Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Lyme arthritis: linking infection, inflammation and autoimmunity

Abstract

Infectious agents can trigger autoimmune responses in a number of chronic inflammatory diseases. Lyme arthritis, which is caused by the tick-transmitted spirochaete Borrelia burgdorferi, is effectively treated in most patients with antibiotic therapy; however, in a subset of patients, arthritis can persist and worsen after the spirochaete has been killed (known as post-infectious Lyme arthritis). This Review details the current understanding of the pathogenetic events in Lyme arthritis, from initial infection in the skin, through infection of the joints, to post-infectious chronic inflammatory arthritis. The central feature of post-infectious Lyme arthritis is an excessive, dysregulated pro-inflammatory immune response during the infection phase that persists into the post-infectious period. This response is characterized by high amounts of IFNγ and inadequate amounts of the anti-inflammatory cytokine IL-10. The consequences of this dysregulated pro-inflammatory response in the synovium include impaired tissue repair, vascular damage, autoimmune and cytotoxic processes, and fibroblast proliferation and fibrosis. These synovial characteristics are similar to those in other chronic inflammatory arthritides, including rheumatoid arthritis. Thus, post-infectious Lyme arthritis provides a model for other chronic autoimmune or autoinflammatory arthritides in which complex immune responses can be triggered and shaped by an infectious agent in concert with host genetic factors.

Key points

  • A combination of spirochaetal and host genetic factors shape the outcome of Lyme arthritis, which ranges from mild, antibiotic-responsive joint inflammation to persistent, antibiotic-refractory autoinflammatory or autoimmune synovitis.

  • Certain highly inflammatory strains of Borrelia burgdorferi most commonly found in north-eastern USA are present at an increased frequency among patients who subsequently develop post-infectious Lyme arthritis.

  • The histology of post-infectious Lyme arthritis synovia is similar to that in other chronic inflammatory arthritides, such as rheumatoid arthritis, but there is greater microvascular damage in Lyme arthritis.

  • B. burgdorferi is no longer present in synovia after treatment with antibiotics, but B. burgdorferi peptidoglycan might persist and could be an important promoter of innate immune responses.

  • Dysregulated, excessive IFNγ responses and inadequate amounts of the anti-inflammatory cytokine IL-10 are a central feature of post-infectious Lyme arthritis, and contribute to persistent inflammation and the development of autoimmunity.

  • Synovial fibroblasts, the most common cell in the synovial lesion, become immune effector cells capable of altering the innate and adaptive immune microenvironment in Lyme arthritis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Geographic distribution of Borrelia burgdorferi species relevant to human disease.
Fig. 2: Lyme arthritis stages and characteristics.
Fig. 3: Spirochaete invasion into joint tissue.
Fig. 4: Stages of arthritis and proposed tissue repair in antibiotic-responsive Lyme arthritis.
Fig. 5: Microvascular involvement in the synovial lesion of post-infectious Lyme arthritis.
Fig. 6: Cellular architecture of the post-infectious Lyme arthritis synovial lesion.

Similar content being viewed by others

References

  1. von Herrath, M. G., Fujinami, R. S. & Whitton, J. L. Microorganisms and autoimmunity: making the barren field fertile? Nat. Rev. Microbiol. 1, 151–157 (2003).

    Article  CAS  Google Scholar 

  2. Steere, A. C. et al. Lyme borreliosis. Nat. Rev. Dis. Prim. 2, 16090 (2016).

    Article  PubMed  Google Scholar 

  3. Steere, A. C. Lyme disease. N. Engl. J. Med. 321, 586–596 (1989).

    Article  CAS  PubMed  Google Scholar 

  4. Radolf, J. D., Strle, K., Lemieux, J. E. & Strle, F. Lyme disease in humans. Curr. Issues Mol. Biol. 42, 333–384 (2021).

    PubMed  Google Scholar 

  5. Steere, A. C., Schoen, R. T. & Taylor, E. The clinical evolution of Lyme arthritis. Ann. Intern. Med. 107, 725–731 (1987).

    Article  CAS  PubMed  Google Scholar 

  6. Miller, J. B. & Aucott, J. N. Stages of Lyme arthritis. J. Clin. Rheumatol. https://doi.org/10.1097/RHU.0000000000001513 (2020).

    Article  Google Scholar 

  7. Arvikar, S. L. & Steere, A. C. Diagnosis and treatment of Lyme arthritis. Infect. Dis. Clin. North. Am. 29, 269–280 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Steere, A. C. & Angelis, S. M. Therapy for Lyme arthritis: strategies for the treatment of antibiotic-refractory arthritis. Arthritis Rheum. 54, 3079–3086 (2006).

    Article  CAS  PubMed  Google Scholar 

  9. Lochhead, R. B. et al. MicroRNA expression shows inflammatory dysregulation and tumor-like proliferative responses in joints of patients with post-infectious Lyme arthritis. Arthritis Rheumatol. 69, 1100–1110 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Lochhead, R. B. et al. Robust interferon signature and suppressed tissue repair gene expression in synovial tissue from patients with postinfectious, Borrelia burgdorferi-induced Lyme arthritis. Cell Microbiol. 21, e12954 (2019).

    PubMed  Google Scholar 

  11. Drouin, E. E. et al. A novel human autoantigen, endothelial cell growth factor, is a target of T and B cell responses in patients with Lyme disease. Arthritis Rheum. 65, 186–196 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Londono, D. et al. Antibodies to endothelial cell growth factor and obliterative microvascular lesions in the synovium of patients with antibiotic-refractory Lyme arthritis. Arthritis Rheumatol. 66, 2124–2133 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Pianta, A. et al. Annexin A2 is a target of autoimmune T and B cell responses associated with synovial fibroblast proliferation in patients with antibiotic-refractory Lyme arthritis. Clin. Immunol. 160, 336–341 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Crowley, J. T. et al. A highly expressed human protein, apolipoprotein B-100, serves as an autoantigen in a subgroup of patients with Lyme disease. J. Infect. Dis. 212, 1841–1850 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Crowley, J. T. et al. Matrix metalloproteinase-10 is a target of T and B cell responses that correlate with synovial pathology in patients with antibiotic-refractory Lyme arthritis. J. Autoimmun. 69, 24–37 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Tang, K. S., Klempner, M. S., Wormser, G. P., Marques, A. R. & Alaedini, A. Association of immune response to endothelial cell growth factor with early disseminated and late manifestations of Lyme disease but not posttreatment Lyme disease syndrome. Clin. Infect. Dis. 61, 1703–1706 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Lantos, P. M. et al. Clinical practice guidelines by the Infectious Diseases Society of America (IDSA), American Academy of Neurology (AAN), and American College of Rheumatology (ACR): 2020 guidelines for the prevention, diagnosis and treatment of Lyme disease. Clin. Infect. Dis. 72, e1–e48 (2021).

    Article  CAS  PubMed  Google Scholar 

  18. Schoen, R. T., Aversa, J. M., Rahn, D. W. & Steere, A. C. Treatment of refractory chronic Lyme arthritis with arthroscopic synovectomy. Arthritis Rheum. 34, 1056–1060 (1991).

    Article  CAS  PubMed  Google Scholar 

  19. Steere, A. C. & Glickstein, L. Elucidation of Lyme arthritis. Nat. Rev. Immunol. 4, 143–152 (2004).

    Article  CAS  PubMed  Google Scholar 

  20. Barthold, S. W., Beck, D. S., Hansen, G. M., Terwilliger, G. A. & Moody, K. D. Lyme borreliosis in selected strains and ages of laboratory mice. J. Infect. Dis. 162, 133–138 (1990).

    Article  CAS  PubMed  Google Scholar 

  21. Ma, Y. et al. Distinct characteristics of resistance to Borrelia burgdorferi-induced arthritis in C57BL/6 N mice. Infect. Immun. 66, 161–168 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Ma, Y. et al. Interval-specific congenic lines reveal quantitative trait loci with penetrant lyme arthritis phenotypes on chromosomes 5, 11, and 12. Infect. Immun. 77, 3302–3311 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Bockenstedt, L. K., Wooten, R. M. & Baumgarth, N. Immune response to Borrelia: lessons from Lyme disease spirochetes. Curr. Issues Mol. Biol. 42, 145–190 (2021).

    PubMed  Google Scholar 

  24. Li, X. et al. Burden and viability of Borrelia burgdorferi in skin and joints of patients with erythema migrans or Lyme arthritis. Arthritis Rheum. 63, 2238–2247 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Mullegger, R. R. et al. Differential expression of cytokine mRNA in skin specimens from patients with erythema migrans or acrodermatitis chronica atrophicans. J. Invest. Dermatol. 115, 1115–1123 (2000).

    Article  CAS  PubMed  Google Scholar 

  26. Salazar, J. C. et al. Coevolution of markers of innate and adaptive immunity in skin and peripheral blood of patients with erythema migrans. J. Immunol. 171, 2660–2670 (2003).

    Article  CAS  PubMed  Google Scholar 

  27. Marques, A. et al. Transcriptome assessment of erythema migrans skin lesions in patients with early Lyme disease reveals predominant interferon signaling. J. Infect. Dis. 217, 158–167 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Coburn, J., Magoun, L., Bodary, S. C. & Leong, J. M. Integrins αvβ3 and α5β1 mediate attachment of Lyme disease spirochetes to human cells. Infect. Immun. 66, 1946–1952 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Caine, J. A. & Coburn, J. Multifunctional and redundant roles of Borrelia burgdorferi outer surface proteins in tissue adhesion, colonization, and complement evasion. Front. Immunol. 7, 442 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Ristow, L. C. et al. Integrin binding by Borrelia burgdorferi P66 facilitates dissemination but is not required for infectivity. Cell Microbiol. 17, 1021–1036 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Comstock, L. E. & Thomas, D. D. Characterization of Borrelia burgdorferi invasion of cultured endothelial cells. Microb. Pathog. 10, 137–148 (1991).

    Article  CAS  PubMed  Google Scholar 

  32. Zambrano, M. C., Beklemisheva, A. A., Bryksin, A. V., Newman, S. A. & Cabello, F. C. Borrelia burgdorferi binds to, invades, and colonizes native type I collagen lattices. Infect. Immun. 72, 3138–3146 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Tupin, E. et al. NKT cells prevent chronic joint inflammation after infection with Borrelia burgdorferi. Proc. Natl Acad. Sci. USA 105, 19863–19868 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Jones, K. L. et al. Strong IgG antibody responses to Borrelia burgdorferi glycolipids in patients with Lyme arthritis, a late manifestation of the infection. Clin. Immunol. 132, 93–102 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Lee, W. Y. et al. An intravascular immune response to Borrelia burgdorferi involves Kupffer cells and iNKT cells. Nat. Immunol. 11, 295–302 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Kinjo, Y. et al. Natural killer T cells recognize diacylglycerol antigens from pathogenic bacteria. Nat. Immunol. 7, 978–986 (2006).

    Article  CAS  PubMed  Google Scholar 

  37. Reinink, P. et al. CD1b presents self and Borrelia burgdorferi diacylglycerols to human T cells. Eur. J. Immunol. 49, 737–746 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Seinost, G. et al. Four clones of Borrelia burgdorferi sensu stricto cause invasive infection in humans. Infect. Immun. 67, 3518–3524 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Wormser, G. P. et al. Borrelia burgdorferi genotype predicts the capacity for hematogenous dissemination during early Lyme disease. J. Infect. Dis. 198, 1358–1364 (2008).

    Article  PubMed  Google Scholar 

  40. Petzke, M. M. et al. Global transcriptome analysis identifies a diagnostic signature for early disseminated Lyme disease and its resolution. mBio 11, e00047-20 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  41. Strle, K., Shin, J. J., Glickstein, L. J. & Steere, A. C. Association of a Toll-like receptor 1 polymorphism with heightened Th1 inflammatory responses and antibiotic-refractory Lyme arthritis. Arthritis Rheum. 64, 1497–1507 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Strle, K., Jones, K. L., Drouin, E. E., Li, X. & Steere, A. C. Borrelia burgdorferi RST1 (OspC type A) genotype is associated with greater inflammation and more severe Lyme disease. Am. J. Pathol. 178, 2726–2739 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Strle, K. et al. T-helper 17 cell cytokine responses in Lyme disease correlate with Borrelia burgdorferi antibodies during early infection and with autoantibodies late in the illness in patients with antibiotic-refractory Lyme arthritis. Clin. Infect. Dis. 64, 930–938 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Lin, Y. P. et al. Strain-specific joint invasion and colonization by Lyme disease spirochetes is promoted by outer surface protein C. PLoS Pathog. 16, e1008516 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Liang, L. et al. Rapid clearance of Borrelia burgdorferi from the blood circulation. Parasit. Vectors 13, 191 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Moriarty, T. J. et al. Real-time high resolution 3D imaging of the Lyme disease spirochete adhering to and escaping from the vasculature of a living host. PLoS Pathog. 4, e1000090 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Hyde, J. A. Borrelia burgdorferi keeps moving and carries on: a review of borrelial dissemination and invasion. Front. Immunol. 8, 114 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Guo, B. P., Brown, E. L., Dorward, D. W., Rosenberg, L. C. & Hook, M. Decorin-binding adhesins from Borrelia burgdorferi. Mol. Microbiol. 30, 711–723 (1998).

    Article  CAS  PubMed  Google Scholar 

  49. Duray, P. H. & Steere, A. C. Clinical pathologic correlations of Lyme disease by stage. Ann. N. Y. Acad. Sci. 539, 65–79 (1988).

    Article  CAS  PubMed  Google Scholar 

  50. Lin, Y. P. et al. Strain-specific variation of the decorin-binding adhesin DbpA influences the tissue tropism of the Lyme disease spirochete. PLoS Pathog. 10, e1004238 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Jones, K. L., McHugh, G. A., Glickstein, L. J. & Steere, A. C. Analysis of Borrelia burgdorferi genotypes in patients with Lyme arthritis: high frequency of ribosomal RNA intergenic spacer type 1 strains in antibiotic-refractory arthritis. Arthritis Rheum. 60, 2174–2182 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Steere, A. C., McHugh, G., Damle, N. & Sikand, V. K. Prospective study of serologic tests for Lyme disease. Clin. Infect. Dis. 47, 188–195 (2008).

    Article  PubMed  Google Scholar 

  53. Steere, A. C., Hardin, J. A., Ruddy, S., Mummaw, J. G. & Malawista, S. E. Lyme arthritis: correlation of serum and cryoglobulin IgM with activity, and serum IgG with remission. Arthritis Rheum. 22, 471–483 (1979).

    Article  CAS  PubMed  Google Scholar 

  54. Craft, J. E., Fischer, D. K., Shimamoto, G. T. & Steere, A. C. Antigens of Borrelia burgdorferi recognized during Lyme disease. Appearance of a new immunoglobulin M response and expansion of the immunoglobulin G response late in the illness. J. Clin. Invest. 78, 934–939 (1986).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Alverson, J., Bundle, S. F., Sohaskey, C. D., Lybecker, M. C. & Samuels, D. S. Transcriptional regulation of the ospAB and ospC promoters from Borrelia burgdorferi. Mol. Microbiol. 48, 1665–1677 (2003).

    Article  CAS  PubMed  Google Scholar 

  56. Zhang, J. R., Hardham, J. M., Barbour, A. G. & Norris, S. J. Antigenic variation in Lyme disease borreliae by promiscuous recombination of VMP-like sequence cassettes. Cell 89, 275–285 (1997).

    Article  CAS  PubMed  Google Scholar 

  57. Skare, J. T. & Garcia, B. L. Complement evasion by Lyme disease spirochetes. Trends Microbiol. 28, 889–899 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Miller, J. C., Maylor-Hagen, H., Ma, Y., Weis, J. H. & Weis, J. J. The Lyme disease spirochete Borrelia burgdorferi utilizes multiple ligands, including RNA, for interferon regulatory factor 3-dependent induction of type I interferon-responsive genes. Infect. Immun. 78, 3144–3153 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Lochhead, R. B. et al. Endothelial cells and fibroblasts amplify the arthritogenic type I IFN response in murine Lyme disease and are major sources of chemokines in Borrelia burgdorferi-infected joint tissue. J. Immunol. 189, 2488–2501 (2012).

    Article  CAS  PubMed  Google Scholar 

  60. Crandall, H. et al. Gene expression profiling reveals unique pathways associated with differential severity of Lyme arthritis. J. Immunol. 177, 7930–7942 (2006).

    Article  CAS  PubMed  Google Scholar 

  61. Crow, M. K. & Ronnblom, L. Type I interferons in host defence and inflammatory diseases. Lupus Sci. Med. 6, e000336 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  62. Nocton, J. J. et al. Detection of Borrelia burgdorferi DNA by polymerase chain reaction in synovial fluid from patients with Lyme arthritis. N. Engl. J. Med. 330, 229–234 (1994).

    Article  CAS  PubMed  Google Scholar 

  63. Shin, J. J., Glickstein, L. J. & Steere, A. C. High levels of inflammatory chemokines and cytokines in joint fluid and synovial tissue throughout the course of antibiotic-refractory Lyme arthritis. Arthritis Rheum. 56, 1325–1335 (2007).

    Article  CAS  PubMed  Google Scholar 

  64. Kannian, P. et al. Antibody responses to Borrelia burgdorferi in patients with antibiotic-refractory, antibiotic-responsive, or non-antibiotic-treated Lyme arthritis. Arthritis Rheum. 56, 4216–4225 (2007).

    Article  CAS  PubMed  Google Scholar 

  65. Barbour, A. G. et al. A genome-wide proteome array reveals a limited set of immunogens in natural infections of humans and white-footed mice with Borrelia burgdorferi. Infect. Immun. 76, 3374–3389 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Xu, Y., Bruno, J. F. & Luft, B. J. Profiling the humoral immune response to Borrelia burgdorferi infection with protein microarrays. Microb. Pathog. 45, 403–407 (2008).

    Article  CAS  PubMed  Google Scholar 

  67. Li, X. et al. Tick-specific borrelial antigens appear to be upregulated in American but not European patients with Lyme arthritis, a late manifestation of Lyme borreliosis. J. Infect. Dis. 208, 934–941 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  68. Crowley, H. & Huber, B. T. Host-adapted Borrelia burgdorferi in mice expresses OspA during inflammation. Infect. Immun. 71, 4003–4010 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Gross, D. M., Steere, A. C. & Huber, B. T. T helper 1 response is dominant and localized to the synovial fluid in patients with Lyme arthritis. J. Immunol. 160, 1022–1028 (1998).

    CAS  PubMed  Google Scholar 

  70. Lochhead, R. B. et al. Interferon-gamma production in Lyme arthritis synovial tissue promotes differentiation of fibroblast-like synoviocytes into immune effector cells. Cell Microbiol. 21, e12992 (2019).

    PubMed  PubMed Central  Google Scholar 

  71. Vudattu, N. K., Strle, K., Steere, A. C. & Drouin, E. E. Dysregulation of CD4+CD25high T cells in the synovial fluid of patients with antibiotic-refractory Lyme arthritis. Arthritis Rheum. 65, 1643–1653 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Sulka, K. B. et al. Lyme disease-associated IgG4 autoantibodies correlate with synovial pathology in antibiotic-refractory Lyme arthritis. Arthritis Rheumatol. 70, 1835–1846 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Bolz, D. D. et al. MyD88 plays a unique role in host defense but not arthritis development in Lyme disease. J. Immunol. 173, 2003–2010 (2004).

    Article  CAS  PubMed  Google Scholar 

  74. Wooten, R. M. et al. Toll-like receptor 2 is required for innate, but not acquired, host defense to Borrelia burgdorferi. J. Immunol. 168, 348–355 (2002).

    Article  CAS  PubMed  Google Scholar 

  75. Alexopoulou, L. et al. Hyporesponsiveness to vaccination with Borrelia burgdorferi OspA in humans and in TLR1- and TLR2-deficient mice. Nat. Med. 8, 878–884 (2002).

    Article  CAS  PubMed  Google Scholar 

  76. Hirschfeld, M. et al. Cutting edge: inflammatory signaling by Borrelia burgdorferi lipoproteins is mediated by Toll-like receptor 2. J. Immunol. 163, 2382–2386 (1999).

    CAS  PubMed  Google Scholar 

  77. Bramwell, K. K. et al. Lysosomal β-glucuronidase regulates Lyme and rheumatoid arthritis severity. J. Clin. Invest. 124, 311–320 (2014).

    Article  CAS  PubMed  Google Scholar 

  78. Bramwell, K. K. et al. β-Glucuronidase, a regulator of Lyme arthritis severity, modulates lysosomal trafficking and MMP-9 secretion in response to inflammatory stimuli. J. Immunol. 195, 1647–1656 (2015).

    Article  CAS  PubMed  Google Scholar 

  79. Ma, Y. et al. Borrelia burgdorferi arthritis-associated locus Bbaa1 regulates Lyme arthritis and K/BxN serum transfer arthritis through intrinsic control of type I IFN production. J. Immunol. 193, 6050–6060 (2014).

    Article  CAS  PubMed  Google Scholar 

  80. Paquette, J. K. et al. Genetic control of Lyme arthritis by Borrelia burgdorferi arthritis-associated locus 1 Is dependent on localized differential production of IFN-β and requires upregulation of myostatin. J. Immunol. 199, 3525–3534 (2017).

    Article  CAS  PubMed  Google Scholar 

  81. Miller, J. C. et al. A critical role for type I IFN in arthritis development following Borrelia burgdorferi infection of mice. J. Immunol. 181, 8492–8503 (2008).

    Article  CAS  PubMed  Google Scholar 

  82. Bockenstedt, L. K., Gonzalez, D. G., Haberman, A. M. & Belperron, A. A. Spirochete antigens persist near cartilage after murine Lyme borreliosis therapy. J. Clin. Invest. 122, 2652–2660 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Bockenstedt, L. K. & Wormser, G. P. Review: unraveling Lyme disease. Arthritis Rheumatol. 66, 2313–2323 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Johnston, Y. E. et al. Lyme arthritis. Spirochetes found in synovial microangiopathic lesions. Am. J. Pathol. 118, 26–34 (1985).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Steere, A. C., Duray, P. H. & Butcher, E. C. Spirochetal antigens and lymphoid cell surface markers in Lyme synovitis. Comparison with rheumatoid synovium and tonsillar lymphoid tissue. Arthritis Rheum. 31, 487–495 (1988).

    Article  CAS  PubMed  Google Scholar 

  86. Akin, E., Aversa, J. & Steere, A. C. Expression of adhesion molecules in synovia of patients with treatment-resistant Lyme arthritis. Infect. Immun. 69, 1774–1780 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Muehlenbachs, A. et al. Cardiac tropism of Borrelia burgdorferi: An autopsy study of sudden cardiac death associated with Lyme carditis. Am. J. Pathol. 186, 1195–1205 (2016).

    Article  PubMed  Google Scholar 

  88. Cadavid, D. et al. Cardiac involvement in non-human primates infected with the Lyme disease spirochete Borrelia burgdorferi. Lab. Invest. 84, 1439–1450 (2004).

    Article  PubMed  Google Scholar 

  89. Cadavid, D. et al. Infection and inflammation in skeletal muscle from nonhuman primates infected with different genospecies of the Lyme disease spirochete Borrelia burgdorferi. Infect. Immun. 71, 7087–7098 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Casselli, T. et al. A murine model of Lyme disease demonstrates that Borrelia burgdorferi colonizes the dura mater and induces inflammation in the central nervous system. PLoS Pathog. 17, e1009256 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Lawson, J. P. & Steere, A. C. Lyme arthritis: radiologic findings. Radiology 154, 37–43 (1985).

    Article  CAS  PubMed  Google Scholar 

  92. Steere, A. C. Posttreatment Lyme disease syndromes: distinct pathogenesis caused by maladaptive host responses. J. Clin. Invest. 130, 2148–2151 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Jones, K. L. et al. Borrelia burgdorferi genetic markers and disseminated disease in patients with early Lyme disease. J. Clin. Microbiol. 44, 4407–4413 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Hanincova, K. et al. Multilocus sequence typing of Borrelia burgdorferi suggests existence of lineages with differential pathogenic properties in humans. PLoS ONE 8, e73066 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Cerar, T. et al. Differences in genotype, clinical features, and inflammatory potential of Borrelia burgdorferi sensu stricto strains from Europe and the United States. Emerg. Infect. Dis. 22, 818–827 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Grillon, A. et al. Characteristics and clinical outcomes after treatment of a national cohort of PCR-positive Lyme arthritis. Semin. Arthritis Rheum. 48, 1105–1112 (2019).

    Article  PubMed  Google Scholar 

  97. Jutras, B. L. et al. Borrelia burgdorferi peptidoglycan is a persistent antigen in patients with Lyme arthritis. Proc. Natl Acad. Sci. USA 116, 13498–13507 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Hawn, T. R. et al. A common human TLR1 polymorphism regulates the innate immune response to lipopeptides. Eur. J. Immunol. 37, 2280–2289 (2007).

    Article  CAS  PubMed  Google Scholar 

  99. Johnson, C. M. et al. Cutting edge: a common polymorphism impairs cell surface trafficking and functional responses of TLR1 but protects against leprosy. J. Immunol. 178, 7520–7524 (2007).

    Article  CAS  PubMed  Google Scholar 

  100. Lochhead, R. B. et al. MicroRNA-146a provides feedback regulation of Lyme arthritis but not carditis during infection with Borrelia burgdorferi. PLoS Pathog. 10, e1004212 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  101. Sahay, B. et al. Induction of interleukin 10 by Borrelia burgdorferi is regulated by the action of CD14-dependent p38 mitogen-activated protein kinase and cAMP-mediated chromatin remodeling. Infect. Immun. 86, e00781-17 (2018).

  102. Steere, A. C. et al. Antibiotic-refractory Lyme arthritis is associated with HLA-DR molecules that bind a Borrelia burgdorferi peptide. J. Exp. Med. 203, 961–971 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Iliopoulou, B. P., Guerau-De-Arellano, M. & Huber, B. T. HLA-DR alleles determine responsiveness to Borrelia burgdorferi antigens in a mouse model of self-perpetuating arthritis. Arthritis Rheum. 60, 3831–3840 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Vicente, R., Noel, D., Pers, Y. M., Apparailly, F. & Jorgensen, C. Deregulation and therapeutic potential of microRNAs in arthritic diseases. Nat. Rev. Rheumatol. 12, 211–220 (2016).

    Article  CAS  PubMed  Google Scholar 

  105. Lochhead, R. B. et al. Antagonistic interplay between microRNA-155 and IL-10 during Lyme carditis and arthritis. PLoS ONE 10, e0135142 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  106. Shen, S. et al. Treg cell numbers and function in patients with antibiotic-refractory or antibiotic-responsive Lyme arthritis. Arthritis Rheum. 62, 2127–2137 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Siebers, E. M., Liedhegner, E. S., Lawlor, M. W., Schell, R. F. & Nardelli, D. T. Regulatory T cells contribute to resistance against Lyme arthritis. Infect. Immun. 88, e00160-20 (2020).

  108. Iliopoulou, B. P., Alroy, J. & Huber, B. T. Persistent arthritis in Borrelia burgdorferi-infected HLA-DR4-positive CD28-negative mice post-antibiotic treatment. Arthritis Rheum. 58, 3892–3901 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  109. Sonderegger, F. L. et al. Localized production of IL-10 suppresses early inflammatory cell infiltration and subsequent development of IFN-γ-mediated Lyme arthritis. J. Immunol. 188, 1381–1393 (2012).

    Article  CAS  PubMed  Google Scholar 

  110. Whiteside, S. K. et al. IL-10 deficiency reveals a role for TLR2-dependent bystander activation of T cells in Lyme arthritis. J. Immunol. 200, 1457–1470 (2018).

    Article  CAS  PubMed  Google Scholar 

  111. Park, H. et al. A distinct lineage of CD4 T cells regulates tissue inflammation by producing interleukin 17. Nat. Immunol. 6, 1133–1141 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Wang, Q. et al. Immunogenic HLA-DR-presented self-peptides identified directly from clinical samples of synovial tissue, synovial fluid, or peripheral blood in patients with rheumatoid arthritis or Lyme arthritis. J. Proteome Res. 16, 122–136 (2017).

    Article  CAS  PubMed  Google Scholar 

  113. Gutierrez-Hoffmann, M. G. et al. Borrelia burgdorferi-induced changes in the class II self-immunopeptidome displayed on HLA-DR molecules expressed by dendritic cells. Front. Med. 7, 568 (2020).

    Article  Google Scholar 

  114. Danzer, H. et al. Human Fcγ-receptor IIb modulates pathogen-specific versus self-reactive antibody responses in Lyme arthritis. eLife 9, e55319 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Deane, K. D. & Holers, V. M. Rheumatoid arthritis pathogenesis, prediction, and prevention: an emerging paradigm shift. Arthritis Rheumatol. 73, 181–193 (2021).

    Article  PubMed  Google Scholar 

  116. O’Neil, L. J. et al. Association of a serum protein signature with rheumatoid arthritis development. Arthritis Rheumatol. 73, 78–88 (2021).

    Article  PubMed  CAS  Google Scholar 

  117. van Delft, M. A. M. et al. The isotype and IgG subclass distribution of anti-carbamylated protein antibodies in rheumatoid arthritis patients. Arthritis Res. Ther. 19, 190 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  118. Chapuy-Regaud, S. et al. IgG subclass distribution of the rheumatoid arthritis-specific autoantibodies to citrullinated fibrin. Clin. Exp. Immunol. 139, 542–550 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Chen, L. F. et al. Elevated serum IgG4 defines specific clinical phenotype of rheumatoid arthritis. Mediators Inflamm. 2014, 635293 (2014).

    PubMed  PubMed Central  Google Scholar 

  120. Divan, A., Budd, R. C., Tobin, R. P. & Newell-Rogers, M. K. γδ T Cells and dendritic cells in refractory Lyme arthritis. J. Leukoc. Biol. 97, 653–663 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Katchar, K., Drouin, E. E. & Steere, A. C. Natural killer cells and natural killer T cells in Lyme arthritis. Arthritis Res. Ther. 15, R183 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  122. Viatte, S., Plant, D. & Raychaudhuri, S. Genetics and epigenetics of rheumatoid arthritis. Nat. Rev. Rheumatol. 9, 141–153 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Carmona-Rivera, C. et al. Synovial fibroblast-neutrophil interactions promote pathogenic adaptive immunity in rheumatoid arthritis. Sci. Immunol. 2, eaag3358 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  124. Ai, R. et al. Comprehensive epigenetic landscape of rheumatoid arthritis fibroblast-like synoviocytes. Nat. Commun. 9, 1921 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  125. Zhang, F. et al. Defining inflammatory cell states in rheumatoid arthritis joint synovial tissues by integrating single-cell transcriptomics and mass cytometry. Nat. Immunol. 20, 928–942 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  126. Klareskog, L., Catrina, A. I. & Paget, S. Rheumatoid arthritis. Lancet 373, 659–672 (2009).

    Article  CAS  PubMed  Google Scholar 

  127. Potempa, J., Mydel, P. & Koziel, J. The case for periodontitis in the pathogenesis of rheumatoid arthritis. Nat. Rev. Rheumatol. 13, 606–620 (2017).

    Article  CAS  PubMed  Google Scholar 

  128. Arvikar, S. L. et al. Periodontal inflammation and distinct inflammatory profiles in saliva and GCF compared with serum and joints in rheumatoid arthritis patients. J. Periodontol. https://doi.org/10.1002/JPER.20-0051 (2021).

    Article  PubMed  Google Scholar 

  129. Scher, J. U. et al. Expansion of intestinal Prevotella copri correlates with enhanced susceptibility to arthritis. eLife 2, e01202 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  130. Pianta, A. et al. Two rheumatoid arthritis-specific autoantigens correlate microbial immunity with autoimmune responses in joints. J. Clin. Invest. 127, 2946–2956 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  131. Gracey, E. et al. Revisiting the gut-joint axis: links between gut inflammation and spondyloarthritis. Nat. Rev. Rheumatol. 16, 415–433 (2020).

    Article  PubMed  Google Scholar 

  132. Viladomiu, M. et al. IgA-coated E. coli enriched in Crohn’s disease spondyloarthritis promote TH17-dependent inflammation. Sci. Transl. Med. 9, eaaf9655 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  133. Yan, D. et al. The role of the skin and gut microbiome in psoriatic disease. Curr. Dermatol. Rep. 6, 94–103 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  134. Gladman, D. D., Antoni, C., Mease, P., Clegg, D. O. & Nash, P. Psoriatic arthritis: epidemiology, clinical features, course, and outcome. Ann. Rheum. Dis. 64, ii14–ii17 (2005).

    PubMed  PubMed Central  Google Scholar 

  135. Kurokawa, C. et al. Interactions between Borrelia burgdorferi and ticks. Nat. Rev. Microbiol. 18, 587–600 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Arvikar, S. L., Crowley, J. T., Sulka, K. B. & Steere, A. C. Autoimmune arthritides, rheumatoid arthritis, psoriatic arthritis, or peripheral spondyloarthritis following Lyme disease. Arthritis Rheumatol. 69, 194–202 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Steere, A.C. in Rheumatology 7th Edn (eds Hochberg, M. et al) Vol. 963 (Elsevier, 2019).

Download references

Author information

Authors and Affiliations

Authors

Contributions

R.B.L., K.S., J.J.W. and A.C.S. researched data for this article. All authors provided substantial contributions to discussion of content, wrote the article and reviewed and/or edited the manuscript before submission.

Corresponding author

Correspondence to Allen C. Steere.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Rheumatology thanks F. Bao, C. Brown and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lochhead, R.B., Strle, K., Arvikar, S.L. et al. Lyme arthritis: linking infection, inflammation and autoimmunity. Nat Rev Rheumatol 17, 449–461 (2021). https://doi.org/10.1038/s41584-021-00648-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41584-021-00648-5

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing