

    Google Scholar 

  92. Robson, J. C. et al. Which patients with giant cell arteritis will develop cardiovascular or cerebrovascular disease? A clinical practice research datalink study. J. Rheumatol. 43, 1085–1092 (2016).

    PubMed  Google Scholar 

  93. Monti, S. et al. Early development of new cardiovascular risk factors in the systemic vasculitides. Clin. Exp. Rheumatol. 38, 126–134 (2020).

    PubMed  Google Scholar 

  94. Evans, J. M., O’Fallon, W. M. & Hunder, G. G. Increased incidence of aortic aneurysm and dissection in giant cell (temporal) arteritis. A population-based study. Ann. Intern. Med. 122, 502–507 (1995).

    CAS  PubMed  Google Scholar 

  95. Robson, J. C. et al. The relative risk of aortic aneurysm in patients with giant cell arteritis compared with the general population of the UK. Ann. Rheum. Dis. 74, 129–135 (2015).

    PubMed  Google Scholar 

  96. Lareyre, F. et al. High neutrophil to lymphocyte ratio is associated with symptomatic and ruptured thoracic aortic aneurysm. Angiology 69, 686–691 (2018).

    PubMed  Google Scholar 

  97. Hatipoglu, O. F. et al. Deficiency of CD44 prevents thoracic aortic dissection in a murine model. Sci. Rep. 10, 6869 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. O’Neil, L. J. & Kaplan, M. J. Neutrophils in rheumatoid arthritis: breaking immune tolerance and fueling disease. Trends Mol. Med. 25, 215–227 (2019).

    PubMed  Google Scholar 

  99. van Delft, M. A. M. & Huizinga, T. W. J. An overview of autoantibodies in rheumatoid arthritis. J. Autoimmun. 110, 102392 (2020).

    PubMed  Google Scholar 

  100. Fawthrop, F. et al. A comparison of normal and pathological synovial fluid. Br. J. Rheumatol. 24, 61–69 (1985).

    CAS  PubMed  Google Scholar 

  101. Freemont, A. J. & Denton, J. Disease distribution of synovial fluid mast cells and cytophagocytic mononuclear cells in inflammatory arthritis. Ann. Rheum. Dis. 44, 312–315 (1985).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Carmona-Rivera, C. et al. Synovial fibroblast-neutrophil interactions promote pathogenic adaptive immunity in rheumatoid arthritis. Sci. Immunol. 2, eaag3358 (2017).

    PubMed  PubMed Central  Google Scholar 

  103. O’Neil, L. J. et al. Neutrophil-mediated carbamylation promotes articular damage in rheumatoid arthritis. Sci. Adv. 6, eabd2688 (2020).

    PubMed  PubMed Central  Google Scholar 

  104. Wright, H. L., Moots, R. J. & Edwards, S. W. The multifactorial role of neutrophils in rheumatoid arthritis. Nat. Rev. Rheumatol. 10, 593–601 (2014).

    CAS  PubMed  Google Scholar 

  105. Assi, L. K. et al. Tumor necrosis factor α activates release of B lymphocyte stimulator by neutrophils infiltrating the rheumatoid joint. Arthritis Rheum. 56, 1776–1786 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. de Cerqueira, D. P. A., Pedreira, A. L. S., de Cerqueira, M. G. & Santiago, M. B. Biological therapy in rheumatoid vasculitis: a systematic review. Clin. Rheumatol. 40, 1717–1724 (2021).

    PubMed  Google Scholar 

  107. Solomon, D. H. et al. Patterns of cardiovascular risk in rheumatoid arthritis. Ann. Rheum. Dis. 65, 1608–1612 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Sandoo, A., Veldhuijzen van Zanten, J. J., Metsios, G. S., Carroll, D. & Kitas, G. D. Vascular function and morphology in rheumatoid arthritis: a systematic review. Rheumatology 50, 2125–2139 (2011).

    PubMed  Google Scholar 

  109. McInnes, I. B. & Schett, G. The pathogenesis of rheumatoid arthritis. N. Engl. J. Med. 365, 2205–2219 (2011).

    CAS  PubMed  Google Scholar 

  110. Sitia, S. et al. From endothelial dysfunction to atherosclerosis. Autoimmun. Rev. 9, 830–834 (2010).

    CAS  PubMed  Google Scholar 

  111. Perez-Sanchez, C. et al. Diagnostic potential of NETosis-derived products for disease activity, atherosclerosis and therapeutic effectiveness in rheumatoid arthritis patients. J. Autoimmun. 82, 31–40 (2017).

    CAS  PubMed  Google Scholar 

  112. Pieterse, E. et al. Cleaved N-terminal histone tails distinguish between NADPH oxidase (NOX)-dependent and NOX-independent pathways of neutrophil extracellular trap formation. Ann. Rheum. Dis. 77, 1790–1798 (2018).

    CAS  PubMed  Google Scholar 

  113. Ruiz-Limon, P. et al. Tocilizumab improves the proatherothrombotic profile of rheumatoid arthritis patients modulating endothelial dysfunction, NETosis, and inflammation. Transl. Res. 183, 87–103 (2017).

    CAS  PubMed  Google Scholar 

  114. Maria, N. I. & Davidson, A. Emerging areas for therapeutic discovery in SLE. Curr. Opin. Immunol. 55, 1–8 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Barrat, F. J. et al. Nucleic acids of mammalian origin can act as endogenous ligands for Toll-like receptors and may promote systemic lupus erythematosus. J. Exp. Med. 202, 1131–1139 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Means, T. K. et al. Human lupus autoantibody-DNA complexes activate DCs through cooperation of CD32 and TLR9. J. Clin. Invest. 115, 407–417 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Vollmer, J. et al. Immune stimulation mediated by autoantigen binding sites within small nuclear RNAs involves Toll-like receptors 7 and 8. J. Exp. Med. 202, 1575–1585 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Garcia-Romo, G. S. et al. Netting neutrophils are major inducers of type I IFN production in pediatric systemic lupus erythematosus. Sci. Transl. Med. 3, 73ra20 (2011).

    PubMed  PubMed Central  Google Scholar 

  119. Banchereau, R. et al. Personalized immunomonitoring uncovers molecular networks that stratify lupus patients. Cell 165, 551–565 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Haynes, W. A. et al. Integrated, multicohort analysis reveals unified signature of systemic lupus erythematosus. JCI Insight 5, e122312 (2020).

    PubMed Central  Google Scholar 

  121. Gupta, S. & Kaplan, M. J. Bite of the wolf: innate immune responses propagate autoimmunity in lupus. J. Clin. Invest. 131, e144918 (2021).

    CAS  PubMed Central  Google Scholar 

  122. Gestermann, N. et al. Netting neutrophils activate autoreactive B cells in lupus. J. Immunol. 200, 3364–3371 (2018).

    CAS  PubMed  Google Scholar 

  123. Villanueva, E. et al. Netting neutrophils induce endothelial damage, infiltrate tissues, and expose immunostimulatory molecules in systemic lupus erythematosus. J. Immunol. 187, 538–552 (2011).

    CAS  PubMed  Google Scholar 

  124. Kahlenberg, J. M., Carmona-Rivera, C., Smith, C. K. & Kaplan, M. J. Neutrophil extracellular trap-associated protein activation of the NLRP3 inflammasome is enhanced in lupus macrophages. J. Immunol. 190, 1217–1226 (2013).

    CAS  PubMed  Google Scholar 

  125. Caielli, S. et al. Oxidized mitochondrial nucleoids released by neutrophils drive type I interferon production in human lupus. J. Exp. Med. 213, 697–713 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Barile-Fabris, L., Hernandez-Cabrera, M. F. & Barragan-Garfias, J. A. Vasculitis in systemic lupus erythematosus. Curr. Rheumatol. Rep. 16, 440 (2014).

    CAS  PubMed  Google Scholar 

  127. Baragetti, A. et al. Disease trends over time and CD4(+)CCR5(+) T-cells expansion predict carotid atherosclerosis development in patients with systemic lupus erythematosus. Nutr. Metab. Cardiovasc. Dis. 28, 53–63 (2018).

    CAS  PubMed  Google Scholar 

  128. O’Neil, L. J., Kaplan, M. J. & Carmona-Rivera, C. The role of neutrophils and neutrophil extracellular traps in vascular damage in systemic lupus erythematosus. J. Clin. Med. 8, 1325 (2019).

    PubMed Central  Google Scholar 

  129. Ding, X., Xiang, W. & He, X. IFN-I mediates dysfunction of endothelial progenitor cells in atherosclerosis of systemic lupus erythematosus. Front. Immunol. 11, 581385 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Pieterse, E. et al. Neutrophil extracellular traps drive endothelial-to-mesenchymal transition. Arterioscler. Thromb. Vasc. Biol. 37, 1371–1379 (2017).

    CAS  PubMed  Google Scholar 

  131. Moore, S. et al. Role of neutrophil extracellular traps regarding patients at risk of increased disease activity and cardiovascular comorbidity in systemic lupus erythematosus. J. Rheumatol. 47, 1652–1660 (2020).

    CAS  PubMed  Google Scholar 

  132. Carlucci, P. M. et al. Neutrophil subsets and their gene signature associate with vascular inflammation and coronary atherosclerosis in lupus. JCI Insight 3, e99276 (2018).

    PubMed Central  Google Scholar 

  133. Smith, C. K. et al. Neutrophil extracellular trap-derived enzymes oxidize high-density lipoprotein: an additional proatherogenic mechanism in systemic lupus erythematosus. Arthritis Rheumatol. 66, 2532–2544 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  134. Carmona-Rivera, C., Zhao, W., Yalavarthi, S. & Kaplan, M. J. Neutrophil extracellular traps induce endothelial dysfunction in systemic lupus erythematosus through the activation of matrix metalloproteinase-2. Ann. Rheum. Dis. 74, 1417–1424 (2015).

    CAS  PubMed  Google Scholar 

  135. Bashant, K. R. et al. Proteomic, biomechanical and functional analyses define neutrophil heterogeneity in systemic lupus erythematosus. Ann. Rheum. Dis. 80, 209–218 (2021).

    CAS  PubMed  Google Scholar 

  136. Miralda, I., Uriarte, S. M. & McLeish, K. R. Multiple phenotypic changes define neutrophil priming. Front. Cell Infect. Microbiol. 7, 217 (2017).

    PubMed  PubMed Central  Google Scholar 

  137. Mayadas, T. N., Tsokos, G. C. & Tsuboi, N. Mechanisms of immune complex-mediated neutrophil recruitment and tissue injury. Circulation 120, 2012–2024 (2009).

    PubMed  PubMed Central  Google Scholar 

  138. Silvestre-Roig, C., Braster, Q., Ortega-Gomez, A. & Soehnlein, O. Neutrophils as regulators of cardiovascular inflammation. Nat. Rev. Cardiol. 17, 327–340 (2020).

    PubMed  Google Scholar 

  139. Brinkmann, V. Neutrophil extracellular traps in the second decade. J. Innate Immun. 10, 414–421 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  140. Santocki, M. & Kolaczkowska, E. On neutrophil extracellular trap (NET) removal: what we know thus far and why so little. Cells 9, 2079 (2020).

    CAS  PubMed Central  Google Scholar 

  141. Jimenez-Alcazar, M. et al. Host DNases prevent vascular occlusion by neutrophil extracellular traps. Science 358, 1202–1206 (2017).

    CAS  PubMed  Google Scholar 

  142. Hakkim, A. et al. Impairment of neutrophil extracellular trap degradation is associated with lupus nephritis. Proc. Natl Acad. Sci. USA 107, 9813–9818 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  143. Hardy, R. S., Raza, K. & Cooper, M. S. Therapeutic glucocorticoids: mechanisms of actions in rheumatic diseases. Nat. Rev. Rheumatol. 16, 133–144 (2020).

    PubMed  Google Scholar 

  144. Jayne, D. R. W., Merkel, P. A., Schall, T. J., Bekker, P. & Group, A. S. Avacopan for the treatment of ANCA-associated vasculitis. N. Engl. J. Med. 384, 599–609 (2021).

    CAS  PubMed  Google Scholar 

  145. U.S. Food & Drug Administration. FDA approves add-on drug for adults with rare form of blood vessel inflammation. FDA.gov https://www.fda.gov/drugs/news-events-human-drugs/fda-approves-add-drug-adults-rare-form-blood-vessel-inflammation (2021).

  146. Bechman, K. Yates, M. & Galloway, J. B. The new entries in the therapeutic armamentarium: the small molecule JAK inhibitors. Pharmacol. Res. 147,104392 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  147. Hasni, S. A. et al. Phase 1 double-blind randomized safety trial of the Janus kinase inhibitor tofacitinib in systemic lupus erythematosus. Nat. Commun. 12, 3391 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  148. Yousefi, S., Mihalache, C., Kozlowski, E., Schmid, I. & Simon, H. U. Viable neutrophils release mitochondrial DNA to form neutrophil extracellular traps. Cell Death Differ. 16, 1438–1444 (2009).

    CAS  PubMed  Google Scholar 

  149. Buckley, C. D. et al. Efficacy, patient-reported outcomes, and safety of the anti-granulocyte macrophage colony-stimulating factor antibody otilimab (GSK3196165) in patients with rheumatoid arthritis: a randomised, phase 2b, dose-ranging study. Lancet Rheumatol. 2, e677–e688 (2021).

    Google Scholar 

  150. Cid, M. et al. Mavrilimumab (anti GM-CSF receptor A monoclonal antibody) reduces riks of flare and increases sustained remission in a phase 2 trial of patients with giant cell arteritis [abstract OP0059]. Ann. Rheum. Dis. 82, 31–32 (2021).

    Google Scholar 

  151. Lewis, H. D. et al. Inhibition of PAD4 activity is sufficient to disrupt mouse and human NET formation. Nat. Chem. Biol. 11, 189–191 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  152. Willis, V. C. et al. Protein arginine deiminase 4 inhibition is sufficient for the amelioration of collagen-induced arthritis. Clin. Exp. Immunol. 188, 263–274 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  153. Knight, J. S. et al. Peptidylarginine deiminase inhibition is immunomodulatory and vasculoprotective in murine lupus. J. Clin. Invest. 123, 2981–2993 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  154. Knight, J. S. et al. Peptidylarginine deiminase inhibition reduces vascular damage and modulates innate immune responses in murine models of atherosclerosis. Circ. Res. 114, 947–956 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  155. Smallwood, M. J. et al. Oxidative stress in autoimmune rheumatic diseases. Free. Radic. Biol. Med. 125, 3–14 (2018).

    CAS  PubMed  Google Scholar 

  156. van der Veen, B. S. et al. Effects of p38 mitogen-activated protein kinase inhibition on anti-neutrophil cytoplasmic autoantibody pathogenicity in vitro and in vivo. Ann. Rheum. Dis. 70, 356–365 (2011).

    PubMed  Google Scholar 

  157. Clemente-Casares, X. & Santamaria, P. Nanomedicine in autoimmunity. Immunol. Lett. 158, 167–174 (2014).

    CAS  PubMed  Google Scholar 

  158. Su, Y., Gao, J., Kaur, P. & Wang, Z. Neutrophils and macrophages as targets for development of nanotherapeutics in inflammatory diseases. Pharmaceutics 12, 1222 (2020).

    CAS  PubMed Central  Google Scholar 

  159. Bornhofft, K. F., Viergutz, T., Kuhnle, A. & Galuska, S. P. Nanoparticles equipped with α2,8-linked sialic acid chains inhibit the release of neutrophil extracellular traps. Nanomaterials 9, 610 (2019).

    PubMed Central  Google Scholar 

  160. Gorabi, A. M. et al. The therapeutic potential of nanoparticles to reduce inflammation in atherosclerosis. Biomolecules 9, 416 (2019).

    CAS  Google Scholar 

  161. Liu, T. et al. Ultrasmall copper-based nanoparticles for reactive oxygen species scavenging and alleviation of inflammation related diseases. Nat. Commun. 11, 2788 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  162. Mestas, J. & Hughes, C. C. Of mice and not men: differences between mouse and human immunology. J. Immunol. 172, 2731–2738 (2004).

    CAS  PubMed  Google Scholar 

  163. Moses, S. R., Adorno, J. J., Palmer, A. F. & Song, J. W. Vessel-on-a-chip models for studying microvascular physiology, transport, and function in vitro. Am. J. Physiol. Cell Physiol. 320, C92–C105 (2021).

    PubMed  Google Scholar 

  164. Wimmer, R. A. et al. Human blood vessel organoids as a model of diabetic vasculopathy. Nature 565, 505–510 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  165. Wimmer, R. A., Leopoldi, A., Aichinger, M., Kerjaschki, D. & Penninger, J. M. Generation of blood vessel organoids from human pluripotent stem cells. Nat. Protoc. 14, 3082–3100 (2019).

    CAS  PubMed  Google Scholar 

  166. Regnier, P. et al. Targeting JAK/STAT pathway in Takayasu’s arteritis. Ann. Rheum. Dis. 79, 951–959 (2020).

    CAS  PubMed  Google Scholar 

  167. Kuo, D. et al. HBEGF+ macrophages in rheumatoid arthritis induce fibroblast invasiveness. Sci. Transl. Med. 11, eaau8587 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  168. Zhang, F. et al. Defining inflammatory cell states in rheumatoid arthritis joint synovial tissues by integrating single-cell transcriptomics and mass cytometry. Nat. Immunol. 20, 928–942 (2019).

    PubMed  PubMed Central  Google Scholar 

  169. Arazi, A. et al. The immune cell landscape in kidneys of patients with lupus nephritis. Nat. Immunol. 20, 902–914 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  170. Der, E. et al. Tubular cell and keratinocyte single-cell transcriptomics applied to lupus nephritis reveal type I IFN and fibrosis relevant pathways. Nat. Immunol. 20, 915–927 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  171. Stahl, P. L. et al. Visualization and analysis of gene expression in tissue sections by spatial transcriptomics. Science 353, 78–82 (2016).

    CAS  PubMed  Google Scholar 

  172. Hartmann, F. J. & Bendall, S. C. Immune monitoring using mass cytometry and related high-dimensional imaging approaches. Nat. Rev. Rheumatol. 16, 87–99 (2020).

    PubMed  Google Scholar 

  173. Francisco-Cruz, A., Parra, E. R., Tetzlaff, M. T. & Wistuba, I. I. Multiplex immunofluorescence assays. Methods Mol. Biol. 2055, 467–495 (2020).

    CAS  PubMed  Google Scholar 

  174. Angelo, M. et al. Multiplexed ion beam imaging of human breast tumors. Nat. Med. 20, 436–442 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  175. Giesen, C. et al. Highly multiplexed imaging of tumor tissues with subcellular resolution by mass cytometry. Nat. Methods 11, 417–422 (2014).

    CAS  PubMed  Google Scholar 

  176. Wharton, K. A. Jr. et al. Tissue multiplex analyte detection in anatomic pathology–pathways to clinical implementation. Front. Mol. Biosci. 8, 672531 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  177. Winterbourn, C. C., Hampton, M. B., Livesey, J. H. & Kettle, A. J. Modeling the reactions of superoxide and myeloperoxidase in the neutrophil phagosome: implications for microbial killing. J. Biol. Chem. 281, 39860–39869 (2006).

    CAS  PubMed  Google Scholar 

  178. Narasaraju, T. et al. Excessive neutrophils and neutrophil extracellular traps contribute to acute lung injury of influenza pneumonitis. Am. J. Pathol. 179, 199–210 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  179. Saitoh, T. et al. Neutrophil extracellular traps mediate a host defense response to human immunodeficiency virus-1. Cell Host Microbe 12, 109–116 (2012).

    CAS  PubMed  Google Scholar 

  180. Branzk, N. et al. Neutrophils sense microbe size and selectively release neutrophil extracellular traps in response to large pathogens. Nat. Immunol. 15, 1017–1025 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  181. Kho, S. et al. Circulating neutrophil extracellular traps and neutrophil activation are increased in proportion to disease severity in human malaria. J. Infect. Dis. 219, 1994–2004 (2019).

    CAS  PubMed  Google Scholar 

  182. Papayannopoulos, V. Neutrophil extracellular traps in immunity and disease. Nat. Rev. Immunol. 18, 134–147 (2018).

    CAS  PubMed  Google Scholar 

  183. Metzler, K. D., Goosmann, C., Lubojemska, A., Zychlinsky, A. & Papayannopoulos, V. A myeloperoxidase-containing complex regulates neutrophil elastase release and actin dynamics during NETosis. Cell Rep. 8, 883–896 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  184. Papayannopoulos, V., Metzler, K. D., Hakkim, A. & Zychlinsky, A. Neutrophil elastase and myeloperoxidase regulate the formation of neutrophil extracellular traps. J. Cell Biol. 191, 677–691 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  185. Boeltz, S. et al. To NET or not to NET: current opinions and state of the science regarding the formation of neutrophil extracellular traps. Cell Death Differ. 26, 395–408 (2019).

    PubMed  PubMed Central  Google Scholar 

  186. Opasawatchai, A. et al. Neutrophil activation and early features of NET formation are associated with dengue virus infection in human. Front. Immunol. 9, 3007 (2018).

    CAS  PubMed  Google Scholar 

  187. Zhou, Y. et al. Evidence for a direct link between PAD4-mediated citrullination and the oxidative burst in human neutrophils. Sci. Rep. 8, 15228 (2018).

    PubMed  PubMed Central  Google Scholar 

  188. Shah, P. K. Inflammation, infection and atherosclerosis. Trends Cardiovasc. Med. 29, 468–472 (2019).

    CAS  PubMed  Google Scholar 

  189. Gupta, A. K. et al. Activated endothelial cells induce neutrophil extracellular traps and are susceptible to NETosis-mediated cell death. FEBS Lett. 584, 3193–3197 (2010).

    CAS  PubMed  Google Scholar 

  190. Quillard, T. et al. TLR2 and neutrophils potentiate endothelial stress, apoptosis and detachment: implications for superficial erosion. Eur. Heart J. 36, 1394–1404 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  191. Moore, K. J., Sheedy, F. J. & Fisher, E. A. Macrophages in atherosclerosis: a dynamic balance. Nat. Rev. Immunol. 13, 709–721 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  192. Liu, Y. et al. Myeloid-specific deletion of peptidylarginine deiminase 4 mitigates atherosclerosis. Front. Immunol. 9, 1680 (2018).

    PubMed  PubMed Central  Google Scholar 

  193. Josefs, T. et al. Neutrophil extracellular traps promote macrophage inflammation and impair atherosclerosis resolution in diabetic mice. JCI Insight 5, e134796 (2020).

    PubMed Central  Google Scholar 

  194. Maugeri, N. et al. Activated platelets present high mobility group Box 1 to neutrophils, inducing autophagy and promoting the extrusion of neutrophil extracellular traps. J. Thromb. Haemost. 12, 2074–2088 (2014).

    CAS  PubMed  Google Scholar 

  195. Pircher, J., Engelmann, B., Massberg, S. & Schulz, C. Platelet-neutrophil crosstalk in atherothrombosis. Thromb. Haemost. 119, 1274–1282 (2019).

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

L.W. researched data for this article. R.L. and I.A.U. provided substantial contributions to discussions of content. L.W. and I.A.U. wrote the article. All authors reviewed and/or edited the manuscript before submission.

Corresponding authors

Correspondence to Lihui Wang or Irina A. Udalova.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Rheumatology thanks C. Carmon-Rivera, C. Lood and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, L., Luqmani, R. & Udalova, I.A. The role of neutrophils in rheumatic disease-associated vascular inflammation. Nat Rev Rheumatol 18, 158–170 (2022). https://doi.org/10.1038/s41584-021-00738-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41584-021-00738-4

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing