Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

IgG4-related disease: an update on pathophysiology and implications for clinical care

Abstract

IgG4-related disease (IgG4-RD) has only existed as a unique disease entity since 2003, yet remarkable progress has already been achieved in describing the essential features of the disease. A framework for systematic clinical studies has been created by the development of a quantitative disease activity tool (the IgG4-RD Responder Index) and the validation of classification criteria, both of which were the products of international, multi-centre investigations. In addition, substantial strides have been made in understanding the pathophysiology of IgG4-RD. In particular, the central role of B cells in the disease has been demonstrated by both the robust clinical responsiveness of IgG4-RD to B cell depletion and by the identification of multiple self-antigens that promote B cell expansion. CD4+ T cells have also been investigated in detail; CD4+ cytotoxic T lymphocytes (suspected of promoting disease) and a specific T follicular helper cell subset that contributes to IgG4 isotype switching have both been defined by multiple groups. The mechanisms by which these immune cells converge on target tissues, interact with fibroblasts and promote tissue remodelling are beginning to be understood and will be an important research focus in the coming years.

Key points

  • IgG4-related disease (IgG4-RD) is an insidiously progressive immune-mediated fibrotic disease typified by tumour-like mass formation in many affected organs.

  • High serum IgG4 concentrations or increased numbers of IgG4+ plasma cells in tissue must be paired with appropriate clinical, histopathological and (often) radiological information for a diagnosis of IgG4-RD.

  • B cell-depletion therapy is a highly effective treatment for IgG4-RD, confirming the importance of B cells in the pathophysiology of this disease.

  • CD4+ cytotoxic T lymphocytes (CTLs) dominate the immune cell infiltrate in IgG4-RD and decline after B cell-targeted therapy, suggesting that B cells present antigen to and thereby activate CD4+ CTLs.

  • M2 macrophages, activated B cells, CD4+ CTLs and fibroblasts probably all contribute to generating the inflammatory masses composed of immune cells and fibrotic tissue that occur in IgG4-RD.

  • Novel therapeutic approaches to targeting B cells and/or CD4+ CTLs are being evaluated for the treatment of IgG4-RD.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The manifestations of IgG4-related disease.
Fig. 2: Clinical, radiological and histopathological characteristics of IgG4-related disease.
Fig. 3: T cell–B cell collaboration and immunoglobulin class switching in IgG4-related disease.
Fig. 4: Potential mechanism of immune-mediated fibrosis in IgG4-related disease.

Similar content being viewed by others

References

  1. Hamano, H. et al. High serum IgG4 concentrations in patients with sclerosing pancreatitis. N. Engl. J. Med. 344, 732–738 (2001).

    CAS  PubMed  Google Scholar 

  2. Hamano, H. et al. Hydronephrosis associated with retroperitoneal fibrosis and sclerosing pancreatitis. Lancet 359, 1403–1404 (2002).

    PubMed  Google Scholar 

  3. Kamisawa, T. et al. A new clinicopathological entity of IgG4-related autoimmune disease. J. Gastroenterol. 38, 982–984 (2003).

    CAS  PubMed  Google Scholar 

  4. Umehara, H. et al. A novel clinical entity, IgG4-related disease (IgG4RD): general concept and details. Mod. Rheumatol. 22, 1–14 (2012).

    CAS  PubMed  Google Scholar 

  5. Stone, J. H., Zen, Y. & Deshpande, V. IgG4-related disease. N. Engl. J. Med. 366, 539–551 (2012).

    CAS  PubMed  Google Scholar 

  6. Deshpande, V. et al. Consensus statement on the pathology of IgG4-related disease. Mod. Pathol. 25, 1181–1192 (2012).

    PubMed  Google Scholar 

  7. Wallace, Z. S. et al. An international, multi-specialty validation study of the IgG4-related disease responder index. Arthritis Care Res. 70, 1671–1678 (2018).

    CAS  Google Scholar 

  8. Mattoo, H. et al. De novo oligoclonal expansions of circulating plasmablasts in active and relapsing IgG4-related disease. J. Allergy Clin. Immunol. 134, 679–687 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Mattoo, H. et al. Clonal expansion of CD4+ cytotoxic T lymphocytes in patients with IgG4-related disease. J. Allergy Clin. Immunol. 138, 825–838 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Heeringa, J. J. et al. Expansion of blood IgG4+ B, TH2, and regulatory T cells in patients with IgG4-related disease. J. Allergy Clin. Immunol. 141, 1831–1843.e10 (2018).

    CAS  PubMed  Google Scholar 

  11. Hubers, L. M. et al. Annexin A11 is targeted by IgG4 and IgG1 autoantibodies in IgG4-related disease. Gut 67, 728–735 (2018).

    CAS  PubMed  Google Scholar 

  12. Shiokawa, M. et al. Laminin 511 is a target antigen in autoimmune pancreatitis. Sci. Transl Med. 10, eaaq0997 (2018).

    PubMed  Google Scholar 

  13. Perugino, C. A. et al. Identification of galectin-3 as an autoantigen in patients with IgG4-related disease. J. Allergy Clin. Immunol. 143, 736–745.e6 (2019).

    CAS  PubMed  Google Scholar 

  14. Akiyama, M. et al. Enhanced IgG4 production by follicular helper 2 T cells and the involvement of follicular helper 1 T cells in the pathogenesis of IgG4-related disease. Arthritis Res. Ther. 18, 167 (2016).

    PubMed  PubMed Central  Google Scholar 

  15. Maehara, T. et al. The expansion in lymphoid organs of IL-4+ BATF+ T follicular helper cells is linked to IgG4 class switching in vivo. Life Sci. Alliance 1, e201800050 (2018).

    PubMed  PubMed Central  Google Scholar 

  16. Della-Torre, E. et al. A CD8α- subset of CD4+SLAMF7+ cytotoxic T cells is expanded in patients with IgG4-related disease and decreases following glucocorticoid treatment. Arthritis Rheumatol. 70, 1133–1143 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Perugino, C. A. et al. CD4+ and CD8+ cytotoxic T lymphocytes may induce mesenchymal cell apoptosis in IgG4-related disease. J. Allergy Clin. Immunol. https://doi.org/10.1016/j.jaci.2020.05.022 (2020).

    Article  PubMed  Google Scholar 

  18. Carruthers, M. N. et al. Rituximab for IgG4-related disease: a prospective, open-label trial. Ann. Rheum. Dis. 74, 1171–1177 (2015).

    CAS  PubMed  Google Scholar 

  19. Wallace, Z. S. et al. The 2019 American College of Rheumatology/European League Against Rheumatism classification criteria for IgG4-related disease. Arthritis Rheumatol. 72, 7–19 (2020).

    PubMed  Google Scholar 

  20. Iaccarino, L. et al. IgG4-related diseases: state of the art on clinical practice guidelines. RMD Open 4, e000787 (2018).

    PubMed  Google Scholar 

  21. Kamisawa, T., Zen, Y., Pillai, S. & Stone, J. H. IgG4-related disease. Lancet 385, 1460–1471 (2015).

    CAS  PubMed  Google Scholar 

  22. Wallace, Z. S. et al. IgG4-related disease: clinical and laboratory features in one hundred twenty-five patients. Arthritis Rheumatol. 67, 2466–2475 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Miyazawa, M. et al. Prognosis of type 1 autoimmune pancreatitis after corticosteroid therapy-induced remission in terms of relapse and diabetes mellitus. PLoS ONE 12, e0188549 (2017).

    PubMed  PubMed Central  Google Scholar 

  24. Cheng, M.-F. et al. Clinical utility of FDG PET/CT in patients with autoimmune pancreatitis: a case-control study. Sci. Rep. 8, 3651 (2018).

    PubMed  PubMed Central  Google Scholar 

  25. Zen, Y. et al. IgG4-related sclerosing cholangitis with and without hepatic inflammatory pseudotumor, and sclerosing pancreatitis-associated sclerosing cholangitis: do they belong to a spectrum of sclerosing pancreatitis? Am. J. Surg. Pathol. 28, 1193–1203 (2004).

    PubMed  Google Scholar 

  26. Wallace, Z. S. et al. Plasmablasts as a biomarker for IgG4-related disease, independent of serum IgG4 concentrations. Ann. Rheum. Dis. 74, 190–195 (2015).

    CAS  PubMed  Google Scholar 

  27. Strehl, J. D., Hartmann, A. & Agaimy, A. Numerous IgG4-positive plasma cells are ubiquitous in diverse localised non-specific chronic inflammatory conditions and need to be distinguished from IgG4-related systemic disorders. J. Clin. Pathol. 64, 237–243 (2011).

    PubMed  Google Scholar 

  28. Chang, S. Y. et al. IgG4-positive plasma cells in granulomatosis with polyangiitis (Wegener’s): a clinicopathologic and immunohistochemical study on 43 granulomatosis with polyangiitis and 20 control cases. Hum. Pathol. 44, 2432–2437 (2013).

    CAS  PubMed  Google Scholar 

  29. Maillette de Buy Wenniger, L. J. et al. Immunoglobulin G4+ clones identified by next-generation sequencing dominate the B cell receptor repertoire in immunoglobulin G4 associated cholangitis. Hepatology 57, 2390–2398 (2013).

    CAS  PubMed  Google Scholar 

  30. Lin, W. et al. Circulating plasmablasts/plasma cells: a potential biomarker for IgG4-related disease. Arthritis Res. Ther. 19, 25 (2017).

    PubMed  PubMed Central  Google Scholar 

  31. Lanzillotta, M. et al. Increase of circulating memory B cells after glucocorticoid-induced remission identifies patients at risk of IgG4-related disease relapse. Arthritis Res. Ther. 20, 222 (2018).

    PubMed  PubMed Central  Google Scholar 

  32. Jenks, S. A. et al. Distinct effector B cells induced by unregulated Toll-like receptor 7 contribute to pathogenic responses in systemic lupus erythematosus. Immunity 49, 725–739.e6 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Sasaki, T. et al. Risk factors of relapse following glucocorticoid tapering in IgG4-related disease. Clin. Exp. Rheumatol. 36, 186–189 (2018).

    PubMed  Google Scholar 

  34. Wallace, Z. S. et al. Predictors of disease relapse in IgG4-related disease following rituximab. Rheumatology 55, 1000–1008 (2016).

    CAS  PubMed  Google Scholar 

  35. Carruthers, M. N., Khosroshahi, A., Augustin, T., Deshpande, V. & Stone, J. H. The diagnostic utility of serum IgG4 concentrations in IgG4-related disease. Ann. Rheum. Dis. 74, 14–18 (2015).

    CAS  PubMed  Google Scholar 

  36. Kawashiri, S.-Y. et al. Association of serum levels of fibrosis-related biomarkers with disease activity in patients with IgG4-related disease. Arthritis Res. Ther. 20, 277 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Aalberse, R. C., Stapel, S. O., Schuurman, J. & Rispens, T. Immunoglobulin G4: an odd antibody. Clin. Exp. Allergy 39, 469–477 (2009).

    CAS  PubMed  Google Scholar 

  38. Shiokawa, M. et al. Pathogenicity of IgG in patients with IgG4-related disease. Gut 65, 1322–1332 (2016).

    CAS  PubMed  Google Scholar 

  39. Dekkers, G. et al. Affinity of human IgG subclasses to mouse Fc gamma receptors. MAbs 9, 767–773 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Smith, P., DiLillo, D. J., Bournazos, S., Li, F. & Ravetch, J. V. Mouse model recapitulating human Fcγ receptor structural and functional diversity. Proc. Natl Acad. Sci. USA 109, 6181–6186 (2012).

    CAS  PubMed  Google Scholar 

  41. Kino-Ohsaki, J. et al. Serum antibodies to carbonic anhydrase I and II in patients with idiopathic chronic pancreatitis and Sjögren’s syndrome. Gastroenterology 110, 1579–1586 (1996).

    CAS  PubMed  Google Scholar 

  42. Frulloni, L. et al. Identification of a novel antibody associated with autoimmune pancreatitis. N. Engl. J. Med. 361, 2135–2142 (2009).

    CAS  PubMed  Google Scholar 

  43. Okazaki, K. et al. Autoimmune-related pancreatitis is associated with autoantibodies and a Th1/Th2-type cellular immune response. Gastroenterology 118, 573–581 (2000).

    CAS  PubMed  Google Scholar 

  44. Asada, M. et al. Identification of a novel autoantibody against pancreatic secretory trypsin inhibitor in patients with autoimmune pancreatitis. Pancreas 33, 20–26 (2006).

    CAS  PubMed  Google Scholar 

  45. Endo, T. et al. Amylase alpha-2A autoantibodies: novel marker of autoimmune pancreatitis and fulminant type 1 diabetes. Diabetes 58, 732–737 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Löhr, J.-M. et al. Autoantibodies against the exocrine pancreas in autoimmune pancreatitis: gene and protein expression profiling and immunoassays identify pancreatic enzymes as a major target of the inflammatory process. Am. J. Gastroenterol. 105, 2060–2071 (2010).

    PubMed  PubMed Central  Google Scholar 

  47. Buijs, J. et al. Testing for Anti-PBP antibody is not useful in diagnosing autoimmune pancreatitis. Am. J. Gastroenterol. 111, 1650–1654 (2016).

    CAS  PubMed  Google Scholar 

  48. Culver, E. L. et al. No evidence to support a role for Helicobacter pylori infection and plasminogen binding protein in autoimmune pancreatitis and IgG4-related disease in a UK cohort. Pancreatology 17, 395–402 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Du, H. et al. Prohibitin is involved in patients with IgG4 related disease. PLoS ONE 10, e0125331 (2015).

    PubMed  PubMed Central  Google Scholar 

  50. Liu, H. et al. Disease severity linked to increase in autoantibody diversity in IgG4-related disease. Arthritis Rheumatol. 72, 687–693 (2020).

    CAS  PubMed  Google Scholar 

  51. Terao, C. et al. IgG4-related disease in the Japanese population: a genome-wide association study. Lancet Rheumatol. 1, 14–22 (2019).

    Google Scholar 

  52. Nagafuchi, Y., Shoda, H. & Fujio, K. Immune profiling and precision medicine in systemic lupus erythematosus. Cells 8, 140 (2019).

    CAS  PubMed Central  Google Scholar 

  53. Akiyama, M. et al. Number of circulating follicular helper 2 T cells correlates with IgG4 and interleukin-4 levels and plasmablast numbers in IgG4-related disease. Arthritis Rheumatol. 67, 2476–2481 (2015).

    CAS  PubMed  Google Scholar 

  54. Morita, R. et al. Human blood CXCR5+CD4+ T cells are counterparts of T follicular cells and contain specific subsets that differentially support antibody secretion. Immunity 34, 108–121 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. He, J. et al. Circulating precursor CCR7loPD-1hi CXCR5+ CD4+ T cells indicate Tfh cell activity and promote antibody responses upon antigen reexposure. Immunity 39, 770–781 (2013).

    CAS  PubMed  Google Scholar 

  56. Grados, A. et al. T cell polarization toward TH2/TFH2 and TH17/TFH17 in patients with IgG4-related disease. Front. Immunol. 8, 235 (2017).

    PubMed  PubMed Central  Google Scholar 

  57. Chen, Y. et al. Aberrant expansion and function of follicular helper T cell subsets in IgG4-related disease. Arthritis Rheumatol. 70, 1853–1865 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Kubo, S. et al. Correlation of T follicular helper cells and plasmablasts with the development of organ involvement in patients with IgG4-related disease. Rheumatology 57, 514–524 (2018).

    CAS  PubMed  Google Scholar 

  59. Jeannin, P., Lecoanet, S., Delneste, Y., Gauchat, J. F. & Bonnefoy, J. Y. IgE versus IgG4 production can be differentially regulated by IL-10. J. Immunol. 160, 3555–3561 (1998).

    CAS  PubMed  Google Scholar 

  60. Xu, B. et al. The ratio of circulating follicular T helper cell to follicular T regulatory cell is correlated with disease activity in systemic lupus erythematosus. Clin. Immunol. 183, 46–53 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Wen, Y. et al. Imbalance of circulating CD4+ CXCR5+ FOXP3+ Tfr-like cells and CD4+ CXCR5+ FOXP3- Tfh-like cells in myasthenia gravis. Neurosci. Lett. 630, 176–182 (2016).

    CAS  PubMed  Google Scholar 

  62. Taylor, D. K. et al. T follicular helper-like cells contribute to skin fibrosis. Sci. Transl Med. 10, eaaf5307 (2018).

    PubMed  Google Scholar 

  63. Caielli, S. et al. A CD4+ T cell population expanded in lupus blood provides B cell help through interleukin-10 and succinate. Nat. Med. 25, 75–81 (2019).

    CAS  PubMed  Google Scholar 

  64. Rao, D. A. et al. Pathologically expanded peripheral T helper cell subset drives B cells in rheumatoid arthritis. Nature 542, 110–114 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Linterman, M. A. et al. Foxp3+ follicular regulatory T cells control the germinal center response. Nat. Med. 17, 975–982 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Chung, Y. et al. Follicular regulatory T cells expressing Foxp3 and Bcl-6 suppress germinal center reactions. Nat. Med. 17, 983–988 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Laidlaw, B. J. et al. Interleukin-10 from CD4+ follicular regulatory T cells promotes the germinal center response. Sci. Immunol. 2, eaan4767 (2017).

    PubMed  PubMed Central  Google Scholar 

  68. Puthenparampil, M. et al. Peripheral imbalanced TFH/TFR ratio correlates with intrathecal IgG synthesis in multiple sclerosis at clinical onset. Mult. Scler. 25, 918–926 (2019).

    CAS  PubMed  Google Scholar 

  69. Tsuboi, H. et al. Analysis of IgG4 class switch-related molecules in IgG4-related disease. Arthritis Res. Ther. 14, R171 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Ito, F. et al. IL-10+ T follicular regulatory cells are associated with the pathogenesis of IgG4-related disease. Immunol. Lett. 207, 56–63 (2019).

    CAS  PubMed  Google Scholar 

  71. Cañete, P. F. et al. Regulatory roles of IL-10-producing human follicular T cells. J. Exp. Med. 216, 1843–1856 (2019).

    PubMed  PubMed Central  Google Scholar 

  72. Mahajan, V. S., Mattoo, H., Deshpande, V., Pillai, S. S. & Stone, J. H. IgG4-related disease. Annu. Rev. Pathol. 9, 315–347 (2014).

    CAS  PubMed  Google Scholar 

  73. Zen, Y. et al. Th2 and regulatory immune reactions are increased in immunoglobin G4-related sclerosing pancreatitis and cholangitis. Hepatology 45, 1538–1546 (2007).

    CAS  PubMed  Google Scholar 

  74. Tanaka, A. et al. Th2 and regulatory immune reactions contribute to IgG4 production and the initiation of Mikulicz disease. Arthritis Rheum. 64, 254–263 (2012).

    CAS  PubMed  Google Scholar 

  75. Mattoo, H., Della-Torre, E., Mahajan, V. S., Stone, J. H. & Pillai, S. Circulating Th2 memory cells in IgG4-related disease are restricted to a defined subset of subjects with atopy. Allergy 69, 399–402 (2014).

    CAS  PubMed  Google Scholar 

  76. Liu, Y. et al. Salivary gland involvement disparities in clinical characteristics of IgG4-related disease: a retrospective study of 428 patients. Rheumatology 59, 634–640 (2020).

    CAS  PubMed  Google Scholar 

  77. Maehara, T. et al. Lesional CD4+ IFN-γ+ cytotoxic T lymphocytes in IgG4-related dacryoadenitis and sialoadenitis. Ann. Rheum. Dis. 76, 377–385 (2017).

    CAS  PubMed  Google Scholar 

  78. Weiskopf, D. et al. Dengue virus infection elicits highly polarized CX3CR1+ cytotoxic CD4+ T cells associated with protective immunity. Proc. Natl Acad. Sci. USA 112, E4256–E4263 (2015).

    CAS  PubMed  Google Scholar 

  79. Tian, Y. et al. Unique phenotypes and clonal expansions of human CD4 effector memory T cells re-expressing CD45RA. Nat. Commun. 8, 1473 (2017).

    PubMed  PubMed Central  Google Scholar 

  80. Patil, V. S. et al. Precursors of human CD4+ cytotoxic T lymphocytes identified by single-cell transcriptome analysis. Sci. Immunol. 3, eaan8664 (2018).

    PubMed  PubMed Central  Google Scholar 

  81. Maehara, T. et al. Cytotoxic CD4+ T lymphocytes may induce endothelial cell apoptosis in systemic sclerosis. J. Clin. Invest. 130, 2451–2464 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Pillai, S., Perugino, C. & Kaneko, N. Immune mechanisms of fibrosis and inflammation in IgG4-related disease. Curr. Opin. Rheumatol. 32, 146–151 (2019).

    Google Scholar 

  83. Della-Torre, E. et al. B lymphocytes directly contribute to tissue fibrosis in patients with IgG4-related disease. J. Allergy Clin. Immunol. 145, 968–981.e14 (2020).

    CAS  PubMed  Google Scholar 

  84. Furukawa, S. et al. Preferential M2 macrophages contribute to fibrosis in IgG4-related dacryoadenitis and sialoadenitis, so-called Mikulicz’s disease. Clin. Immunol. 156, 9–18 (2015).

    CAS  PubMed  Google Scholar 

  85. Furukawa, S. et al. Interleukin-33 produced by M2 macrophages and other immune cells contributes to Th2 immune reaction of IgG4-related disease. Sci. Rep. 7, 42413 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Kawakami, T. et al. Abundant a proliferation-inducing ligand (APRIL)-producing macrophages contribute to plasma cell accumulation in immunoglobulin G4-related disease. Nephrol. Dial. Transpl. 34, 960–969 (2018).

    Google Scholar 

  87. Khosroshahi, A. et al. International consensus guidance statement on the management and treatment of IgG4-related disease. Arthritis Rheumatol. 67, 1688–1699 (2015).

    CAS  PubMed  Google Scholar 

  88. Cain, D. W. & Cidlowski, J. A. Immune regulation by glucocorticoids. Nat. Rev. Immunol. 17, 233–247 (2017).

    CAS  PubMed  Google Scholar 

  89. Kamisawa, T. et al. Standard steroid treatment for autoimmune pancreatitis. Gut 58, 1504–1507 (2009).

    CAS  PubMed  Google Scholar 

  90. Inoue, D. et al. IgG4-related disease: dataset of 235 consecutive patients. Medicine 94, e680 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Masaki, Y. et al. A multicenter phase II prospective clinical trial of glucocorticoid for patients with untreated IgG4-related disease. Mod. Rheumatol. 27, 849–854 (2017).

    CAS  PubMed  Google Scholar 

  92. Yunyun, F. et al. Efficacy of cyclophosphamide treatment for immunoglobulin G4-related disease with addition of glucocorticoids. Sci. Rep. 7, 6195 (2017).

    PubMed  PubMed Central  Google Scholar 

  93. Yunyun, F. et al. Efficacy and safety of low dose mycophenolate mofetil treatment for immunoglobulin G4-related disease: a randomized clinical trial. Rheumatology 58, 52–60 (2019).

    PubMed  Google Scholar 

  94. Hoffman, G. S. et al. Wegener granulomatosis: an analysis of 158 patients. Ann. Intern. Med. 116, 488–498 (1992).

    CAS  PubMed  Google Scholar 

  95. Khosroshahi, A., Bloch, D. B., Deshpande, V. & Stone, J. H. Rituximab therapy leads to rapid decline of serum IgG4 levels and prompt clinical improvement in IgG4-related systemic disease. Arthritis Rheum. 62, 1755–1762 (2010).

    CAS  PubMed  Google Scholar 

  96. Khosroshahi, A. et al. Rituximab for the treatment of IgG4-related disease: lessons from 10 consecutive patients. Medicine 91, 57–66 (2012).

    CAS  PubMed  Google Scholar 

  97. Ebbo, M. et al. Long-term efficacy and safety of rituximab in IgG4-related disease: data from a French nationwide study of thirty-three patients. PLoS ONE 12, e0183844 (2017).

    PubMed  PubMed Central  Google Scholar 

  98. Campochiaro, C. et al. Long-term efficacy of maintenance therapy with rituximab for IgG4-related disease. Eur. J. Intern. Med. 74, 92–98 (2020).

    CAS  PubMed  Google Scholar 

  99. Della-Torre, E. et al. B-cell depletion attenuates serological biomarkers of fibrosis and myofibroblast activation in IgG4-related disease. Ann. Rheum. Dis. 74, 2236–2243 (2015).

    CAS  PubMed  Google Scholar 

  100. Stone, J. H. et al. Final results of an open label phase 2 study of a reversible B cell inhibitor, Xmab®5871, in IgG4-related disease [abstract]. Arthritis Rheumatol. 69, 4L (2017).

    Google Scholar 

  101. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT03669861 (2020).

  102. Iwata, S. et al. Activation of Syk in peripheral blood B cells in patients with rheumatoid arthritis: a potential target for abatacept therapy. Arthritis Rheumatol. 67, 63–73 (2015).

    CAS  PubMed  Google Scholar 

  103. Cree, B. A. C. et al. Inebilizumab for the treatment of neuromyelitis optica spectrum disorder (N-MOmentum): a double-blind, randomised placebo-controlled phase 2/3 trial. Lancet 394, 1352–1363 (2019).

    CAS  PubMed  Google Scholar 

  104. Adis Insight. Adis Insight https://adisinsight.springer.com/trials/700315204 (2020).

  105. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02704429 (2020).

  106. Adis Insight. Adis Insight https://adisinsight.springer.com/drugs/800040748 (2020).

  107. US Department of Health & Human Services. Research Portfolio Online Reporting Tools (RePORT) https://projectreporter.nih.gov/project_info_description.cfm?aid=9731061&icde=44650655 (2020).

  108. Lonial, S. et al. Elotuzumab therapy for relapsed or refractory multiple myeloma. N. Engl. J. Med. 373, 621–631 (2015).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The work of C.A.P. is supported by a Scientist Development Award from the Rheumatology Research Foundation and a New Investigator Award from the Scleroderma Foundation. The work of J.H.S. is supported by an Autoimmunity Center of Excellence award from the National Institute of Allergy and Infectious Diseases (UM1 AI-144295).

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to John H. Stone.

Ethics declarations

Competing interests

C.A.P. declares no competing interests. J.H.S. declares that he has received grants and consultation fees related to IgG4-related disease from Principia Biopharma, Roche and Viela Bio.

Additional information

Peer review information

Nature Reviews Rheumatology thanks H. Umehara, W. Zhang and J. van Laar for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Dacryoadenitis

Enlarged lacrimal glands that are generally not tender.

Obliterative phlebitis

Targeted destruction of veins as opposed to arteries.

Hypergammaglobulinaemia

Raised concentrations of immunoglobulins in the blood.

Fab-arm exchange

The swapping of half-antibody fragments between antibody molecules, a property that is unique to IgG4 among the different IgG subclasses.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Perugino, C.A., Stone, J.H. IgG4-related disease: an update on pathophysiology and implications for clinical care. Nat Rev Rheumatol 16, 702–714 (2020). https://doi.org/10.1038/s41584-020-0500-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41584-020-0500-7

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing