Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Differentiating between UCTD and early-stage SLE: from definitions to clinical approach

Abstract

Systemic lupus erythematosus (SLE) is an autoimmune disease with heterogeneous clinical manifestations that can potentially affect every organ and system. SLE is usually identified on the basis of clinical or serological manifestations; however, some individuals can present with signs and symptoms that are consistent with SLE but are not sufficient for a definite diagnosis. Disease in these individuals can either progress over time to definite SLE or remain stable, in which case their disease is often described as intermediate, possible or probable SLE. Alternatively, such individuals might have undifferentiated connective tissue disease (UCTD). Being able to differentiate between those with stable UCTD and those with SLE at an early stage is important to avoid irreversible target-organ damage from occurring. This Review provides insight into existing and evolving perceptions of the early stages of SLE, including clinical and mechanistic considerations, as well as potential paths towards early identification and intervention. Further research into the earliest phases of SLE will be important for the development of targeted diagnostic approaches and biomarkers for the identification of individuals with early disease who are likely to progress to definite SLE.

Key points

  • Systemic lupus erythematosus (SLE) is a complex autoimmune condition characterized by autoantibody production that can precede disease by several years and heterogeneous clinical manifestations.

  • A considerable proportion of individuals have clinical and serological features that are suggestive of a systemic autoimmune disorder, but cannot be diagnosed as having a defined connective tissue disease.

  • Nomenclature used to define such individuals has been inconsistent, with terms such as latent, incomplete, possible and probable SLE being used, as well as undifferentiated connective tissue disease (UCTD).

  • Although discriminating between UCTD and early SLE can be challenging, the presence of some features (such as a malar rash or specific autoantibodies) would tip the diagnosis in favour of SLE.

  • The absence of new clinical and laboratory manifestations over a 3-year period and the lack of a connective tissue disease-specific serological profile could support a diagnosis of UCTD.

  • The specificity of definitions of SLE-spectrum disorders should improve in the future as more molecular data become available with which disease subgroups can be defined.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Natural history timeline of the evolution of SLE.
Fig. 2: From screening and diagnosis to patient phenotyping.

Similar content being viewed by others

References

  1. Wandstrat, A. E. et al. Autoantibody profiling to identify individuals at risk for systemic lupus erythematosus. J. Autoimmun. 27, 153–160 (2006).

    CAS  PubMed  Google Scholar 

  2. Antunes, M. et al. Undifferentiated connective tissue disease: state of the art on clinical practice guidelines. RMD Open. 4 (Suppl. 1), e000786 (2019).

    PubMed  PubMed Central  Google Scholar 

  3. Combe, B. et al. 2016 update of the EULAR recommendations for the management of early arthritis. Ann. Rheum. Dis. 76, 948–959 (2017).

    PubMed  Google Scholar 

  4. Kamataki, N. et al. Complement genes contribute sex-biased vulnerability in diverse disorders. Nature 582, 577–581 (2020).

    Google Scholar 

  5. Zhao, Z. et al. Nature of T cell epitopes in lupus antigens and HLA-DR determines autoantibody initiation and diversification. Ann. Rheum. Dis. 78, 380–390 (2019).

    CAS  PubMed  Google Scholar 

  6. Jog, N. R. et al. Association of Epstein-Barr virus serological reactivation with transitioning to systemic lupus erythematosus in at-risk individuals. Ann. Rheum. Dis. 78, 1235–1241 (2019).

    CAS  PubMed  Google Scholar 

  7. Mosca, M., Tani, C. & Bombardieri, S. Undifferentiated connective tissue diseases (UCTD): a new frontier for rheumatology. Best. Pract. Res. Clin. Rheumatol. 21, 1011–1023 (2007).

    CAS  PubMed  Google Scholar 

  8. Carneiro, A. C., Ruiz, M. M., Freitas, S. & Isenberg, D. A comparison of three classification criteria sets for systemic lupus erythematosus–a study looking at links to outcome and mortality. Arthritis Care Res. 72, 1611–1614 (2019).

    Google Scholar 

  9. Adamichou, C. et al. In an early SLE cohort the ACR-1997, SLICC-2012 and EULAR/ACR-2019 criteria classify non-overlapping groups of patients: use of all three criteria ensures optimal capture for clinical studies while their modification earlier classification and treatment. Ann. Rheum. Dis. 79, 232–241 (2020).

    CAS  PubMed  Google Scholar 

  10. Aringer, M. et al. 2019 European League Against Rheumatism/American College of Rheumatology classification criteria for systemic lupus erythematosus. Ann. Rheum. Dis. 78, 1151–1159 (2019).

    PubMed  Google Scholar 

  11. Mosca, M., Neri, R. & Bombardieri, S. Undifferentiated connective tissue diseases (UCTD): a review of the literature and a proposal for preliminary classification criteria. Clin. Exp. Rheumatol. 17, 615–620 (1999).

    CAS  PubMed  Google Scholar 

  12. Mosca, M., Tani, C., Carli, L. & Bombardieri, S. Undifferentiated CTD: a wide spectrum of autoimmune diseases. Best. Pract. Res. Clin. Rheumatol. 26, 73–77 (2012).

    CAS  PubMed  Google Scholar 

  13. Mosca, M., Tani, C., Talarico, R. & Bombardieri, S. Undifferentiated connective tissue diseases (UCTD): simplified systemic autoimmune diseases. Autoimmun. Rev. 10, 256–258 (2011).

    PubMed  Google Scholar 

  14. Radin, M. et al. A multicentre study of 244 pregnancies in undifferentiated connective tissue disease: maternal/foetal outcomes and disease evolution. Rheumatology 59, 2412–2418 (2020).

    PubMed  Google Scholar 

  15. Bortoluzzi, A., Furini, F., Campanaro, F. & Govoni, M. Application of SLICC classification criteria in undifferentiated connective tissue disease and evolution in systemic lupus erythematosus: analysis of a large monocentric cohort with a long-term follow-up. Lupus 26, 616–622 (2017).

    CAS  PubMed  Google Scholar 

  16. Vaz, C. C. et al. Undifferentiated connective tissue disease: a seven-center cross-sectional study of 184 patients. Clin. Rheumatol. 28, 915–921 (2009).

    CAS  PubMed  Google Scholar 

  17. Mosca, M., Tani, C., Vagnani, S., Carli, L. & Bombardieri, S. The diagnosis and classification of undifferentiated connective tissue diseases. J. Autoimmun. 48–49, 50–52 (2014).

    PubMed  Google Scholar 

  18. Bourn, R. & James, J. A. Preclinical lupus. Curr. Opin. Rheumatol. 27, 433–439 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Radin, M. et al. Impact of the 2019 European Alliance of Associations for Rheumatology/American College of Rheumatology classification criteria for systemic lupus erythematosus in a multicenter cohort study of 133 women with undifferentiated connective tissue disease. Arthritis Care Res. https://doi.org/10.1002/acr.24391 (2020).

    Article  Google Scholar 

  20. Hallengren, C. S., Nived, O. & Sturfelt, G. Outcome of incomplete systemic lupus erythematosus after 10 years. Lupus 13, 85–88 (2004).

    Google Scholar 

  21. Md Yusof, M. Y. et al. Prediction of autoimmune connective tissue disease in an at-risk cohort: prognostic value of a novel two-score system for interferon status. Ann. Rheum. Dis. 77, 1432–1439 (2018).

    PubMed  Google Scholar 

  22. Mosca, M., Tavoni, A., Neri, R., Bencivelli, W. & Bombardieri, S. Undifferentiated connective tissue diseases: the clinical and serological profiles of 91 patients followed for at least 1 year. Lupus 7, 95–100 (1998).

    CAS  PubMed  Google Scholar 

  23. Rúa-Figueroa, Í. et al. Comprehensive description of clinical characteristics of a large systemic lupus erythematosus cohort from the Spanish Rheumatology Society Lupus Registry (RELESSER) with emphasis on complete versus incomplete lupus differences. Medicine 94, e267 (2015).

    PubMed  PubMed Central  Google Scholar 

  24. Rasmussen, A. et al. The lupus family registry and repository. Rheumatology 50, 47–59 (2011).

    PubMed  Google Scholar 

  25. Tan, E. M. et al. The 1982 revised criteria for the classification of systemic lupus erythematosus. Arthritis Rheum. 25, 1271–1277 (1982).

    CAS  PubMed  Google Scholar 

  26. Petri, M. et al. Derivation and validation of the Systemic Lupus International Collaborating Clinics classification criteria for systemic lupus erythematosus. Arthritis Rheum. 64, 2677–2686 (2012).

    PubMed  PubMed Central  Google Scholar 

  27. Aberle, T. et al. Use of SLICC criteria in a large, diverse lupus registry enables SLE classification of a subset of ACR-designated subjects with incomplete lupus. Lupus Sci. Med. 4, e000176 (2017).

    PubMed  PubMed Central  Google Scholar 

  28. Chen, Z. et al. Organ damage in patients with incomplete lupus syndromes: from a Chinese academic center. Clin. Rheumatol. 34, 1383–1389 (2015).

    PubMed  Google Scholar 

  29. Rees, F. et al. Early clinical features in systemic lupus erythematosus: can they be used to achieve earlier diagnosis? A risk prediction model. Arthritis Care Res. 69, 833–841 (2017).

    Google Scholar 

  30. García-González, M., Rodríguez-Lozano, B., Bustabad, S. & Ferraz-Amaro, I. Undifferentiated connective tissue disease: predictors of evolution into definite disease. Clin. Exp. Rheumatol. 35, 739–745 (2017).

    PubMed  Google Scholar 

  31. Drehmel, K. R. et al. Applying SLICC and ACR/EULAR systemic lupus erythematosus classification criteria in a cohort of patients with undifferentiated connective tissue disease. Lupus 30, 280–284 (2021).

    PubMed  Google Scholar 

  32. Mosca, M. et al. Brief report: how do patients with newly diagnosed systemic lupus erythematosus present? A multicenter cohort of early systemic lupus erythematosus to inform the development of new classification criteria. Arthritis Rheumatol. 71, 91–98 (2019).

    PubMed  Google Scholar 

  33. Nightingale, A. L., Davidson, J. E., Molta, C. T., Kan, H. J. & McHugh, N. J. Presentation of SLE in UK primary care using the Clinical Practice Research Datalink. Lupus Sci. Med. 4, e000172 (2017).

    PubMed  PubMed Central  Google Scholar 

  34. Negrini, S. et al. Sjögren’s syndrome: a systemic autoimmune disease. Clin. Exp. Med. https://doi.org/10.1007/S10238-021-00728-6 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Sebastiani, M. et al. Interstitial pneumonia with autoimmune features: why rheumatologist-pulmonologist collaboration is essential. Biomedicines 9, 17 (2020).

    PubMed  PubMed Central  Google Scholar 

  36. Fischer, A. Interstitial pneumonia with autoimmune features. Clin. Chest Med. 40, 609–616 (2019).

    PubMed  Google Scholar 

  37. Satoh, M. et al. Clinical implication of autoantibodies in patients with systemic rheumatic diseases. Expert Rev. Clin. Immunol. 3, 721–738 (2007).

    CAS  PubMed  Google Scholar 

  38. Arbuckle, M. R. et al. Development of autoantibodies before the clinical onset of systemic lupus erythematosus. N. Engl. J. Med. 349, 1526–1533 (2003).

    CAS  PubMed  Google Scholar 

  39. Lu, R. et al. Dysregulation of innate and adaptive serum mediators precedes systemic lupus erythematosus classification and improves prognostic accuracy of autoantibodies. J. Autoimmun. 74, 182–193 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Landolt-Marticorena, C. The need for preclinical biomarkers in systemic autoimmune rheumatic diseases. J. Rheumatol. 42, 152–154 (2015).

    CAS  PubMed  Google Scholar 

  41. Cavazzana, I. et al. Undifferentiated connective tissue disease with antibodies to Ro/SSa: clinical features and follow-up of 148 patients. Clin. Exp. Rheumatol. 19, 403–409 (2001).

    CAS  PubMed  Google Scholar 

  42. Belfiore, N. et al. Anti-Ro(SS-A) 52 kDa and 60 kDa specificities in undifferentiated connective tissue disease. Jt. Bone Spine 67, 183–187 (2000).

    CAS  Google Scholar 

  43. Murng, S. H. K. & Thomas, M. Clinical associations of the positive anti Ro52 without Ro60 autoantibodies: undifferentiated connective tissue diseases. J. Clin. Pathol. 71, 12–19 (2018).

    CAS  PubMed  Google Scholar 

  44. Alarcón, G. S. et al. Early undifferentiated connective tissue disease. I. Early clinical manifestation in a large cohort of patients with undifferentiated connective tissue diseases compared with cohorts of well established connective tissue disease. J. Rheumatol. 18, 1332–1339 (1991).

    PubMed  Google Scholar 

  45. McClain, M. T. et al. The prevalence, onset, and clinical significance of antiphospholipid antibodies prior to diagnosis of systemic lupus erythematosus. Arthritis Rheum. 50, 1226–1232 (2004).

    PubMed  Google Scholar 

  46. Van Gaalen, F. A. et al. Autoantibodies to cyclic citrullinated peptides predict progression to rheumatoid arthritis in patients with undifferentiated arthritis: a prospective cohort study. Arthritis Rheum. 50, 709–715 (2004).

    PubMed  Google Scholar 

  47. Allenbach, Y., Benveniste, O., Goebel, H. H. & Stenzel, W. Integrated classification of inflammatory myopathies. Neuropathol. Appl. Neurobiol. 43, 62–81 (2017).

    CAS  PubMed  Google Scholar 

  48. Andrejevic, S. et al. Immunoserological parameters in SLE: high-avidity anti-dsDNA detected by ELISA are the most closely associated with the disease activity. Clin. Rheumatol. 32, 1619–1626 (2013).

    PubMed  Google Scholar 

  49. Aletaha, D. et al. 2010 rheumatoid arthritis classification criteria: an American College of Rheumatology/European League Against Rheumatism collaborative initiative. Ann. Rheum. Dis. 69, 1580–1588 (2010).

    PubMed  Google Scholar 

  50. Biliavska, I. et al. Application of the 2010 ACR/EULAR classification criteria in patients with very early inflammatory arthritis: analysis of sensitivity, specificity and predictive values in the SAVE study cohort. Ann. Rheum. Dis. 72, 1335–1341 (2013).

    PubMed  Google Scholar 

  51. Avouac, J. et al. Preliminary criteria for the very early diagnosis of systemic sclerosis: results of a Delphi consensus study from EULAR scleroderma trials and research group. Ann. Rheum. Dis. 70, 476–481 (2011).

    CAS  PubMed  Google Scholar 

  52. Low, E. S. H., Krishnaswamy, G. & Thumboo, J. Comparing the 1997 update of the 1982 American College of Rheumatology (ACR-97) and the 2012 Systemic Lupus International Collaborating Clinics (SLICC-12) criteria for systemic lupus erythematosus (SLE) classification: which enables earlier classification. Lupus 28, 11–18 (2019).

    CAS  PubMed  Google Scholar 

  53. Gatto, M., Saccon, F., Zen, M., Iaccarino, L. & Doria, A. Preclinical and early systemic lupus erythematosus. Best. Pract. Res. Clin. Rheumatol. 33, 101422 (2019).

    PubMed  Google Scholar 

  54. Robertson, J. M. & James, J. A. Preclinical systemic lupus erythematosus. Rheum. Dis. Clin. North. Am. 40, 621–635 (2014).

    PubMed  PubMed Central  Google Scholar 

  55. Trapiella-Martínez, L. et al. Very early and early systemic sclerosis in the Spanish scleroderma Registry (RESCLE) cohort. Autoimmu. Rev. 16, 796–802 (2017).

    Google Scholar 

  56. Oglesby, A. et al. Impact of early versus late systemic lupus erythematosus diagnosis on clinical and economic outcomes. Appl. Health Econ. Health Policy 12, 179–190 (2014).

    PubMed  Google Scholar 

  57. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT03543839 (2020).

  58. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT03804723 (2019).

  59. James, J. A. et al. Hydroxychloroquine sulfate treatment is associated with later onset of systemic lupus erythematosus. Lupus 16, 401–409 (2007).

    CAS  PubMed  Google Scholar 

  60. Yan, Q. et al. Prevention of immune nephritis by the small molecular weight immunomodulator iguratimod in MRL/lpr mice. PLoS ONE 9, e108273 (2014).

    PubMed  PubMed Central  Google Scholar 

  61. Perper, S. J. et al. Treatment with a CD40 antagonist antibody reverses severe proteinuria and loss of saliva production and restores glomerular morphology in murine systemic lupus erythematosus. J. Immunol. 203, 58–75 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Durcan, L. & Petri, M. Immunomodulators in SLE: clinical evidence and immunologic actions. J. Autoimmun. 74, 73–84 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Doria, A. et al. SLE diagnosis and treatment: when early is early. Autoimmun. Rev. 10, 55–60 (2010).

    CAS  PubMed  Google Scholar 

  64. Pengo, V. et al. What have we learned about antiphospholipid syndrome from patients and antiphospholipid carrier cohorts? Semin. Thromb. Hemost. 38, 322–327 (2012).

    CAS  PubMed  Google Scholar 

  65. El-Sherbiny, Y. M. et al. A novel two-score system for interferon status segregates autoimmune diseases and correlates with clinical features. Sci. Rep. 8, 5793 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Pisetsky, D. S., Rovin, B. H. & Lipsky, P. E. New perspectives in rheumatology: biomarkers as entry criteria for clinical trials of new therapies for systemic lupus erythematosus: the example of antinuclear antibodies and anti-DNA. Arthritis Rheumatol. 69, 487–493 (2017).

    PubMed  Google Scholar 

  67. Pérez, D. et al. Antinuclear antibodies: is the indirect immunofluorescence still the gold standard or should be replaced by solid phase assays? Autoimmun. Rev. 17, 548–552 (2018).

    PubMed  Google Scholar 

  68. van Vollenhoven, R. F. et al. Efficacy and safety of ustekinumab, an IL-12 and IL-23 inhibitor, in patients with active systemic lupus erythematosus: results of a multicentre, double-blind, phase 2, randomised, controlled study. Lancet 392, 1330–1339 (2018).

    PubMed  Google Scholar 

  69. Banchereau, R. et al. Personalized immunomonitoring uncovers molecular networks that stratify lupus patients. Cell 165, 551–565 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Agarwal, A., Ressler, D. & Snyder, G. The current and future state of companion diagnostics. Pharmacogenomics Pers. Med. 8, 99–110 (2015).

    Google Scholar 

  71. Jørgensen, J. T. & Hersom, M. Companion diagnostics — a tool to improve pharmacotherapy. Ann. Transl. Med. 4, 482 (2016).

    PubMed  PubMed Central  Google Scholar 

  72. Kraus, V. B. Biomarkers as drug development tools: discovery, validation, qualification and use. Nat. Rev. Rheumatol. 14, 354–362 (2018).

    CAS  PubMed  Google Scholar 

  73. Munroe, M. E. et al. Altered type II interferon precedes autoantibody accrual and elevated type I interferon activity prior to systemic lupus erythematosus classification. Ann. Rheum. Dis. 75, 2014–2021 (2016).

    CAS  PubMed  Google Scholar 

  74. Chyuan, I.-T., Tzeng, H.-T. & Chen, J.-Y. Signaling pathways of type I and type III interferons and targeted therapies in systemic lupus erythematosus. Cells 8, 963 (2019).

    CAS  PubMed Central  Google Scholar 

  75. Gallucci, S., Meka, S. & Gamero, A. M. Abnormalities of the type I interferon signaling pathway in lupus autoimmunity. Cytokine 146, 155633 (2021).

    CAS  PubMed  Google Scholar 

  76. Slight-Webb, S. et al. Autoantibody-positive healthy individuals display unique immune profiles that may regulate autoimmunity. Arthritis Rheumatol. 68, 2492–2502 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Luo, S., Wang, Y., Zhao, M. & Lu, Q. The important roles of type I interferon and interferon-inducible genes in systemic lupus erythematosus. Int. Immunopharmacol. 40, 542–549 (2016).

    CAS  PubMed  Google Scholar 

  78. Wither, J. et al. Presence of an interferon signature in individuals who are anti-nuclear antibody positive lacking a systemic autoimmune rheumatic disease diagnosis. Arthritis Res. Ther. 19, 41 (2017).

    PubMed  PubMed Central  Google Scholar 

  79. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02234388 (2021).

  80. US National Library of Medicine. Clinicaltrials.gov https://clinicaltrials.gov/ct2/show/NCT03671174 (2019).

  81. US National Library of Medicine. Clinicaltrials.gov https://clinicaltrials.gov/ct2/show/NCT04402086 (2021).

  82. Greer, J. M. Incomplete lupus erythematosus. Arch. Intern. Med. 149, 2473 (1989).

    CAS  PubMed  Google Scholar 

  83. Swaak, A. J. et al. Incomplete lupus erythematosus: results of a multicentre study under the supervision of the EULAR Standing Committee on International Clinical Studies Including Therapeutic Trials (ESCISIT). Rheumatology 40, 89–94 (2001).

    CAS  PubMed  Google Scholar 

  84. Laustrup, H., Voss, A., Green, A. & Junker, P. SLE disease patterns in a Danish population-based lupus cohort: an 8-year prospective study. Lupus 19, 239–246 (2010).

    CAS  PubMed  Google Scholar 

  85. Olsen, N. J. et al. Autoantibody profiling to follow evolution of lupus syndromes. Arthritis Res. Ther. 14, R174 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Calvo-Alen, J. et al. Systemic lupus erythematosus: predictors of its occurrence among a cohort of patients with early undifferentiated connective tissue disease: multivariate analyses and identification of risk factors. J. Rheumatol. 23, 469–475 (1996).

    CAS  PubMed  Google Scholar 

  87. Danieli, M. G., Fraticelli, P., Salvi, A., Gabrielli, A. & Danieli, G. Undifferentiated connective tissue disease: natural history and evolution into definite CTD assessed in 84 patients initially diagnosed as early UCTD. Clin. Rheumatol. 17, 195–201 (1998).

    CAS  PubMed  Google Scholar 

  88. Danieli, M. G. et al. Five-year follow-up of 165 Italian patients with undifferentiated connective tissue diseases. Clin. Exp. Rheumatol. 17, 585–591 (1999).

    CAS  PubMed  Google Scholar 

  89. Williams, H. J. et al. Early undifferentiated connective tissue disease (CTD). VI. An inception cohort after 10 years: disease remissions and changes in diagnoses in well established and undifferentiated CTD. J. Rheumatol. 26, 816–825 (1999).

    CAS  PubMed  Google Scholar 

  90. Bodolay, E. et al. Five-year follow-up of 665 Hungarian patients with undifferentiated connective tissue disease (UCTD). Clin. Exp. Rheumatol. 21, 313–230 (2003).

    CAS  PubMed  Google Scholar 

  91. Guerrero, L. F., Rueda, J. C., Arciniegas, R. & Rueda, J. M. Undifferentiated connective tissue disease in a rheumatology center in Cali, Colombia: clinical features of 94 patients followed for a year. Rheumatol. Int. 33, 1085–1088 (2013).

    PubMed  Google Scholar 

  92. Zucchi, D. et al. Pregnancy and undifferentiated connective tissue disease: outcome and risk of flare in 100 pregnancies. Rheumatology 59, 1335–1339 (2020).

    PubMed  Google Scholar 

  93. Ganczarczyk, L., Urowitz, M. B. & Gladman, D. D. “Latent lupus”. J. Rheumatol. 4, 475–478 (1989).

    Google Scholar 

  94. Al Daabil, M. et al. Development of SLE among ‘potential SLE’ patients seen in consultation: long-term follow-up. Int. J. Clin. Pract. 68, 1508–1513 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Tiao, J., Feng, R., Carr, K., Okawa, J. & Werth, V. P. Using the American College of Rheumatology (ACR) and Systemic Lupus International Collaborating Clinics (SLICC) criteria to determine the diagnosis of systemic lupus erythematosus (SLE) in patients with subacute cutaneous lupus erythematosus (SCLE). J. Am. Acad. Dermatol. 74, 862–869 (2016).

    PubMed  PubMed Central  Google Scholar 

  96. Ramsey-Goldman, R. et al. Complement activation in patients with probable systemic lupus erythematosus and ability to predict progression to American College of Rheumatology-classified systemic lupus erythematosus. Arthritis Rheumatol. 72, 78–88 (2020).

    CAS  PubMed  Google Scholar 

  97. Spinillo, A. et al. Prevalence of undiagnosed autoimmune rheumatic diseases in the first trimester of pregnancy. Results of a two-steps strategy using a self-administered questionnaire and autoantibody testing. BJOG 115, 51–57 (2008).

    CAS  PubMed  Google Scholar 

  98. Mosca, M. et al. Pregnancy outcome in patients with undifferentiated connective tissue disease: a preliminary study on 25 pregnancies. Lupus 11, 304–307 (2002).

    CAS  PubMed  Google Scholar 

  99. Spinillo, A. et al. The effect of newly diagnosed undifferentiated connective tissue disease on pregnancy outcome. Am. J. Obstet. Gynecol. 199, 632.e1–632.e6 (2008).

    Google Scholar 

  100. Grava, C. et al. Isolated congenital heart block in undifferentiated connective tissue disease and in primary Sjögren’s syndrome: a clinical study of 81 pregnancies in 41 patients [Italian]. Reumatismo 57, 180–186 (2005).

    CAS  PubMed  Google Scholar 

  101. Castellino, G. et al. Pregnancy in patients with undifferentiated connective tissue disease: a prospective case-control study. Lupus 20, 1305–1311 (2011).

    CAS  PubMed  Google Scholar 

  102. Spinillo, A. et al. The impact of unrecognized autoimmune rheumatic diseases on the incidence of preeclampsia and fetal growth restriction: a longitudinal cohort study. BMC Pregnancy Childbirth 16, 313 (2016).

    PubMed  PubMed Central  Google Scholar 

  103. Fredi, M. et al. First report of the Italian registry on immune-mediated congenital heart block (Lu.Ne Registry). Front. Cardiovasc. Med. 6, 11 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Brito-Zerón, P., Izmirly, P. M., Ramos-Casals, M., Buyon, J. P. & Khamashta, M. A. The clinical spectrum of autoimmune congenital heart block. Nat. Rev. Rheumatol. 11, 301–312 (2015).

    PubMed  PubMed Central  Google Scholar 

  105. Schreiber, K., Radin, M. & Sciascia, S. Current insights in obstetric antiphospholipid syndrome. Curr. Opin. Obstet. Gynecol. 29, 397–403 (2017).

    PubMed  Google Scholar 

  106. Andreoli, L. et al. EULAR recommendations for women’s health and the management of family planning, assisted reproduction, pregnancy and menopause in patients with systemic lupus erythematosus and/or antiphospholipid syndrome. Ann. Rheum. Dis. 76, 476–485 (2017).

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to Savino Sciascia.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Rheumatology thanks A. Rahman and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sciascia, S., Roccatello, D., Radin, M. et al. Differentiating between UCTD and early-stage SLE: from definitions to clinical approach. Nat Rev Rheumatol 18, 9–21 (2022). https://doi.org/10.1038/s41584-021-00710-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41584-021-00710-2

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing