Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Biological classification of childhood arthritis: roadmap to a molecular nomenclature

A Publisher Correction to this article was published on 29 March 2021

This article has been updated

Abstract

Chronic inflammatory arthritis in childhood is heterogeneous in presentation and course. Most forms exhibit clinical and genetic similarity to arthritis of adult onset, although at least one phenotype might be restricted to children. Nevertheless, paediatric and adult rheumatologists have historically addressed disease classification separately, yielding a juvenile idiopathic arthritis (JIA) nomenclature that exhibits no terminological overlap with adult-onset arthritis. Accumulating clinical, genetic and mechanistic data reveal the critical limitations of this strategy, necessitating a new approach to defining biological categories within JIA. In this Review, we provide an overview of the current evidence for biological subgroups of arthritis in children, delineate forms that seem contiguous with adult-onset arthritis, and consider integrative genetic and bioinformatic strategies to identify discrete entities within inflammatory arthritis across all ages.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The epidemiology of juvenile idiopathic arthritis.
Fig. 2: The evolution of classification criteria for childhood-onset arthritis.
Fig. 3: Current arthritis classification in children and adults.
Fig. 4: Biological fault lines in arthritis.
Fig. 5: Proposed subdivisions within arthritis: PRINTO and the four-cluster model.

Similar content being viewed by others

Change history

References

  1. Myasoedova, E., Crowson, C. S., Kremers, H. M., Therneau, T. M. & Gabriel, S. E. Is the incidence of rheumatoid arthritis rising?: results from Olmsted County, Minnesota, 1955–2007. Arthritis Rheum. 62, 1576–1582 (2010).

    PubMed  PubMed Central  Google Scholar 

  2. Eriksson, J. K. et al. Incidence of rheumatoid arthritis in Sweden: a nationwide population-based assessment of incidence, its determinants, and treatment penetration. Arthritis Care Res. 65, 870–878 (2013).

    Google Scholar 

  3. Taurog, J. D., Chhabra, A. & Colbert, R. A. Ankylosing spondylitis and axial spondyloarthritis. N. Engl. J. Med. 374, 2563–2574 (2016).

    PubMed  Google Scholar 

  4. Nigrovic, P. A. & Schneider, R. in Textbook of Autoinflammation (eds Hashkes, P. J., Laxer, R. M. & Simon, A.) 587–616 (Springer Nature, 2019).

  5. Ravelli, A. & Martini, A. Juvenile idiopathic arthritis. Lancet 369, 767–778 (2007).

    CAS  PubMed  Google Scholar 

  6. Consolaro, A. et al. Phenotypic variability and disparities in treatment and outcomes of childhood arthritis throughout the world: an observational cohort study. Lancet Child. Adolesc. Health 3, 255–263 (2019).

    PubMed  Google Scholar 

  7. Still, G. F. On a form of chronic joint disease in children. Med. Chir. Trans. 80, 47–60 (1897).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Ansell, B. M. & Bywaters, E. G. Prognosis in Still’s disease. Bull. Rheum. Dis. 9, 189–192 (1959).

    CAS  PubMed  Google Scholar 

  9. Bywaters, E. G. Heberden Oration, 1966. Categorization in medicine: a survey of Still’s disease. Ann. Rheum. Dis. 26, 185–193 (1967).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Ansell, B. M. Heberden Oration, 1977. Chronic arthritis in childhood. Ann. Rheum. Dis. 37, 107–120 (1978).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Criteria for the classification of juvenile rheumatoid arthritis. Bull. Rheum. Dis. 23, 712-719 (1972).

  12. Brewer, E. J. Jr et al. Current proposed revision of JRA Criteria. JRA criteria subcommittee of the diagnostic and therapeutic criteria committee of the american rheumatism section of The Arthritis Foundation. Arthritis Rheum. 20, 195–199 (1977).

    PubMed  Google Scholar 

  13. Cassidy, J. T. et al. A study of classification criteria for a diagnosis of juvenile rheumatoid arthritis. Arthritis Rheum. 29, 274–281 (1986).

    CAS  PubMed  Google Scholar 

  14. Wood, P. H. N. in The Care of Rheumatic Children (ed. Munthe, E.) 47–50 (EULAR Publishers, 1978).

  15. Woo, P. & Wedderburn, L. R. Juvenile chronic arthritis. Lancet 351, 969–973 (1998).

    CAS  PubMed  Google Scholar 

  16. Rosenberg, A. M. & Petty, R. E. A syndrome of seronegative enthesopathy and arthropathy in children. Arthritis Rheum. 25, 1041–1047 (1982).

    CAS  PubMed  Google Scholar 

  17. Petty, R. E. et al. International League of Associations for Rheumatology classification of juvenile idiopathic arthritis: second revision, Edmonton, 2001. J. Rheumatol. 31, 390–392 (2004).

    PubMed  Google Scholar 

  18. Nigrovic, P. A., Raychaudhuri, S. & Thompson, S. D. Genetics and the classification of arthritis in adults and children. Arthritis Rheumatol. 70, 7–17 (2018).

    PubMed  Google Scholar 

  19. Martini, A. Are the number of joints involved or the presence of psoriasis still useful tools to identify homogeneous disease entities in juvenile idiopathic arthritis? J. Rheumatol. 30, 1900–1903 (2003).

    PubMed  Google Scholar 

  20. Martini, A. It is time to rethink juvenile idiopathic arthritis classification and nomenclature. Ann. Rheum. Dis. 71, 1437–1439 (2012).

    PubMed  Google Scholar 

  21. European Commission. Commission to the European Parliament and the Council. State of Paediatric Medicines in the EU: 10 years of the EU Paediatric Regulation. https://ec.europa.eu/health/sites/health/files/files/paediatrics/docs/2017_childrensmedicines_report_en.pdf (2017).

  22. Ruperto, N. & Martini, A. Current and future perspectives in the management of juvenile idiopathic arthritis. Lancet Child. Adolesc. Health 2, 360–370 (2018).

    PubMed  Google Scholar 

  23. Schaller, J. G. The history of pediatric rheumatology. Pediatr. Res. 58, 997–1007 (2005).

    PubMed  Google Scholar 

  24. Beukelman, T. & Nigrovic, P. A. Juvenile idiopathic arthritis: an idea whose time has gone? J. Rheumatol. 46, 124–126 (2019).

    PubMed  Google Scholar 

  25. Martini, A. et al. Toward new classification criteria for juvenile idiopathic arthritis: first steps, pediatric rheumatology international trials organization international consensus. J. Rheumatol. 46, 190–197 (2019).

    PubMed  Google Scholar 

  26. Nigrovic, P. A. et al. Anakinra as first-line disease-modifying therapy in systemic juvenile idiopathic arthritis: report of forty-six patients from an international multicenter series. Arthritis Rheum. 63, 545–555 (2011).

    CAS  PubMed  Google Scholar 

  27. Ter Haar, N. M. et al. Treatment to target using recombinant interleukin-1 receptor antagonist as first-line monotherapy in new-onset systemic juvenile idiopathic arthritis: results from a five-year follow-up study. Arthritis Rheumatol. 71, 1163–1173 (2019).

    PubMed  PubMed Central  Google Scholar 

  28. Behrens, E. M., Beukelman, T. & Cron, R. Q. Juvenile idiopathic arthritis classification criteria: loopholes and diagnosis software. J. Rheumatol. 34, 234 (2007).

    PubMed  Google Scholar 

  29. DeWitt, E. M. et al. Consensus treatment plans for new-onset systemic juvenile idiopathic arthritis. Arthritis Care Res. 64, 1001–1010 (2012).

    CAS  Google Scholar 

  30. Rumsey, D. G. & Laxer, R. M. The challenges and opportunities of classifying childhood arthritis. Curr. Rheumatol. Rep. 22, 4 (2020).

    PubMed  Google Scholar 

  31. Guzman, J., Burgos-Vargas, R., Duarte-Salazar, C. & Gomez-Mora, P. Reliability of the articular examination in children with juvenile rheumatoid arthritis: interobserver agreement and sources of disagreement. J. Rheumatol. 22, 2331–2336 (1995).

    CAS  PubMed  Google Scholar 

  32. van Gulik, E. C. et al. Juvenile idiopathic arthritis: magnetic resonance imaging of the clinically unaffected knee. Pediatric Radiol. 48, 333–340 (2018).

    Google Scholar 

  33. Magni-Manzoni, S. et al. Ultrasound-detected synovial abnormalities are frequent in clinically inactive juvenile idiopathic arthritis, but do not predict a flare of synovitis. Ann. Rheum. Dis. 72, 223–228 (2013).

    PubMed  Google Scholar 

  34. Al-Matar, M. J. et al. The early pattern of joint involvement predicts disease progression in children with oligoarticular (pauciarticular) juvenile rheumatoid arthritis. Arthritis Rheum. 46, 2708–2715 (2002).

    PubMed  Google Scholar 

  35. Hinks, A. et al. Dense genotyping of immune-related disease regions identifies 14 new susceptibility loci for juvenile idiopathic arthritis. Nat. Genet. 45, 664–669 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Hinks, A. et al. Fine-mapping the MHC locus in juvenile idiopathic arthritis (JIA) reveals genetic heterogeneity corresponding to distinct adult inflammatory arthritic diseases. Ann. Rheum. Dis. 76, 765–772 (2017).

    CAS  PubMed  Google Scholar 

  37. Hollenbach, J. A. et al. Juvenile idiopathic arthritis and HLA class I and class II interactions and age-at-onset effects. Arthritis Rheum. 62, 1781–1791 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Huemer, C. et al. Patterns of joint involvement at onset differentiate oligoarticular juvenile psoriatic arthritis from pauciarticular juvenile rheumatoid arthritis. J. Rheumatol. 29, 1531–1535 (2002).

    PubMed  Google Scholar 

  39. Stoll, M. L. et al. Patients with juvenile psoriatic arthritis comprise two distinct populations. Arthritis Rheum. 54, 3564–3572 (2006).

    PubMed  Google Scholar 

  40. Stoll, M. L., Nigrovic, P. A., Gotte, A. C. & Punaro, M. Clinical comparison of early-onset psoriatic and non-psoriatic oligoarticular juvenile idiopathic arthritis. Clin. Exp. Rheumatol. 29, 582–588 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Eng, S. W. M. et al. Patterns of joint involvement in juvenile idiopathic arthritis and prediction of disease course: a prospective study with multilayer non-negative matrix factorization. PLoS Med. 16, e1002750 (2019).

    PubMed  PubMed Central  Google Scholar 

  42. Ritchlin, C. T., Colbert, R. A. & Gladman, D. D. Psoriatic arthritis. N. Engl. J. Med. 376, 957–970 (2017).

    PubMed  Google Scholar 

  43. Stoll, M. L., Lio, P., Sundel, R. P. & Nigrovic, P. A. Comparison of Vancouver and International League of Associations for Rheumatology classification criteria for juvenile psoriatic arthritis. Arthritis Rheum. 59, 51–58 (2008).

    PubMed  Google Scholar 

  44. Landré-Bouvais, A. J. Doit-on Admettre Une Nouvelle Espèce de Goutte Sous la dénomination d Goutte Asthenique Primitive? PhD thesis, École de Médecine de Paris (1800).

  45. Garrod, A. B. On gout and rheumatism: the differential diagnosis, and the nature of the so-called rheumatic gout. Med. Chir. Trans. 37, 181–220 (1854).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Garrod, A. E. A Treatise on Rheumatism and Rheumatoid Arthritis (Charles Griffin & Co., 1890).

  47. Waaler, E. On the occurrence of a factor in human serum activating the specific agglutination of sheep blood corpuscles. Acta Pathol. Microbiol. Scand. 17, 172–188 (1940).

    CAS  Google Scholar 

  48. Rose, H. M. et al. Differential agglutination of normal and sensitized sheep erythrocytes by sera of patients with rheumatoid arthritis. Proc. Soc. Exp. Biol. Med. 68, 1–6 (1948).

    CAS  PubMed  Google Scholar 

  49. Wright, V. Psoriasis and arthritis. Ann. Rheum. Dis. 15, 348–356 (1956).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Moll, J. M., Haslock, I., Macrae, I. F. & Wright, V. Associations between ankylosing spondylitis, psoriatic arthritis, Reiter’s disease, the intestinal arthropathies, and Behcet’s syndrome. Medicine 53, 343–364 (1974).

    CAS  PubMed  Google Scholar 

  51. Schlosstein, L., Terasaki, P. I., Bluestone, R. & Pearson, C. M. High association of an HL-A antigen, W27, with ankylosing spondylitis. N. Engl. J. Med. 288, 704–706 (1973).

    CAS  PubMed  Google Scholar 

  52. Stastny, P. Association of the B-cell alloantigen DRw4 with rheumatoid arthritis. N. Engl. J. Med. 298, 869–871 (1978).

    CAS  PubMed  Google Scholar 

  53. Ball, J. Enthesopathy of rheumatoid and ankylosing spondylitis. Ann. Rheum. Dis. 30, 213–223 (1971).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Nienhuis, R. L. & Mandema, E. A new serum factor in patients with rheumatoid arthritis; The antiperinuclear factor. Ann. Rheum. Dis. 23, 302–305 (1964).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Schellekens, G. A., de Jong, B. A., van den Hoogen, F. H., van de Putte, L. B. & van Venrooij, W. J. Citrulline is an essential constituent of antigenic determinants recognized by rheumatoid arthritis-specific autoantibodies. J. Clin. Invest. 101, 273–281 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Klareskog, L., Ronnelid, J., Lundberg, K., Padyukov, L. & Alfredsson, L. Immunity to citrullinated proteins in rheumatoid arthritis. Annu. Rev. Immunol. 26, 651–675 (2008).

    CAS  PubMed  Google Scholar 

  57. Chang, M. H. & Nigrovic, P. A. Antibody-dependent and -independent mechanisms of inflammatory arthritis. JCI Insight 4, e125278 (2019).

    PubMed Central  Google Scholar 

  58. Schett, G. et al. Enthesitis: from pathophysiology to treatment. Nat. Rev. Rheumatol. 13, 731–741 (2017).

    CAS  PubMed  Google Scholar 

  59. Simon, D. et al. Structural entheseal lesions in patients with psoriasis are associated with an increased risk of progression to psoriatic arthritis. Arthritis Rheumatol. https://doi.org/10.1002/art.41239 (2020).

    Article  PubMed  Google Scholar 

  60. Sherlock, J. P. et al. IL-23 induces spondyloarthropathy by acting on ROR-γt+ CD3+CD4CD8 entheseal resident T cells. Nat. Med. 18, 1069–1076 (2012).

    CAS  PubMed  Google Scholar 

  61. Cuthbert, R. J. et al. Brief report: group 3 innate lymphoid cells in human enthesis. Arthritis Rheumatol. 69, 1816–1822 (2017).

    CAS  PubMed  Google Scholar 

  62. Gracey, E. et al. Tendon and ligament mechanical loading in the pathogenesis of inflammatory arthritis. Nat. Rev. Rheumatol. 16, 193–207 (2020).

    PubMed  PubMed Central  Google Scholar 

  63. Healy, P. J., Groves, C., Chandramohan, M. & Helliwell, P. S. MRI changes in psoriatic dactylitis–extent of pathology, relationship to tenderness and correlation with clinical indices. Rheumatology 47, 92–95 (2008).

    CAS  PubMed  Google Scholar 

  64. Tuttle, K. S., Vargas, S. O., Callahan, M. J., Bae, D. S. & Nigrovic, P. A. Enthesitis as a component of dactylitis in psoriatic juvenile idiopathic arthritis: histology of an established clinical entity. Pediatr. Rheumatol. Online J. 13, 7 (2015).

    PubMed  PubMed Central  Google Scholar 

  65. Taylor, W. et al. Classification criteria for psoriatic arthritis: development of new criteria from a large international study. Arthritis Rheum. 54, 2665–2673 (2006).

    PubMed  Google Scholar 

  66. Horai, R. et al. Development of chronic inflammatory arthropathy resembling rheumatoid arthritis in interleukin 1 receptor antagonist-deficient mice. J. Exp. Med. 191, 313–320 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Sakaguchi, N. et al. Altered thymic T-cell selection due to a mutation of the ZAP-70 gene causes autoimmune arthritis in mice. Nature 426, 454–460 (2003).

    CAS  PubMed  Google Scholar 

  68. Pekin, T. J. Jr. & Zvaifler, N. J. Hemolytic complement in synovial fluid. J. Clin. Invest. 43, 1372–1382 (1964).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Ruddy, S. & Austen, K. F. The complement system in rheumatoid synovitis. I. An analysis of complement component activities in rheumatoid synovial fluids. Arthritis Rheum. 13, 713–723 (1970).

    CAS  PubMed  Google Scholar 

  70. Rao, D. A. et al. Pathologically expanded peripheral T helper cell subset drives B cells in rheumatoid arthritis. Nature 542, 110–114 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Fischer, J. et al. IL-21+ CD4+ T helper cells co-expressing IFN-gamma and TNF-alpha accumulate in the joints of antinuclear antibody positive patients with juvenile idiopathic arthritis. Clin. Immunol. 217, 108484 (2020).

    CAS  PubMed  Google Scholar 

  72. Holers, V. M. et al. Rheumatoid arthritis and the mucosal origins hypothesis: protection turns to destruction. Nat. Rev. Rheumatol. 14, 542–557 (2018).

    PubMed  PubMed Central  Google Scholar 

  73. Trouw, L. A., Rispens, T. & Toes, R. E. M. Beyond citrullination: other post-translational protein modifications in rheumatoid arthritis. Nat. Rev. Rheumatol. 13, 331–339 (2017).

    CAS  PubMed  Google Scholar 

  74. Nigrovic, P. A., Lee, P. Y. & Hoffman, H. M. Monogenic autoinflammatory disorders: conceptual overview, phenotype, and clinical approach. J. Allergy Clin. Immunol. 146, 925–937 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Ombrello, M. J. et al. HLA-DRB1*11 and variants of the MHC class II locus are strong risk factors for systemic juvenile idiopathic arthritis. Proc. Natl Acad. Sci. USA 112, 15970–15975 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Nigrovic, P. A. Autoinflammation and autoimmunity in systemic juvenile idiopathic arthritis. Proc. Natl Acad. Sci. USA 112, 15785–15786 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Colbert, R. A., Navid, F. & Gill, T. The role of HLA-B*27 in spondyloarthritis. Best Pract. Res. Clin. Rheumatol. 31, 797–815 (2017).

    PubMed  Google Scholar 

  78. Frisell, T. et al. Familial risks and heritability of rheumatoid arthritis: role of rheumatoid factor/anti-citrullinated protein antibody status, number and type of affected relatives, sex, and age. Arthritis Rheum. 65, 2773–2782 (2013).

    CAS  PubMed  Google Scholar 

  79. Langefeld, C. D. et al. Transancestral mapping and genetic load in systemic lupus erythematosus. Nat. Commun. 8, 16021 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Gensler, L. S. et al. Clinical, radiographic and functional differences between juvenile-onset and adult-onset ankylosing spondylitis: results from the PSOAS cohort. Ann. Rheum. Dis. 67, 233–237 (2008).

    CAS  PubMed  Google Scholar 

  81. Prahalad, S. et al. Hierarchy of risk of childhood-onset rheumatoid arthritis conferred by HLA-DRB1 alleles encoding the shared epitope. Arthritis Rheum. 64, 925–930 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Ferucci, E. D. et al. Antibodies against cyclic citrullinated peptide are associated with HLA-DR4 in simplex and multiplex polyarticular-onset juvenile rheumatoid arthritis. Arthritis Rheum. 52, 239–246 (2005).

    CAS  PubMed  Google Scholar 

  83. Hinks, A. et al. Brief report: the genetic profile of rheumatoid factor-positive polyarticular juvenile idiopathic arthritis resembles that of adult rheumatoid arthritis. Arthritis Rheumatol. 70, 957–962 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Nigrovic, P. A. & White, P. H. Care of the adult with juvenile rheumatoid arthritis. Arthritis Rheum. 55, 208–216 (2006).

    PubMed  Google Scholar 

  85. Weiss, P. F., Xiao, R., Biko, D. M. & Chauvin, N. A. Assessment of sacroiliitis at diagnosis of juvenile spondyloarthritis by radiography, magnetic resonance imaging, and clinical examination. Arthritis Care Res. 68, 187–194 (2016).

    CAS  Google Scholar 

  86. Colbert, R. A. Classification of juvenile spondyloarthritis: enthesitis-related arthritis and beyond. Nat. Rev. Rheumatol. 6, 477–485 (2010).

    PubMed  PubMed Central  Google Scholar 

  87. Southwood, T. R. et al. Psoriatic arthritis in children. Arthritis Rheum. 32, 1007–1013 (1989).

    CAS  PubMed  Google Scholar 

  88. Nigrovic, P. A. Juvenile psoriatic arthritis: bathwater or baby? J. Rheumatol. 36, 1861–1863 (2009).

    PubMed  Google Scholar 

  89. Stoll, M. L. & Mellins, E. D. Psoriatic arthritis in childhood: a commentary on the controversy. Clin. Immunol. 214, 108396 (2020).

    CAS  PubMed  Google Scholar 

  90. Ravelli, A. et al. Patients with antinuclear antibody-positive juvenile idiopathic arthritis constitute a homogeneous subgroup irrespective of the course of joint disease. Arthritis Rheum. 52, 826–832 (2005).

    PubMed  Google Scholar 

  91. Ravelli, A. et al. Antinuclear antibody-positive patients should be grouped as a separate category in the classification of juvenile idiopathic arthritis. Arthritis Rheum. 63, 267–275 (2011).

    PubMed  Google Scholar 

  92. Nigrovic, P. A., Martinez-Bonet, M. & Thompson, S. D. Implications of juvenile idiopathic arthritis genetic risk variants for disease pathogenesis and classification. Curr. Opin. Rheumatol. 31, 401–410 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Frisell, T. et al. Familial aggregation of arthritis-related diseases in seropositive and seronegative rheumatoid arthritis: a register-based case-control study in Sweden. Ann. Rheum. Dis. 75, 183–189 (2016).

    PubMed  Google Scholar 

  94. Yamaguchi, M. et al. Preliminary criteria for classification of adult Still’s disease. J. Rheumatol. 19, 424–430 (1992).

    CAS  PubMed  Google Scholar 

  95. Bywaters, E. G. Still’s disease in the adult. Ann. Rheum. Dis. 30, 121–133 (1971).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Vastert, S. J. et al. Anakinra in children and adults with Still’s disease. Rheumatology. 58, vi9–vi22 (2019).

    PubMed  PubMed Central  Google Scholar 

  97. De Benedetti, F. et al. Randomized trial of tocilizumab in systemic juvenile idiopathic arthritis. N. Engl. J. Med. 367, 2385–2395 (2012).

    PubMed  Google Scholar 

  98. Ruperto, N. et al. Two randomized trials of canakinumab in systemic juvenile idiopathic arthritis. N. Engl. J. Med. 367, 2396–2406 (2012).

    CAS  PubMed  Google Scholar 

  99. Russo, R. A. & Katsicas, M. M. Patients with very early-onset systemic juvenile idiopathic arthritis exhibit more inflammatory features and a worse outcome. J. Rheumatol. 40, 329–334 (2013).

    CAS  PubMed  Google Scholar 

  100. Shimizu, M., Nakagishi, Y. & Yachie, A. Distinct subsets of patients with systemic juvenile idiopathic arthritis based on their cytokine profiles. Cytokine. 61, 345–348 (2013).

    CAS  PubMed  Google Scholar 

  101. Gattorno, M. et al. The pattern of response to anti-interleukin-1 treatment distinguishes two subsets of patients with systemic-onset juvenile idiopathic arthritis. Arthritis Rheum. 58, 1505–1515 (2008).

    CAS  PubMed  Google Scholar 

  102. Oen, K. et al. Disease course and outcome of juvenile rheumatoid arthritis in a multicenter cohort. J. Rheumatol. 29, 1989–1999 (2002).

    PubMed  Google Scholar 

  103. Fantini, F. et al. Remission in juvenile chronic arthritis: a cohort study of 683 consecutive cases with a mean 10 year followup. J. Rheumatol. 30, 579–584 (2003).

    PubMed  Google Scholar 

  104. Murray, K. J. et al. Age-specific effects of juvenile rheumatoid arthritis-associated HLA alleles. Arthritis Rheum. 42, 1843–1853 (1999).

    CAS  PubMed  Google Scholar 

  105. Barnes, M. G. et al. Biologic similarities based on age at onset in oligoarticular and polyarticular subtypes of juvenile idiopathic arthritis. Arthritis Rheum. 62, 3249–3258 (2010).

    PubMed  PubMed Central  Google Scholar 

  106. Gregorio, A. et al. Lymphoid neogenesis in juvenile idiopathic arthritis correlates with ANA positivity and plasma cells infiltration. Rheumatology 46, 308–313 (2007).

    CAS  PubMed  Google Scholar 

  107. Finnegan, S., Clarke, S., Gibson, D., McAllister, C. & Rooney, M. Synovial membrane immunohistology in early untreated juvenile idiopathic arthritis: differences between clinical subgroups. Ann. Rheum. Dis. 70, 1842–1850 (2011).

    PubMed  Google Scholar 

  108. Albers, H. M. et al. Clinical course and prognostic value of disease activity in the first two years in different subtypes of juvenile idiopathic arthritis. Arthritis Care Res. 62, 204–212 (2010).

    CAS  Google Scholar 

  109. Guzman, J. et al. Predicting which children with juvenile idiopathic arthritis will have a severe disease course: results from the ReACCh-Out Cohort. J. Rheumatol. 44, 230–240 (2017).

    PubMed  Google Scholar 

  110. Heiligenhaus, A. et al. Similarities in clinical course and outcome between juvenile idiopathic arthritis (JIA)-associated and ANA-positive idiopathic anterior uveitis: data from a population-based nationwide study in Germany. Arthritis Res. Ther. 22, 81 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Ombrello, M. J. et al. Genetic architecture distinguishes systemic juvenile idiopathic arthritis from other forms of juvenile idiopathic arthritis: clinical and therapeutic implications. Ann. Rheum. Dis. 76, 906–913 (2017).

    CAS  PubMed  Google Scholar 

  112. Cannizzaro, E., Schroeder, S., Muller, L. M., Kellenberger, C. J. & Saurenmann, R. K. Temporomandibular joint involvement in children with juvenile idiopathic arthritis. J. Rheumatol. 38, 510–515 (2011).

    PubMed  Google Scholar 

  113. MacRae, V. E., Farquharson, C. & Ahmed, S. F. The pathophysiology of the growth plate in juvenile idiopathic arthritis. Rheumatology 45, 11–19 (2006).

    CAS  PubMed  Google Scholar 

  114. Angeles-Han, S. T. et al. 2019 American College of Rheumatology/Arthritis Foundation guideline for the screening, monitoring, and treatment of juvenile idiopathic arthritis-associated uveitis. Arthritis Rheumatol. 71, 864–877 (2019).

    PubMed  PubMed Central  Google Scholar 

  115. Cassidy, J. T., Levinson, J. E. & Brewer, E. J. Jr. The development of classification criteria for children with juvenile rheumatoid arthritis. Bull. Rheum. Dis. 38, 1–7 (1989).

    CAS  PubMed  Google Scholar 

  116. Robinson, E. et al. Towards stratified medicine in juvenile idiopathic arthritis. Pediatric Rheumatol. Online J. 15, 53–54 (2017).

    Google Scholar 

  117. Yeung, R. S. M. et al. Enhancing translational research in paediatric rheumatology through standardization. Nat. Rev. Rheumatol. 12, 684–690 (2016).

    CAS  PubMed  Google Scholar 

  118. Zhang, F. et al. Defining inflammatory cell states in rheumatoid arthritis joint synovial tissues by integrating single-cell transcriptomics and mass cytometry. Nat. Immunol. 20, 928–942 (2019).

    PubMed  PubMed Central  Google Scholar 

  119. Lewis, M. J. et al. Molecular portraits of early rheumatoid arthritis identify clinical and treatment response phenotypes. Cell Rep. 28, 2455–2470.e2455 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Scher, J. U., Ogdie, A., Merola, J. F. & Ritchlin, C. Preventing psoriatic arthritis: focusing on patients with psoriasis at increased risk of transition. Nat. Rev. Rheumatol. 15, 153–166 (2019).

    PubMed  Google Scholar 

  121. Sikora, K. A. et al. Germline gain-of-function myeloid differentiation primary response gene-88 (MYD88) mutation in a child with severe arthritis. J. Allergy Clin. Immunol. 141, 1943–1947.e1949 (2018).

    PubMed  PubMed Central  Google Scholar 

  122. Wakil, S. M. et al. Association of a mutation in LACC1 with a monogenic form of systemic juvenile idiopathic arthritis. Arthritis Rheumatol. 67, 288–295 (2015).

    CAS  PubMed  Google Scholar 

  123. Moroldo, M. B., Tague, B. L., Shear, E. S., Glass, D. N. & Giannini, E. H. Juvenile rheumatoid arthritis in affected sibpairs. Arthritis Rheum. 40, 1962–1966 (1997).

    CAS  PubMed  Google Scholar 

  124. Moroldo, M. B. et al. Juvenile rheumatoid arthritis affected sibpairs: extent of clinical phenotype concordance. Arthritis Rheum. 50, 1928–1934 (2004).

    PubMed  Google Scholar 

  125. Prahalad, S. et al. Twins concordant for juvenile rheumatoid arthritis. Arthritis Rheum. 43, 2611–2612 (2000).

    CAS  PubMed  Google Scholar 

  126. McIntosh, L. A. et al. Genome-wide association meta-analysis reveals novel juvenile idiopathic arthritis susceptibility loci. Arthritis Rheumatol. 69, 2222–2232 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  127. Kirino, Y. & Remmers, E. F. Genetic architectures of seropositive and seronegative rheumatic diseases. Nat. Rev. Rheumatol. 11, 401–414 (2015).

    CAS  PubMed  Google Scholar 

  128. Li, G. et al. High-throughput identification of noncoding functional SNPs via type IIS enzyme restriction. Nat. Genet. 50, 1180–1188 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Klareskog, L. et al. A new model for an etiology of rheumatoid arthritis: smoking may trigger HLA-DR (shared epitope)-restricted immune reactions to autoantigens modified by citrullination. Arthritis Rheum. 54, 38–46 (2006).

    CAS  PubMed  Google Scholar 

  130. Terao, C. et al. Distinct HLA associations with rheumatoid arthritis subsets defined by serological subphenotype. Am. J. Hum. Genet. 105, 616–624 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  131. Eng, S. W., Duong, T. T., Rosenberg, A. M., Morris, Q. & Yeung, R. S. The biologic basis of clinical heterogeneity in juvenile idiopathic arthritis. Arthritis Rheumatol. 66, 3463–3475 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  132. Rezaei, E. et al. Associations of clinical and inflammatory biomarker clusters with juvenile idiopathic arthritis categories. Rheumatol. 59, 1066–1075 (2020).

    CAS  Google Scholar 

  133. Saurenmann, R. K. et al. Risk factors for development of uveitis differ between girls and boys with juvenile idiopathic arthritis. Arthritis Rheum. 62, 1824–1828 (2010).

    CAS  PubMed  Google Scholar 

  134. Qiu, J., Soderlund-Venermo, M. & Young, N. S. Human parvoviruses. Clin. Microbiol. Rev. 30, 43–113 (2017).

    PubMed  Google Scholar 

  135. Jadon, D. R., Shaddick, G., Jobling, A., Ramanan, A. V. & Sengupta, R. Clinical outcomes and progression to orthopedic surgery in juvenile- versus adult-onset ankylosing spondylitis. Arthritis Care Res. 67, 651–657 (2015).

    Google Scholar 

  136. Webb, R. et al. Early disease onset is predicted by a higher genetic risk for lupus and is associated with a more severe phenotype in lupus patients. Ann. Rheum. Dis. 70, 151–156 (2011).

    PubMed  Google Scholar 

  137. Webber, D. et al. Association of systemic lupus erythematosus (SLE) genetic susceptibility loci with lupus nephritis in childhood-onset and adult-onset SLE. Rheumatology 59, 90–98 (2020).

    PubMed  Google Scholar 

  138. Scott, I. C. et al. Predicting the risk of rheumatoid arthritis and its age of onset through modelling genetic risk variants with smoking. PLoS Genet. 9, e1003808 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  139. Simon, A. K., Hollander, G. A. & McMichael, A. Evolution of the immune system in humans from infancy to old age. Proc. Biol. Sci. 282, 20143085 (2015).

    PubMed  PubMed Central  Google Scholar 

  140. Ercan, A. et al. Estrogens regulate glycosylation of IgG in women and men. JCI Insight 2, e89703 (2017).

    PubMed  PubMed Central  Google Scholar 

  141. Laver-Rudich, Z. & Silbermann, M. Cartilage surface charge. A possible determinant in aging and osteoarthritic processes. Arthritis Rheum. 28, 660–670 (1985).

    CAS  PubMed  Google Scholar 

  142. Alpizar-Rodriguez, D. & Finckh, A. Environmental factors and hormones in the development of rheumatoid arthritis. Semin. Immunopathol. 39, 461–468 (2017).

    CAS  PubMed  Google Scholar 

  143. Prisco, L. C., Martin, L. W. & Sparks, J. A. Inhalants other than personal cigarette smoking and risk for developing rheumatoid arthritis. Curr. Opin. Rheumatol. 32, 279–288 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  144. Derrien, M., Alvarez, A. S. & de Vos, W. M. The gut microbiota in the first decade of life. Trends Microbiol. 27, 997–1010 (2019).

    CAS  PubMed  Google Scholar 

  145. Horton, D. B. et al. Antibiotic exposure and juvenile idiopathic arthritis: a case-control study. Pediatrics. 136, e333–e343 (2015).

    PubMed  PubMed Central  Google Scholar 

  146. Arvonen, M., Virta, L. J., Pokka, T., Kroger, L. & Vahasalo, P. Repeated exposure to antibiotics in infancy: a predisposing factor for juvenile idiopathic arthritis or a sign of this group’s greater susceptibility to infections? J. Rheumatol. 42, 521–526 (2015).

    PubMed  Google Scholar 

Download references

Acknowledgements

The work of P.A.N. is funded by US National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS) awards 2R01 AR065538, R01 AR075906, R01 AR073201, P30 AR070253 and R21 AR076630, the US National Heart, Lung, and Blood Institute award R21 HL150575, the Fundación Bechara, the Arbuckle Family Fund for Arthritis Research, and the Samara Jan Turkel Center for Pediatric Autoimmune Diseases at Boston Children’s Hospital. The work of R.A.C. is supported by the NIAMS Intramural Research Program Z01AR041184. The work of V.M.H. is funded by US National Institutes of Health grants UH2 AR067681, U01 AI101981, U01 AI130830, U01 HL152405, R01 DK125823, R01 AR051749 and UM2 AR067678, as well as investigator-initiated grants from Janssen R&D (ICD845278), Q32 Bio (SRA-001) and Pfizer (WI237571). The work of S.D.T. is supported by NIAMS (P30 AR070549), the US National Institute of Child Health and Human Development (R01 HD089928), the US National Eye Institute (EY030521) and the Center for Pediatric Genomics at Cincinnati Children’s Hospital Medical Center. The work of L.R.W. is supported by the UK Research and Innovation Medical Research Council (MR/R013926/1), Versus Arthritis (grants 22084 and 21593), Great Ormond Street Hospital (GOSH) Children’s Charity and the UK National Institute for Health Research Biomedical Research Centre at GOSH. The work of R.S.M.Y. is supported by the Hak-Ming and Deborah Chiu Chair in Paediatric Translational Research at the Hospital for Sick Children, University of Toronto, and by grants from the Canadian Institutes for Health Research (grant 381280), Genome Canada, the Netherlands Organization for Health Research and Development, Reumafonds, The Arthritis Society, Province of Ontario, Genome Alberta, Childhood Arthritis and Rheumatology Research Alliance, Alberta Children’s Hospital Research Institute and the Hospital for Sick Children Foundation.

Author information

Authors and Affiliations

Authors

Contributions

All authors researched data for the article. All authors contributed substantially to discussion of the content. P.A.N. and A.M. wrote the article. All authors reviewed and/or edited the manuscript before submission.

Corresponding authors

Correspondence to Peter A. Nigrovic or Alberto Martini.

Ethics declarations

Competing interests

P.A.N. declares support from investigator-initiated research grants from AbbVie, BMS, Novartis, Pfizer, and Sobi; consulting fees from BMS, Cerecor, Miach Orthopedics, Novartis, Pfizer, Quench Bio, Sigilon, Simcere, Sobi, and XBiotech; royalties from UpToDate Inc. and the American Academy of Pediatrics; and salary support from the Childhood Arthritis and Rheumatology Research Alliance. V.M.H. declares acting as a current or recent consultant to BMS, Celgene, Janssen R&D, and Q32 Bio, and support from research grants from Janssen R&D and Q32 Bio. S.O. declares receipt of consultancy or speaker fees from Novartis and Sobi. N.R. declares receipt of honoraria for consultancies or speaker bureaus in the past 3 years from Ablynx, AstraZeneca/MedImmune, Biogen, BMS, Boehringer Ingelheim, Eli Lilly, EMD Serono, F. Hoffmann-La Roche, GSK, Janssen, Merck Sharp & Dohme, Novartis, Pfizer, R-Pharm, Sanofi, Servier, Sinergie, and Sobi. The IRCCS Istituto Giannina Gaslini, where N.R. works as a full-time public employee, has received contributions in the past 3 years from BMS, Eli Lilly, F. Hoffmann-La Roche, GSK, Janssen, Novartis, Pfizer, and Sobi. This funding has been reinvested for the research activities of the hospital in a fully independent manner, without any commitment with third parties. L.R.W. declares support from AbbVie, GSK, Pfizer, Sobi, and UCB to the CLUSTER Consortium. R.S.M.Y. declares one-time consulting fees from Eli-Lilly and Novartis. A.M. declares receipt of honoraria for consultancies from Aurinia, BMS, Eli-Lilly, EMD Serono, Janssen, and Pfizer. All other authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Rheumatology thanks R. Khubchandani, B. Prakken and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nigrovic, P.A., Colbert, R.A., Holers, V.M. et al. Biological classification of childhood arthritis: roadmap to a molecular nomenclature. Nat Rev Rheumatol 17, 257–269 (2021). https://doi.org/10.1038/s41584-021-00590-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41584-021-00590-6

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing