Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Joint distraction for osteoarthritis: clinical evidence and molecular mechanisms

Abstract

Joint distraction, the prolonged mechanical separation of the bones at a joint, has emerged as a joint-preserving treatment for end-stage osteoarthritis, with the gradually growing promise of implementation in regular clinical practice. Joint distraction of the knee has been most extensively studied, with these studies showing prolonged symptomatic improvement in combination with repair of cartilage tissue in degenerated knee joints, supporting the concept that cartilage repair can translate into real clinical benefit. The reversal of tissue degeneration observed with joint distraction could be the result of one or a combination of various proposed mechanisms, including partial unloading, synovial fluid pressure oscillation, mechanical and biochemical changes in subchondral bone, adhesion and chondrogenic commitment of joint-derived mesenchymal stem cells or a change in the molecular milieu of the joint. The overall picture that emerges from the combined evidence is relevant for future research and treatment-related improvements of joint distraction and for translation of the insights gained about tissue repair to other joint-preserving techniques. It remains to be elucidated whether optimizing the biomechanical conditions during joint distraction can actually cure osteoarthritis rather than only providing temporary symptomatic relief, but even temporary relief might be relevant for society and patients, as it will delay joint replacement with a prosthesis at an early age and thereby avert revision surgery later in life. Most importantly, improved insights into the underlying mechanisms of joint repair might provide new leads for more targeted treatment options.

Key points

  • Joint distraction can induce tissue structure modifications in degenerated knee joints, accompanied by prolonged symptomatic improvement that supports the concept that cartilage repair can translate into real clinical benefit.

  • It remains to be elucidated whether achieving optimal biomechanical and molecular conditions during distraction can lead to cure in osteoarthritis rather than providing only temporary symptomatic relief.

  • Partial unloading, synovial fluid pressure oscillation, subchondral bone changes, adhesion and chondrogenic commitment of joint-derived mesenchymal stem cells, and an altered molecular milieu in the joint are the proposed mechanisms underlying the therapeutic effects of joint distraction.

  • Greater insight into the molecular mechanisms of cartilage repair and their interplay in joint distraction might provide new leads to more targeted treatment options.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Get just this article for as long as you need it

$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Different type of frames used for knee joint distraction.
Fig. 2: Overview of joint processes and molecular mechanisms during and after joint distraction.

References

  1. Hunter, D. J. & Bierma-Zeinstra, S. Osteoarthritis. Lancet 393, 1745–1759 (2019).

    CAS  PubMed  Google Scholar 

  2. Mastbergen, S. C., Saris, D. B. F. & Lafeber, F. P. J. G. Functional articular cartilage repair: Here, near, or is the best approach not yet clear? Nat. Rev. Rheumatol. 9, 277–290 (2013).

    CAS  PubMed  Google Scholar 

  3. Palmer, J. S. et al. Surgical interventions for symptomatic mild to moderate knee osteoarthritis. Cochrane Database Syst. Rev. 7, CD012128 (2019).

    PubMed  Google Scholar 

  4. Jatinder Singh, L., Salim AL, H. & Suwailim AL, G. Surgical options for treating knee osteoarthritis — a concise review. J. Musculoskelet. Disord. Treat. 6, 084 (2020).

    Google Scholar 

  5. Lafeber, F. P., Intema, F., Van Roermund, P. M. & Marijnissen, A. C. Unloading joints to treat osteoarthritis, including joint distraction. Curr. Opin. Rheumatol. 18, 519–525 (2006).

    PubMed  Google Scholar 

  6. Aldegheri, R., Trivella, G. & Saleh, M. Articulated distraction of the hip: conservative surgery for arthritis in young patients. Clin. Orthop. Relat. Res. 301, 94–101 (1994).

    Google Scholar 

  7. Van Valburg, A. A. et al. Can Ilizarov joint distraction delay the need for an arthrodesis of the ankle? A preliminary report. J. Bone Jt. Surg. B 77, 720–725 (1995).

    Google Scholar 

  8. Van Valburg, A. A. et al. Joint distraction in treatment of osteoarthritis: a two-year follow-up of the ankle. Osteoarthritis Cartilage 7, 474–479 (1999).

    PubMed  Google Scholar 

  9. Bain, G. I., Mehta, J. A., Heptinstall, R. J. & Bria, M. Dynamic external fixation for injuries of the proximal interphalangeal joint. J. Bone Jt. Surg. B 80, 1014–1019 (1998).

    CAS  Google Scholar 

  10. DeVries, J. G., Amiot, R. A., Cummings, P. & Sockrider, N. Freiberg’s infraction of the second metatarsal treated with autologous osteochondral transplantation and external fixation. J. Foot Ankle Surg. 47, 565–570 (2008).

    PubMed  Google Scholar 

  11. Spaans, A. J., van Minnen, L. P., Braakenburg, A. & Mink van der Molen, A. B. Joint distraction for thumb carpometacarpal osteoarthritis: a feasibility study with 1-year follow-up. J. Plast. Surg. Hand Surg. 51, 254–258 (2017).

    PubMed  Google Scholar 

  12. Jansen, M. P. et al. Knee joint distraction as treatment for osteoarthritis results in clinical and structural benefit: a systematic review and meta-analysis of the limited number of studies and patients available. Cartilage https://doi.org/10.1177/1947603520942945 (2020).

    Article  PubMed  Google Scholar 

  13. Jansen, M. P. et al. Knee joint distraction in regular care for treatment of knee osteoarthritis: a comparison with clinical trial data. PLoS ONE 15, e0227975 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Deie, M., Ochi, M., Adachi, N., Kajiwara, R. & Kanaya, A. A new articulated distraction arthroplasty device for treatment of the osteoarthritic knee joint: a preliminary report. Arthroscopy 23, 833–838 (2007).

    PubMed  Google Scholar 

  15. Deie, M. et al. Knee articulated distraction arthroplasty for the middle-aged osteoarthritic knee joint. Tech. Knee Surg. 9, 80–84 (2010).

    Google Scholar 

  16. Abouheif, M. M. et al. Repair of a large osteochondral defect in the knee joint using autologous and artificial bone graft combined with motion preserving distraction arthroplasty: a case report. Arch. Orthop. Trauma. Surg. 130, 231–236 (2010).

    PubMed  Google Scholar 

  17. Intema, F. et al. Tissue structure modification in knee osteoarthritis by use of joint distraction: an open 1-year pilot study. Ann. Rheum. Dis. 70, 1441–1446 (2011).

    PubMed  Google Scholar 

  18. Aly, T. A., Hafez, K. & Amin, O. Arthrodiatasis for management of knee osteoarthritis. Orthopedics 34, e338–e343 (2011).

    PubMed  Google Scholar 

  19. van der Woude, J. A. D. et al. Knee joint distraction compared with high tibial osteotomy: a randomized controlled trial. Knee Surg. Sport. Traumatol. Arthrosc. 25, 876–886 (2017).

    Google Scholar 

  20. Van Der Woude, J. A. D. et al. Knee joint distraction compared with total knee arthroplasty a randomised controlled trial. Bone Jt. J. 99-B, 51–58 (2017).

    Google Scholar 

  21. Jansen, M. P. Knee joint distraction: moving forward. (Utrecht University, 2021).

  22. ISRCTN. A comparison of knee replacement surgery and knee joint distraction for treating osteoarthritis of the knee (2020).

  23. van der Woude, J. A. D. et al. Six weeks of continuous joint distraction appears sufficient for clinical benefit and cartilaginous tissue repair in the treatment of knee osteoarthritis. Knee 23, 785–791 (2016).

    PubMed  Google Scholar 

  24. Struik, T. et al. Technical feasibility of personalized articulating knee joint distraction for treatment of tibiofemoral osteoarthritis. Clin. Biomech. 49, 40–47 (2017).

    CAS  Google Scholar 

  25. Wiegant, K. et al. Knee joint distraction as an alternative surgical treatment for osteoarthritis: rationale and design of two randomized controlled trials (vs high tibial osteotomy and total knee prosthesis). Int. J. Orthop. 2, 353–360 (2015).

    Google Scholar 

  26. Wiegant, K. et al. Sustained clinical and structural benefit after joint distraction in the treatment of severe knee osteoarthritis. Osteoarthritis Cartilage 21, 1660–1667 (2013).

    CAS  PubMed  Google Scholar 

  27. van der Woude, J. T. A. D. et al. Five-year follow-up of knee joint distraction: clinical benefit and cartilaginous tissue repair in an open uncontrolled prospective study. Cartilage 8, 263–271 (2017).

    PubMed  Google Scholar 

  28. Jansen, M. P. et al. Initial tissue repair predicts long-term clinical success of knee joint distraction as treatment for knee osteoarthritis. Osteoarthritis Cartilage 26, 1604–1608 (2018).

    CAS  PubMed  Google Scholar 

  29. Jansen, M. P. et al. Knee joint distraction compared with high tibial osteotomy and total knee arthroplasty: two-year clinical, radiographic, and biochemical marker outcomes of two randomized controlled trials. Cartilage 12, 181–191 (2019).

    PubMed  PubMed Central  Google Scholar 

  30. Intema, F. et al. Subchondral bone remodeling is related to clinical improvement after joint distraction in the treatment of ankle osteoarthritis. Osteoarthritis Cartilage 19, 668–675 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Escobar, A. et al. Responsiveness and clinically important differences for the WOMAC and SF-36 after total knee replacement. Osteoarthritis Cartilage 15, 273–280 (2007).

    CAS  PubMed  Google Scholar 

  32. Hoorntje, A. et al. Return to sport and work after randomization for knee distraction versus high tibial osteotomy: is there a difference? J. Knee Surg. https://doi.org/10.1055/s-0040-1721027 (2020).

    Article  PubMed  Google Scholar 

  33. Bayliss, L. E. et al. The effect of patient age at intervention on risk of implant revision after total replacement of the hip or knee: a population-based cohort study. Lancet 389, 1424–1430 (2017).

    PubMed  PubMed Central  Google Scholar 

  34. Jansen, M. P. et al. Changes in cartilage thickness and denuded bone area after knee joint distraction and high tibial osteotomy — post-hoc analyses of two randomized controlled trials. J. Clin. Med. 10, 368 (2021).

    PubMed  PubMed Central  Google Scholar 

  35. Jansen, M. P., Mastbergen, S. C., MacKay, J. W., Turmezei, T. D. & Lafeber, F. Knee joint distraction results in MRI cartilage thickness increase up to ten years after treatment. Rheumatology https://doi.org/10.1093/rheumatology/keab456 (2021).

    Article  PubMed  Google Scholar 

  36. van Spil, W. E., DeGroot, J., Lems, W. F., Oostveen, J. C. M. & Lafeber, F. P. J. G. Serum and urinary biochemical markers for knee and hip-osteoarthritis: a systematic review applying the consensus BIPED criteria. Osteoarthrits Cartilage 18, 605–612 (2010).

    Google Scholar 

  37. Besselink, N. J. et al. Cartilage quality (dGEMRIC Index) following knee joint distraction or high tibial osteotomy. Cartilage 11, 19–31 (2018).

    PubMed  PubMed Central  Google Scholar 

  38. Jansen, M. P. et al. Knee joint distraction is more efficient in rebuilding cartilage thickness in the more affected compartment than high tibial osteotomy in patients with knee osteoarthritis. Osteoarthritis Cartilage 27, S330–S331 (2019).

    Google Scholar 

  39. Wiegant, K. et al. Total knee prosthesis after knee joint distraction treatment. J. Surg. Surg. Res. 1, 066–071 (2015).

    Google Scholar 

  40. Jansen, M. P., Struijk, T., Mastbergen, S. C., Custers, R. J. & Lafeber, F. P. User-friendliness of a novel dedicated knee joint distraction device: experiences from clinical practice. Osteoarthritis Cartilage 28, S474 (2020).

    Google Scholar 

  41. Jansen, M. P. et al. Reduction of pin tract infections during external fixation using cadexomer iodine. J. Exp. Orthop. 7, 88 (2020).

    PubMed  PubMed Central  Google Scholar 

  42. Baboolal, T. G. et al. Synovial fluid hyaluronan mediates MSC attachment to cartilage, a potential novel mechanism contributing to cartilage repair in osteoarthritis using knee joint distraction. Ann. Rheum. Dis. 75, 908–915 (2016).

    CAS  PubMed  Google Scholar 

  43. Sanjurjo-Rodriguez, C. et al. Gene expression signatures of synovial fluid multipotent stromal cells in advanced knee osteoarthritis and following knee joint distraction. Front. Bioeng. Biotechnol. 8, 1178 (2020).

    Google Scholar 

  44. Watt, F. E. et al. The molecular profile of synovial fluid changes upon joint distraction and is associated with clinical response in knee osteoarthritis. Osteoarthritis Cartilage 28, 324–333 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Caldwell, K. L. & Wang, J. Cell-based articular cartilage repair: the link between development and regeneration. Osteoarthritis Cartilage 23, 351–362 (2015).

    CAS  PubMed  Google Scholar 

  46. Funck-Brentano, T. & Cohen-Solal, M. Crosstalk between cartilage and bone: when bone cytokines matter. Cytokine Growth Factor. Rev. 22, 91–97 (2011).

    CAS  PubMed  Google Scholar 

  47. Yuan, X. L. et al. Bone-cartilage interface crosstalk in osteoarthritis: potential pathways and future therapeutic strategies. Osteoarthritis Cartilage 22, 1077–1089 (2014).

    CAS  PubMed  Google Scholar 

  48. Griffin, T. M. & Guilak, F. The role of mechanical loading in the onset and progression of osteoarthritis. Exerc. Sport. Sci. Rev. 33, 195–200 (2005).

    PubMed  Google Scholar 

  49. Widmyer, M. R. et al. High body mass index is associated with increased diurnal strains in the articular cartilage of the knee. Arthritis Rheum. 65, 2615–2622 (2013).

    PubMed  PubMed Central  Google Scholar 

  50. Coleman, J. L. et al. Diurnal variations in articular cartilage thickness and strain in the human knee. J. Biomech. 46, 541–547 (2013).

    PubMed  Google Scholar 

  51. Eckstein, F. et al. Effect of physical exercise on cartilage volume and thickness in vivo: MR imaging study. Radiology 207, 243–248 (1998).

    CAS  PubMed  Google Scholar 

  52. Eckstein, F., Hudelmaier, M. & Putz, R. The effects of exercise on human articular cartilage. J. Anat. 208, 491–512 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Eckstein, F., Tieschky, M., Faber, S., Englmeier, K. H. & Reiser, M. Functional analysis of articular cartilage deformation, recovery, and fluid flow following dynamic exercise in vivo. Anat. Embryol. 200, 419–424 (1999).

    CAS  Google Scholar 

  54. Sutter, E. G. et al. In vivo measurement of localized tibiofemoral cartilage strains in response to dynamic activity. Am. J. Sports Med. 43, 370–376 (2015).

    PubMed  Google Scholar 

  55. Liu, F. et al. In vivo tibiofemoral cartilage deformation during the stance phase of gait. J. Biomech. 43, 658–665 (2010).

    PubMed  Google Scholar 

  56. Van De Velde, S. K. et al. Increased tibiofemoral cartilage contact deformation in patients with anterior cruciate ligament deficiency. Arthritis Rheum. 60, 3693–3702 (2009).

    PubMed  PubMed Central  Google Scholar 

  57. Kurz, B. et al. Biosynthetic response and mechanical properties of articular cartilage after injurious compression. J. Orthop. Res. 19, 1140–1146 (2001).

    CAS  PubMed  Google Scholar 

  58. Patwari, P., Cheng, D. M., Cole, A. A., Kuettner, K. E. & Grodzinsky, A. J. Analysis of the relationship between peak stress and proteoglycan loss following injurious compression of human post-mortem knee and ankle cartilage. Biomech. Model. Mechanobiol. 6, 83–89 (2007).

    PubMed  Google Scholar 

  59. Patwari, P. et al. Proteoglycan degradation after injurious compression of bovine and human articular cartilage in vitro: interaction with exogenous cytokines. Arthritis Rheum. 48, 1292–1301 (2003).

    CAS  PubMed  Google Scholar 

  60. Stolberg-Stolberg, J. A. et al. Effects of cartilage impact with and without fracture on chondrocyte viability and the release of inflammatory markers. J. Orthop. Res. 31, 1283–1292 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Natoli, R. M., Scott, C. C. & Athanasiou, K. A. Temporal effects of impact on articular cartilage cell death, gene expression, matrix biochemistry, and biomechanics. Ann. Biomed. Eng. 36, 780–792 (2008).

    PubMed  Google Scholar 

  62. Guilak, F., Meyer, B. C., Ratcliffe, A. & Mow, V. C. The effects of matrix compression on proteoglycan metabolism in articular cartilage explants. Osteoarthritis Cartilage 2, 91–101 (1994).

    CAS  PubMed  Google Scholar 

  63. Ng, K. W. et al. Duty cycle of deformational loading influences the growth of engineered articular cartilage. Cell. Mol. Bioeng. 2, 386–394 (2009).

    PubMed  Google Scholar 

  64. Nam, J., Aguda, B. D., Rath, B. & Agarwal, S. Biomechanical thresholds regulate inflammation through the NF-κB pathway: experiments and modeling. PLoS ONE 4, e5262 (2009).

    PubMed  PubMed Central  Google Scholar 

  65. Mauck, R. L., Nicoll, S. B., Seyhan, S. L., Ateshian, G. A. & Hung, C. T. Synergistic action of growth factors and dynamic loading for articular cartilage tissue engineering. Tissue Eng. 9, 597–611 (2003).

    CAS  PubMed  Google Scholar 

  66. Torzilli, P. A., Bhargava, M. & Chen, C. T. Mechanical loading of articular cartilage reduces IL-1-induced enzyme expression. Cartilage 2, 364–373 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Chan, P. S. et al. Gene expression profile of mechanically impacted bovine articular cartilage explants. J. Orthop. Res. 23, 1146–1151 (2005).

    CAS  PubMed  Google Scholar 

  68. Ashwell, M. S. et al. Changes in chondrocyte gene expression following in vitro impaction of porcine articular cartilage in an impact injury model. J. Orthop. Res. 31, 385–391 (2013).

    CAS  PubMed  Google Scholar 

  69. Atkinson, T. S., Haut, R. C. & Altiero, N. J. An investigation of biphasic failure criteria for impact-induced fissuring of articular cartilage. J. Biomech. Eng. 120, 536–537 (1998).

    CAS  PubMed  Google Scholar 

  70. Fragomen, A. T., McCoy, T. H., Meyers, K. N. & Rozbruch, S. R. Minimum distraction gap: how much ankle joint space is enough in ankle distraction arthroplasty? HSS J. 10, 6–12 (2014).

    PubMed  Google Scholar 

  71. Sanchez-Adams, J., Leddy, H. A., McNulty, A. L., O’Conor, C. J. & Guilak, F. The mechanobiology of articular cartilage: bearing the burden of osteoarthritis. Curr. Rheumatol. Rep. 16, 451 (2014).

    PubMed  PubMed Central  Google Scholar 

  72. Lafeber, F., Veldhuijzen, J. P., Vanroy, J. L. A. M., Huber-Bruning, O. & Bijlsma, J. W. J. Intermittent hydrostatic compressive force stimulates exclusively the proteoglycan synthesis of osteoarthritic human cartilage. Br. J. Rheumatol. 31, 437–442 (1992).

    CAS  PubMed  Google Scholar 

  73. Van Valburg, A. A., Van Roy, H. L. A. M., Lafeber, F. P. J. G. & Bijlsma, J. W. J. Beneficial effects of intermittent fluid pressure of low physiological magnitude on cartilage and inflammation in osteoarthritis. An in vitro study. J. Rheumatol. 25, 515–520 (1998).

    PubMed  Google Scholar 

  74. Slynarski, K., Walawski, J., Smigielski, R. & van der Merwe, W. Two-year results of the PHANTOM high flex trial: a single-arm study on the atlas unicompartmental knee system load absorber in patients with medial compartment osteoarthritis of the knee. Clin. Med. Insights Arthritis Musculoskelet. Disord. 12, 1–7 (2019).

    Google Scholar 

  75. Jung, W. H. et al. Second-look arthroscopic assessment of cartilage regeneration after medial opening-wedge high tibial osteotomy. Arthrosc. J. Arthrosc. Relat. Surg. 30, 72–79 (2014).

    Google Scholar 

  76. Slynarski, K. & Lipinski, L. Treating early knee osteoarthritis with the Atlas® Unicompartmental Knee System in a 26-year-old ex-professional basketball player: a case study. Case Rep. Orthop. 2017, 1–5 (2017).

    Google Scholar 

  77. Spahn, G., Klinger, H. M., Harth, P. & Hofmann, G. O. Cartilage regeneration after high tibial osteotomy results of an arthroscopic study. Z. Orthop. Unfall. 150, 272–279 (2012).

    CAS  PubMed  Google Scholar 

  78. Bode, G. et al. Comparison of the efficiency of an extra-articular absorber system and high tibial osteotomy for unloading the medial knee compartment: an in vitro study. Knee Surg. Sport. Traumatol. Arthrosc. 25, 3695–3703 (2017).

    Google Scholar 

  79. Slynarski, K., Walawski, J., Smigielski, R. & van der Merwe, W. Feasibility of the Atlas Unicompartmental Knee System Load Absorber in improving pain relief and function in patients needing unloading of the medial compartment of the knee: 1-year follow-up of a prospective, multicenter, single-arm pilot study (PHANTOM). Clin. Med. Insights Arthritis Musculoskelet. Disord. 10, 1–9 (2017).

    Google Scholar 

  80. Bikle, D. D. & Halloran, B. P. The response of bone to unloading. J. Bone Miner. Metab. 17, 233–244 (1999).

    CAS  PubMed  Google Scholar 

  81. Marijnissen, A. C. A. et al. Ankle images digital analysis (AIDA): Digital measurement of joint space width and subchondral sclerosis on standard radiographs. Osteoarthritis Cartilage 9, 264–272 (2001).

    CAS  PubMed  Google Scholar 

  82. Pouders, C. et al. Prevalence and MRI-anatomic correlation of bone cysts in osteoarthritic knees. Am. J. Roentgenol. 190, 17–21 (2008).

    Google Scholar 

  83. Tanamas, S. K. et al. The association between subchondral bone cysts and tibial cartilage volume and risk of joint replacement in people with knee osteoarthritis: a longitudinal study. Arthritis Res. Ther. 12, R58 (2010).

    PubMed  PubMed Central  Google Scholar 

  84. van Dijk, C. N., Reilingh, M. L., Zengerink, M. & van Bergen, C. J. A. The natural history of osteochondral lesions in the ankle. Instr. Course Lect. 59, 375–386 (2010).

    PubMed  Google Scholar 

  85. Hwang, J. et al. Increased hydraulic conductance of human articular cartilage and subchondral bone plate with progression of osteoarthritis. Arthritis Rheum. 58, 3831–3842 (2008).

    PubMed  PubMed Central  Google Scholar 

  86. Carrino, J. A., Blum, J., Parellada, J. A., Schweitzer, M. E. & Morrison, W. B. MRI of bone marrow edema-like signal in the pathogenesis of subchondral cysts. Osteoarthritis Cartilage 14, 1081–1085 (2006).

    CAS  PubMed  Google Scholar 

  87. Hunter, D. J. et al. Bone marrow lesions from osteoarthritis knees are characterized by sclerotic bone that is less well mineralized. Arthritis Res. Ther. 11, R11 (2009).

    PubMed  PubMed Central  Google Scholar 

  88. Yazawa, M., Kishi, K., Nakajima, H. & Nakajima, T. Expression of bone morphogenetic proteins during mandibular distraction osteogenesis in rabbits. J. Oral. Maxillofac. Surg. 61, 587–592 (2003).

    PubMed  Google Scholar 

  89. Claes, L., Recknagel, S. & Ignatius, A. Fracture healing under healthy and inflammatory conditions. Nat. Rev. Rheumatol. 8, 133–143 (2012).

    CAS  PubMed  Google Scholar 

  90. Song, J. et al. Fak-Mapk, Hippo and Wnt signalling pathway expression and regulation in distraction osteogenesis. Cell Prolif. 51, e12453 (2018).

    PubMed  PubMed Central  Google Scholar 

  91. Wiegant, K. et al. Evidence of cartilage repair by joint distraction in a canine model of osteoarthritis. Arthritis Rheumatol. 67, 465–474 (2015).

    PubMed  Google Scholar 

  92. McGonagle, D., Baboolal, T. G. & Jones, E. Native joint-resident mesenchymal stem cells for cartilage repair in osteoarthritis. Nat. Rev. Rheumatol. 13, 719–730 (2017).

    CAS  PubMed  Google Scholar 

  93. Jones, B. A. & Pei, M. Synovium-derived stem cells: a tissue-specific stem cell for cartilage engineering and regeneration. Tissue Eng. Part B Rev. 18, 301–311 (2012).

    CAS  PubMed  Google Scholar 

  94. Jones, E. A. et al. Synovial fluid mesenchymal stem cells in health and early osteoarthritis: detection and functional evaluation at the single-cell level. Arthritis Rheum. 58, 1731–1740 (2008).

    CAS  PubMed  Google Scholar 

  95. Chen, Y., Sun, Y., Pan, X., Ho, K. & Li, G. Joint distraction attenuates osteoarthritis by reducing secondary inflammation, cartilage degeneration and subchondral bone aberrant change. Osteoarthritis Cartilage 23, 1728–1735 (2015).

    CAS  PubMed  Google Scholar 

  96. Sánchez, M. et al. Combination of intra-articular and intraosseous injections of platelet rich plasma for severe knee osteoarthritis: a pilot study. Biomed. Res. Int. 2016, 4868613 (2016).

    PubMed  PubMed Central  Google Scholar 

  97. Kouroupis, D., Sanjurjo-Rodriguez, C., Jones, E. & Correa, D. Mesenchymal stem cell functionalization for enhanced therapeutic applications. Tissue Eng. Part B Rev. 25, 55–77 (2019).

    PubMed  Google Scholar 

  98. Kania, K. et al. Expression of growth and differentiation factor 5 during joint repair and osteoarthritis. Osteoarthritis Cartilage 28, S34 (2020).

    Google Scholar 

  99. Kania, K. et al. Regulation of Gdf5 expression in joint remodelling, repair and osteoarthritis. Sci. Rep. 10, 157 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Leijten, J. C. H. et al. GREM1, FRZB and DKK1 mRNA levels correlate with osteoarthritis and are regulated by osteoarthritis-associated factors. Arthritis Res. Ther. 15, R126 (2013).

    PubMed  PubMed Central  Google Scholar 

  101. Raghu, H. et al. CCL2/CCR2, but not CCL5/CCR5, mediates monocyte recruitment, inflammation and cartilage destruction in osteoarthritis. Ann. Rheum. Dis. 76, 914–922 (2017).

    CAS  PubMed  Google Scholar 

  102. Miotla Zarebska, J. et al. CCL2 and CCR2 regulate pain-related behaviour and early gene expression in post-traumatic murine osteoarthritis but contribute little to chondropathy. Osteoarthritis Cartilage 25, 406–412 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Teunissen, M. et al. Knee joint distraction-induced shift from catabolic to anabolic state occurs after the distraction period. Osteoarthritis Cartilage 28, S76–S77 (2020).

    Google Scholar 

  104. Jeon, O. H. et al. Senescence cell–associated extracellular vesicles serve as osteoarthritis disease and therapeutic markers. JCI Insight 4, e125019 (2019).

    PubMed Central  Google Scholar 

  105. ArthroSave. KneeReviver. https://www.arthrosave.com/ (2020).

Download references

Acknowledgements

The authors thank F.P.J.G. Lafeber for a thorough review of the manuscript and discussion on the subjects described. This work is partially supported by grants from the Dutch Arthritis Foundation (LLP9) and Nederlandse Oganizatie voor Wetenschappelijk Onderzoek (NWO) Domain Applied and Engineering Sciences (P15-23) to S.C.M.

Review criteria

To find studies involving KJD treatment in OA (summarized in Table 1), MEDLINE, EMBASE and Web of Science libraries were searched with the following terms: (distraction OR arthrodiatasis OR arthrodiastasis) AND (knee OR tibiofemoral OR tibiofibular), and were applied on title and abstract and, in Web of Science, Keywords+. Only full-text publications about clinical studies in which KJD with external fixation was applied and the primary outcomes were patient-reported outcomes and/or cartilage tissue restoration were included in Table 1. Studies that did not fully meet the criteria are discussed in the text where relevant. Ongoing unpublished studies were included based on personal communication with principal investigators.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to Simon C. Mastbergen.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Rheumatology thanks E. Jones and T. Matsumoto for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Stress

Subject to pressure or tension.

Strain

Relative deformation or change in shape and size of elastic, plastic and fluid materials under applied forces.

Shear

A force tending to cause deformation of a material by slippage along a plane or planes parallel to the imposed stress.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Jansen, M.P., Mastbergen, S.C. Joint distraction for osteoarthritis: clinical evidence and molecular mechanisms. Nat Rev Rheumatol 18, 35–46 (2022). https://doi.org/10.1038/s41584-021-00695-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41584-021-00695-y

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing