Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Cell death in chronic inflammation: breaking the cycle to treat rheumatic disease

Abstract

Cell death is a vital process that occurs in billions of cells in the human body every day. This process helps maintain tissue homeostasis, supports recovery from acute injury, deals with infection and regulates immunity. Cell death can also provoke inflammatory responses, and lytic forms of cell death can incite inflammation. Loss of cell membrane integrity leads to the uncontrolled release of damage-associated molecular patterns (DAMPs), which are normally sequestered inside cells. Such DAMPs increase local inflammation and promote the production of cytokines and chemokines that modulate the innate immune response. Cell death can be both a consequence and a cause of inflammation, which can be difficult to distinguish in chronic diseases. Despite this caveat, excessive or poorly regulated cell death is increasingly recognized as a contributor to chronic inflammation in rheumatic disease and other inflammatory conditions. Drugs that inhibit cell death could, therefore, be used therapeutically for the treatment of these diseases, and programmes to develop such inhibitors are already underway. In this Review, we outline pathways for the major cell death programmes (apoptosis, necroptosis, pyroptosis and NETosis) and their potential roles in chronic inflammation. We also discuss current and developing therapies that target the cell death machinery.

Key points

  • Programmed cell death pathways can become pathological and promote chronic inflammation and rheumatic disease.

  • Damage-associated molecular patterns, which are associated with various rheumatic diseases, are host-derived molecules that might be released from dying cells and then function as danger signals, enhancing local inflammation.

  • Lytic forms of cell death, such as necroptosis, pyroptosis and NETosis, are highly pro-inflammatory owing to the release of cell contents, which can contribute to inflammation.

  • Even apoptotic cell death, which is typically non-inflammatory, can cause pathology when upregulated or when cell debris is improperly cleared, resulting in the release of inflammatory mediators.

  • Accumulating data, particularly in mouse models, suggest that targeting cell death has therapeutic potential in chronic inflammatory diseases.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Acute versus chronic inflammation.
Fig. 2: Cell death is both a cause and a consequence of inflammation.
Fig. 3: Simple overview of intrinsic and extrinsic apoptosis.
Fig. 4: Necroptosis.
Fig. 5: Inflammasome formation and pyroptosis.

Similar content being viewed by others

References

  1. Mistry, P. & Kaplan, M. J. Cell death in the pathogenesis of systemic lupus erythematosus and lupus nephritis. Clin. Immunol. 185, 59–73 (2017).

    CAS  PubMed  Google Scholar 

  2. Chen, G. Y. & Nunez, G. Sterile inflammation: sensing and reacting to damage. Nat. Rev. Immunol. 10, 826–837 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Arango Duque, G. & Descoteaux, A. Macrophage cytokines: involvement in immunity and infectious diseases. Front. Immunol. 5, 491 (2014).

    PubMed  PubMed Central  Google Scholar 

  4. Turner, M. D., Nedjai, B., Hurst, T. & Pennington, D. J. Cytokines and chemokines: at the crossroads of cell signalling and inflammatory disease. Biochim. Biophys. Acta 1843, 2563–2582 (2014).

    CAS  PubMed  Google Scholar 

  5. Takeuchi, O. & Akira, S. Pattern recognition receptors and inflammation. Cell 140, 805–820 (2010).

    CAS  PubMed  Google Scholar 

  6. Venereau, E., Ceriotti, C. & Bianchi, M. E. DAMPs from cell death to new life. Front. Immunol. 6, 422 (2015).

    PubMed  PubMed Central  Google Scholar 

  7. Gilroy, D. & De Maeyer, R. New insights into the resolution of inflammation. Semin. Immunol. 27, 161–168 (2015).

    CAS  PubMed  Google Scholar 

  8. Roh, J. S. & Sohn, D. H. Damage-associated molecular patterns in inflammatory diseases. Immune Netw. 18, e27 (2018).

    PubMed  PubMed Central  Google Scholar 

  9. Cho, J. H. The genetics and immunopathogenesis of inflammatory bowel disease. Nat. Rev. Immunol. 8, 458–466 (2008).

    CAS  PubMed  Google Scholar 

  10. Guttman-Yassky, E., Nograles, K. E. & Krueger, J. G. Contrasting pathogenesis of atopic dermatitis and psoriasis–part I: clinical and pathologic concepts. J. Allergy Clin. Immunol. 127, 1110–1118 (2011).

    PubMed  Google Scholar 

  11. Guttman-Yassky, E., Nograles, K. E. & Krueger, J. G. Contrasting pathogenesis of atopic dermatitis and psoriasis–part II: immune cell subsets and therapeutic concepts. J. Allergy Clin. Immunol. 127, 1420–1432 (2011).

    CAS  PubMed  Google Scholar 

  12. Gottschalk, T. A., Tsantikos, E. & Hibbs, M. L. Pathogenic inflammation and its therapeutic targeting in systemic lupus erythematosus. Front. Immunol. 6, 550 (2015).

    PubMed  PubMed Central  Google Scholar 

  13. Noack, M. & Miossec, P. Selected cytokine pathways in rheumatoid arthritis. Semin. Immunopathol. 39, 365–383 (2017).

    CAS  PubMed  Google Scholar 

  14. Haroon, M. & FitzGerald, O. Psoriatic arthritis: complexities, comorbidities and implications for the clinic. Expert. Rev. Clin. Immunol. 12, 405–416 (2016).

    CAS  PubMed  Google Scholar 

  15. Robinson, W. H. et al. Low-grade inflammation as a key mediator of the pathogenesis of osteoarthritis. Nat. Rev. Rheumatol. 12, 580–592 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Zhu, W. et al. Ankylosing spondylitis: etiology, pathogenesis, and treatments. Bone Res. 7, 22 (2019).

    PubMed  PubMed Central  Google Scholar 

  17. Ragab, G., Elshahaly, M. & Bardin, T. Gout: an old disease in new perspective – a review. J. Adv. Res. 8, 495–511 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Lis, K., Kuzawinska, O. & Balkowiec-Iskra, E. Tumor necrosis factor inhibitors – state of knowledge. Arch. Med. Sci. 10, 1175–1185 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Vandenabeele, P., Galluzzi, L., Vanden Berghe, T. & Kroemer, G. Molecular mechanisms of necroptosis: an ordered cellular explosion. Nat. Rev. Mol. Cell Biol. 11, 700–714 (2010).

    CAS  PubMed  Google Scholar 

  20. Wallach, D., Kang, T. B. & Kovalenko, A. Concepts of tissue injury and cell death in inflammation: a historical perspective. Nat. Rev. Immunol. 14, 51–59 (2014).

    CAS  PubMed  Google Scholar 

  21. Kawane, K., Motani, K. & Nagata, S. DNA degradation and its defects. Cold Spring Harb. Perspect. Biol. 6, a016394 (2014).

    PubMed  PubMed Central  Google Scholar 

  22. Sachet, M., Liang, Y. Y. & Oehler, R. The immune response to secondary necrotic cells. Apoptosis 22, 1189–1204 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Galluzzi, L. et al. Molecular mechanisms of cell death: recommendations of the Nomenclature Committee on Cell Death 2018. Cell Death Differ. 25, 486–541 (2018).

    PubMed  PubMed Central  Google Scholar 

  24. Green, D. R., Ferguson, T., Zitvogel, L. & Kroemer, G. Immunogenic and tolerogenic cell death. Nat. Rev. Immunol. 9, 353–363 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Orozco, S. L. et al. RIPK3 activation leads to cytokine synthesis that continues after loss of cell membrane integrity. Cell Rep. 28, 2275–2287.e5 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Martin, S. J., Henry, C. M. & Cullen, S. P. A perspective on mammalian caspases as positive and negative regulators of inflammation. Mol. Cell 46, 387–397 (2012).

    CAS  PubMed  Google Scholar 

  27. Cayrol, C. & Girard, J. P. The IL-1-like cytokine IL-33 is inactivated after maturation by caspase-1. Proc. Natl Acad. Sci. USA 106, 9021–9026 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Luthi, A. U. et al. Suppression of interleukin-33 bioactivity through proteolysis by apoptotic caspases. Immunity 31, 84–98 (2009).

    CAS  PubMed  Google Scholar 

  29. O’Reilly, S. Pound the alarm: danger signals in rheumatic diseases. Clin. Sci. 128, 297–305 (2015).

    Google Scholar 

  30. White, M. J. et al. Apoptotic caspases suppress mtDNA-induced STING-mediated type I IFN production. Cell 159, 1549–1562 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Berthelot, J. M., Le Goff, B., Neel, A., Maugars, Y. & Hamidou, M. NETosis: at the crossroads of rheumatoid arthritis, lupus, and vasculitis. Jt. Bone Spine 84, 255–262 (2017).

    Google Scholar 

  32. Magna, M. & Pisetsky, D. S. The role of cell death in the pathogenesis of SLE: is pyroptosis the missing link? Scand. J. Immunol. 82, 218–224 (2015).

    CAS  PubMed  Google Scholar 

  33. So, A. K. & Martinon, F. Inflammation in gout: mechanisms and therapeutic targets. Nat. Rev. Rheumatol. 13, 639–647 (2017).

    CAS  PubMed  Google Scholar 

  34. Amarante-Mendes, G. P. et al. Pattern recognition receptors and the host cell death molecular machinery. Front. Immunol. 9, 2379 (2018).

    PubMed  PubMed Central  Google Scholar 

  35. Czabotar, P. E., Lessene, G., Strasser, A. & Adams, J. M. Control of apoptosis by the BCL-2 protein family: implications for physiology and therapy. Nat. Rev. Mol. Cell Biol. 15, 49–63 (2014).

    CAS  PubMed  Google Scholar 

  36. Delbridge, A. R., Grabow, S., Strasser, A. & Vaux, D. L. Thirty years of BCL-2: translating cell death discoveries into novel cancer therapies. Nat. Rev. Cancer 16, 99–109 (2016).

    CAS  PubMed  Google Scholar 

  37. McArthur, K. et al. BAK/BAX macropores facilitate mitochondrial herniation and mtDNA efflux during apoptosis. Science 359, eaao6047 (2018).

    PubMed  Google Scholar 

  38. Sugiura, R., Satoh, R., Ishiwata, S., Umeda, N. & Kita, A. Role of RNA-binding proteins in MAPK signal transduction pathway. J. Signal. Transduct. 2011, 109746 (2011).

    PubMed  PubMed Central  Google Scholar 

  39. Tiedje, C., Holtmann, H. & Gaestel, M. The role of mammalian MAPK signaling in regulation of cytokine mRNA stability and translation. J. Interferon Cytokine Res. 34, 220–232 (2014).

    CAS  PubMed  Google Scholar 

  40. Silke, J. & Meier, P. Inhibitor of apoptosis (IAP) proteins–modulators of cell death and inflammation. Cold Spring Harb. Perspect. Biol. 5, a008730 (2013).

    PubMed  PubMed Central  Google Scholar 

  41. Vince, J. E. et al. TRAF2 must bind to cellular inhibitors of apoptosis for tumor necrosis factor (TNF) to efficiently activate NF-κB and to prevent TNF-induced apoptosis. J. Biol. Chem. 284, 35906–35915 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Dynek, J. N. et al. c-IAP1 and UbcH5 promote K11-linked polyubiquitination of RIP1 in TNF signalling. EMBO J. 29, 4198–4209 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Varfolomeev, E. et al. c-IAP1 and c-IAP2 are critical mediators of tumor necrosis factor α (TNFα)-induced NF-κB activation. J. Biol. Chem. 283, 24295–24299 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Ting, A. T. & Bertrand, M. J. M. More to life than NF-κB in TNFR1 signaling. Trends Immunol. 37, 535–545 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Silke, J. & Vince, J. IAPs and cell death. Curr. Top. Microbiol. Immunol. 403, 95–117 (2017).

    CAS  PubMed  Google Scholar 

  46. Gerlach, B. et al. Linear ubiquitination prevents inflammation and regulates immune signalling. Nature 471, 591–596 (2011).

    CAS  PubMed  Google Scholar 

  47. Dondelinger, Y. et al. NF-κB-independent role of IKKα/IKKβ in preventing RIPK1 kinase-dependent apoptotic and necroptotic cell death during TNF signaling. Mol. Cell 60, 63–76 (2015).

    CAS  PubMed  Google Scholar 

  48. Geng, J. et al. Regulation of RIPK1 activation by TAK1-mediated phosphorylation dictates apoptosis and necroptosis. Nat. Commun. 8, 359 (2017).

    PubMed  PubMed Central  Google Scholar 

  49. Silke, J. The regulation of TNF signalling: what a tangled web we weave. Curr. Opin. Immunol. 23, 620–626 (2011).

    CAS  PubMed  Google Scholar 

  50. Wong, W. W. et al. RIPK1 is not essential for TNFR1-induced activation of NF-κB. Cell Death Differ. 17, 482–487 (2010).

    CAS  PubMed  Google Scholar 

  51. Anderton, H. et al. RIPK1 prevents TRADD-driven, but TNFR1 independent, apoptosis during development. Cell Death Differ. 26, 877–889 (2019).

    CAS  PubMed  Google Scholar 

  52. Dowling, J. P., Alsabbagh, M., Del Casale, C., Liu, Z. G. & Zhang, J. TRADD regulates perinatal development and adulthood survival in mice lacking RIPK1 and RIPK3. Nat. Commun. 10, 705 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Takahashi, N. et al. RIPK1 ensures intestinal homeostasis by protecting the epithelium against apoptosis. Nature 513, 95–99 (2014).

    CAS  PubMed  Google Scholar 

  54. Dannappel, M. et al. RIPK1 maintains epithelial homeostasis by inhibiting apoptosis and necroptosis. Nature 513, 90–94 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Kelliher, M. A. et al. The death domain kinase RIP mediates the TNF-induced NF-κB signal. Immunity 8, 297–303 (1998).

    CAS  PubMed  Google Scholar 

  56. Dondelinger, Y., Darding, M., Bertrand, M. J. & Walczak, H. Poly-ubiquitination in TNFR1-mediated necroptosis. Cell Mol. Life Sci. 73, 2165–2176 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Tsuchiya, Y., Nakabayashi, O. & Nakano, H. FLIP the switch: regulation of apoptosis and necroptosis by cFLIP. Int. J. Mol. Sci. 16, 30321–30341 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Degterev, A., Ofengeim, D. & Yuan, J. Targeting RIPK1 for the treatment of human diseases. Proc. Natl Acad. Sci. USA 116, 9714–9722 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Jaco, I. et al. MK2 phosphorylates RIPK1 to prevent TNF-induced cell death. Mol. Cell 66, 698–710.e5 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Annibaldi, A. et al. Ubiquitin-mediated regulation of RIPK1 kinase activity independent of IKK and MK2. Mol. Cell 69, 566–580.e5 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Dondelinger, Y. et al. Serine 25 phosphorylation inhibits RIPK1 kinase-dependent cell death in models of infection and inflammation. Nat. Commun. 10, 1729 (2019).

    PubMed  PubMed Central  Google Scholar 

  62. Scaffidi, P., Misteli, T. & Bianchi, M. E. Release of chromatin protein HMGB1 by necrotic cells triggers inflammation. Nature 418, 191–195 (2002).

    CAS  PubMed  Google Scholar 

  63. Fox, S., Leitch, A. E., Duffin, R., Haslett, C. & Rossi, A. G. Neutrophil apoptosis: relevance to the innate immune response and inflammatory disease. J. Innate Immun. 2, 216–227 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Saas, P., Bonnefoy, F., Toussirot, E. & Perruche, S. Harnessing apoptotic cell clearance to treat autoimmune arthritis. Front. Immunol. 8, 1191 (2017).

    PubMed  PubMed Central  Google Scholar 

  65. Raza, K. et al. Synovial fluid leukocyte apoptosis is inhibited in patients with very early rheumatoid arthritis. Arthritis Res. Ther. 8, R120 (2006).

    PubMed  PubMed Central  Google Scholar 

  66. Wright, H. L., Moots, R. J., Bucknall, R. C. & Edwards, S. W. Neutrophil function in inflammation and inflammatory diseases. Rheumatology 49, 1618–1631 (2010).

    CAS  PubMed  Google Scholar 

  67. Dzhagalov, I. L., Chen, K. G., Herzmark, P. & Robey, E. A. Elimination of self-reactive T cells in the thymus: a timeline for negative selection. PLoS Biol. 11, e1001566 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Nemazee, D. Mechanisms of central tolerance for B cells. Nat. Rev. Immunol. 17, 281–294 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Rieux-Laucat, F., Magerus-Chatinet, A. & Neven, B. The autoimmune lymphoproliferative syndrome with defective FAS or FAS-ligand functions. J. Clin. Immunol. 38, 558–568 (2018).

    CAS  PubMed  Google Scholar 

  70. Watanabe-Fukunaga, R., Brannant, C. I., Copelandt, N. G., Jenkinst, N. A. & Nagata, S. Lymphoproliferation disorder in mice explained by defects in Fas antigen that mediates apoptosis. Nature 356, 314–317 (1992).

    CAS  PubMed  Google Scholar 

  71. Takahashi, T. et al. Generalized lymphoproliferative disease in mice, caused by a point mutation in the Fas ligand. Cell 76, 969–976 (1994).

    CAS  PubMed  Google Scholar 

  72. O’ Reilly, L. et al. Membrane-bound Fas ligand only is essential for Fas-induced apoptosis. Nature 461, 659–663 (2009).

    PubMed  PubMed Central  Google Scholar 

  73. Peter, C., Wesselborg, S., Herrmann, M. & Lauber, K. Dangerous attraction: phagocyte recruitment and danger signals of apoptotic and necrotic cells. Apoptosis 15, 1007–1028 (2010).

    PubMed  Google Scholar 

  74. Silva, M. T. Secondary necrosis: the natural outcome of the complete apoptotic program. FEBS Lett. 584, 4491–4499 (2010).

    CAS  PubMed  Google Scholar 

  75. Munoz, L. E., Leppkes, M., Fuchs, T. A., Hoffmann, M. & Herrmann, M. Missing in action–the meaning of cell death in tissue damage and inflammation. Immunol. Rev. 280, 26–40 (2017).

    CAS  PubMed  Google Scholar 

  76. Barton, D., HogenEsch, H. & Weih, F. Mice lacking the transcription factor RelB develop T cell-dependent skin lesions similar to human atopic dermatitis. Eur. J. Immunol. 30, 2323–2332 (2000).

    CAS  PubMed  Google Scholar 

  77. Pasparakis, M. et al. TNF-mediated inflammatory skin disease in mice with epidermis-specific deletion of IKK2. Nature 417, 861–866 (2002).

    CAS  PubMed  Google Scholar 

  78. Nenci, A. et al. Skin lesion development in a mouse model of incontinentia pigmenti is triggered by NEMO deficiency in epidermal keratinocytes and requires TNF signaling. Hum. Mol. Genet. 15, 531–542 (2006).

    CAS  PubMed  Google Scholar 

  79. Anderton, H., Rickard, J. A., Varigos, G. A., Lalaoui, N. & Silke, J. Inhibitor of apoptosis proteins (IAPs) limit RIPK1-mediated skin inflammation. J. Invest. Dermatol. 137, 2371–2379 (2017).

    CAS  PubMed  Google Scholar 

  80. Panayotova-Dimitrova, D. et al. cFLIP regulates skin homeostasis and protects against TNF-induced keratinocyte apoptosis. Cell Rep. 5, 397–408 (2013).

    CAS  PubMed  Google Scholar 

  81. Rickard, J. A. et al. TNFR1-dependent cell death drives inflammation in Sharpin-deficient mice. eLife 3, 1–23 (2014).

    Google Scholar 

  82. Berger, S. B. et al. Cutting edge: RIP1 kinase activity is dispensable for normal development but is a key regulator of inflammation in SHARPIN-deficient mice. J. Immunol. 192, 5476–5480 (2014).

    CAS  PubMed  Google Scholar 

  83. Taraborrelli, L. et al. LUBAC prevents lethal dermatitis by inhibiting cell death induced by TNF, TRAIL and CD95L. Nat. Commun. 9, 3910 (2018).

    PubMed  PubMed Central  Google Scholar 

  84. Nenci, A. et al. Epithelial NEMO links innate immunity to chronic intestinal inflammation. Nature 446, 557–561 (2007).

    CAS  PubMed  Google Scholar 

  85. Steinbrecher, K. A., Harmel-Laws, E., Sitcheran, R. & Baldwin, A. S. Loss of epithelial RelA results in deregulated intestinal proliferative/apoptotic homeostasis and susceptibility to inflammation. J. Immunol. 180, 2588–2599 (2008).

    CAS  PubMed  Google Scholar 

  86. Kajino-Sakamoto, R. et al. Enterocyte-derived TAK1 signaling prevents epithelium apoptosis and the development of ileitis and colitis. J. Immunol. 181, 1143–1152 (2008).

    CAS  PubMed  Google Scholar 

  87. Gunther, C., Neumann, H., Neurath, M. F. & Becker, C. Apoptosis, necrosis and necroptosis: cell death regulation in the intestinal epithelium. Gut 62, 1062–1071 (2013).

    PubMed  Google Scholar 

  88. Conrad, M. A., Carreon, C. K., Dawany, N., Russo, P. & Kelsen, J. R. Distinct histopathological features at diagnosis of very early onset inflammatory bowel disease. J. Crohns Colitis 13, 615–625 (2019).

    PubMed  Google Scholar 

  89. Hagiwara, C., Tanaka, M. & Kudo, H. Increase in colorectal epithelial apoptotic cells in patients with ulcerative colitis ultimately requiring surgery. J. Gastroenterol. Hepatol. 17, 758–764 (2002).

    PubMed  Google Scholar 

  90. Santoro, A. et al. Cytotoxic molecule expression and epithelial cell apoptosis in oral and cutaneous lichen planus. Am. J. Clin. Pathol. 121, 758–764 (2004).

    PubMed  Google Scholar 

  91. Trautmann, A. et al. T cell-mediated Fas-induced keratinocyte apoptosis plays a key pathogenetic role in eczematous dermatitis. J. Clin. Invest. 106, 25–35 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Hofmeister, C. C. et al. Graft-versus-host disease of the skin: life and death on the epidermal edge. Biol. Blood Marrow Transpl. 10, 366–372 (2004).

    Google Scholar 

  93. Liu, Y. et al. TWEAK/Fn14 activation contributes to the pathogenesis of bullous pemphigoid. J. Invest. Dermatol. 137, 1512–1522 (2017).

    CAS  PubMed  Google Scholar 

  94. Arya, A. K., Tripathi, R., Kumar, S. & Tripathi, K. Recent advances on the association of apoptosis in chronic non healing diabetic wound. World J. Diabetes 5, 756–762 (2014).

    PubMed  PubMed Central  Google Scholar 

  95. Zamli, Z. & Sharif, M. Chondrocyte apoptosis: a cause or consequence of osteoarthritis? Int. J. Rheum. Dis. 14, 159–166 (2011).

    PubMed  Google Scholar 

  96. Hwang, H. S. & Kim, H. A. Chondrocyte apoptosis in the pathogenesis of osteoarthritis. Int. J. Mol. Sci. 16, 26035–26054 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Dharmapatni, A. A. et al. Elevated expression of caspase-3 inhibitors, survivin and xIAP correlates with low levels of apoptosis in active rheumatoid synovium. Arthritis Res. Ther. 11, R13 (2009).

    PubMed  PubMed Central  Google Scholar 

  98. Catrina, A. I., Ulfgren, A. K., Lindblad, S., Grondal, L. & Klareskog, L. Low levels of apoptosis and high FLIP expression in early rheumatoid arthritis synovium. Ann. Rheum. Dis. 61, 934–936 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Ottonello, L. et al. Synovial fluid from patients with rheumatoid arthritis inhibits neutrophil apoptosis: role of adenosine and proinflammatory cytokines. Rheumatology 41, 1249–1260 (2002).

    CAS  PubMed  Google Scholar 

  100. Salmon, M. et al. Inhibition of T cell apoptosis in the rheumatoid synovium. J. Clin. Invest. 99, 439–446 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Pilling, D. et al. Interferon-β mediates stromal cell rescue of T cells from apoptosis. Eur. J. Immunol. 29, 1041–1050 (1999).

    CAS  PubMed  Google Scholar 

  102. Glesse, N. et al. Evaluation of polymorphic variants in apoptotic genes and their role in susceptibility and clinical progression to systemic lupus erythematosus. Lupus 26, 746–755 (2017).

    CAS  PubMed  Google Scholar 

  103. Murphy, J. M. et al. The pseudokinase MLKL mediates necroptosis via a molecular switch mechanism. Immunity 39, 443–453 (2013).

    CAS  PubMed  Google Scholar 

  104. Zhang, L. et al. RIP1 cleavage in the kinase domain regulates TRAIL-induced NF-κB activation and lymphoma survival. Mol. Cell Biol. 35, 3324–3338 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Lin, Y., Devin, A., Rodriguez, Y. & Liu, Z. G. Cleavage of the death domain kinase RIP by caspase-8 prompts TNF-induced apoptosis. Genes Dev. 13, 2514–2526 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Feng, S. et al. Cleavage of RIP3 inactivates its caspase-independent apoptosis pathway by removal of kinase domain. Cell Signal. 19, 2056–2067 (2007).

    CAS  PubMed  Google Scholar 

  107. Lalaoui, N. et al. Mutations that prevent caspase cleavage of RIPK1 cause autoinflammatory disease. Nature 577, 103–108 (2020).

    CAS  PubMed  Google Scholar 

  108. Newton, K. et al. Cleavage of RIPK1 by caspase-8 is crucial for limiting apoptosis and necroptosis. Nature 574, 428–431 (2019).

    CAS  PubMed  Google Scholar 

  109. Zhang, X., Dowling, J. P. & Zhang, J. RIPK1 can mediate apoptosis in addition to necroptosis during embryonic development. Cell Death Dis. 10, 245 (2019).

    PubMed  PubMed Central  Google Scholar 

  110. Giogha, C., Lung, T. W., Pearson, J. S. & Hartland, E. L. Inhibition of death receptor signaling by bacterial gut pathogens. Cytokine Growth Factor. Rev. 25, 235–243 (2014).

    CAS  PubMed  Google Scholar 

  111. Pearson, J. S. et al. EspL is a bacterial cysteine protease effector that cleaves RHIM proteins to block necroptosis and inflammation. Nat. Microbiol. 2, 16258 (2017).

    CAS  PubMed  Google Scholar 

  112. Huang, D. et al. The MLKL channel in necroptosis is an octamer formed by tetramers in a dyadic process. Mol. Cell. Biol. 37, e00497–16 (2017).

    PubMed  PubMed Central  Google Scholar 

  113. Kaczmarek, A., Vandenabeele, P. & Krysko, D. V. Necroptosis: the release of damage-associated molecular patterns and its physiological relevance. Immunity 38, 209–223 (2013).

    CAS  PubMed  Google Scholar 

  114. Festjens, N., Vanden Berghe, T., Cornelis, S. & Vandenabeele, P. RIP1, a kinase on the crossroads of a cell’s decision to live or die. Cell Death Differ. 14, 400–410 (2007).

    CAS  PubMed  Google Scholar 

  115. Pasparakis, M. & Vandenabeele, P. Necroptosis and its role in inflammation. Nature 517, 311–320 (2015).

    CAS  PubMed  Google Scholar 

  116. Lawlor, K. E. et al. RIPK3 promotes cell death and NLRP3 inflammasome activation in the absence of MLKL. Nat. Commun. 6, 6282 (2015).

    CAS  PubMed  Google Scholar 

  117. Feoktistova, M. et al. cIAPs block ripoptosome formation, a RIP1/caspase-8 containing intracellular cell death complex differentially regulated by cFLIP isoforms. Mol. Cell 43, 449–463 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Lin, J. et al. RIPK1 counteracts ZBP1-mediated necroptosis to inhibit inflammation. Nature 540, 124–128 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Newton, K. et al. RIPK1 inhibits ZBP1-driven necroptosis during development. Nature 540, 129–133 (2016).

    CAS  PubMed  Google Scholar 

  120. Grootjans, S., Vanden Berghe, T. & Vandenabeele, P. Initiation and execution mechanisms of necroptosis: an overview. Cell Death Differ. 24, 1184–1195 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Ingram, J. P. et al. ZBP1/DAI drives RIPK3-mediated cell death induced by IFNs in the absence of RIPK1. J. Immunol. 203, 1348–1355 (2019).

    CAS  PubMed  Google Scholar 

  122. Jiao, H. et al. Z-nucleic-acid sensing triggers ZBP1-dependent necroptosis and inflammation. Nature 580, 391–395 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Kuriakose, T. et al. ZBP1/DAI is an innate sensor of influenza virus triggering the NLRP3 inflammasome and programmed cell death pathways. Sci. Immunol. 1, aag2045 (2016).

    PubMed  PubMed Central  Google Scholar 

  124. Maelfait, J. et al. Sensing of viral and endogenous RNA by ZBP1/DAI induces necroptosis. EMBO J. 36, 2529–2543 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Daley-Bauer, L. P. et al. Mouse cytomegalovirus M36 and M45 death suppressors cooperate to prevent inflammation resulting from antiviral programmed cell death pathways. Proc. Natl Acad. Sci. USA 114, E2786–E2795 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Newton, K. & Manning, G. Necroptosis and inflammation. Annu. Rev. Biochem. 85, 743–763 (2016).

    CAS  PubMed  Google Scholar 

  127. Dondelinger, Y., Hulpiau, P., Saeys, Y., Bertrand, M. J. M. & Vandenabeele, P. An evolutionary perspective on the necroptotic pathway. Trends Cell Biol. 26, 721–732 (2016).

    CAS  PubMed  Google Scholar 

  128. Gunther, C. et al. Caspase-8 regulates TNF-α-induced epithelial necroptosis and terminal ileitis. Nature 477, 335–339 (2011).

    PubMed  PubMed Central  Google Scholar 

  129. Rickard, J. A. et al. RIPK1 regulates RIPK3-MLKL-driven systemic inflammation and emergency hematopoiesis. Cell 157, 1175–1188 (2014).

    CAS  PubMed  Google Scholar 

  130. Dillon, C. P. et al. RIPK1 blocks early postnatal lethality mediated by caspase-8 and RIPK3. Cell 157, 1189–1202 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  131. Kaiser, W. J. et al. RIP1 suppresses innate immune necrotic as well as apoptotic cell death during mammalian parturition. Proc. Natl Acad. Sci. USA 111, 7753–7758 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  132. Ito, Y. et al. RIPK1 mediates axonal degeneration by promoting inflammation and necroptosis in ALS. Science 353, 603–608 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  133. Lin, J. et al. A role of RIP3-mediated macrophage necrosis in atherosclerosis development. Cell Rep. 3, 200–210 (2013).

    CAS  PubMed  Google Scholar 

  134. Meng, L. et al. RIP3-dependent necrosis induced inflammation exacerbates atherosclerosis. Biochem. Biophys. Res. Commun. 473, 497–502 (2016).

    CAS  PubMed  Google Scholar 

  135. Wang, X., Yousefi, S. & Simon, H. U. Necroptosis and neutrophil-associated disorders. Cell Death Dis. 9, 111 (2018).

    PubMed  PubMed Central  Google Scholar 

  136. Desai, J. et al. PMA and crystal-induced neutrophil extracellular trap formation involves RIPK1-RIPK3-MLKL signaling. Eur. J. Immunol. 46, 223–229 (2016).

    CAS  PubMed  Google Scholar 

  137. Alvarez-Diaz, S. et al. The pseudokinase MLKL and the kinase RIPK3 have distinct roles in autoimmune disease caused by loss of death-receptor-induced apoptosis. Immunity 45, 513–526 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  138. Newton, K. et al. RIPK3 deficiency or catalytically inactive RIPK1 provides greater benefit than MLKL deficiency in mouse models of inflammation and tissue injury. Cell Death Differ. 23, 1565–1576 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  139. Cuchet-Lourenco, D. et al. Biallelic RIPK1 mutations in humans cause severe immunodeficiency, arthritis, and intestinal inflammation. Science 361, 810–813 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  140. Li, Y. et al. Human RIPK1 deficiency causes combined immunodeficiency and inflammatory bowel diseases. Proc. Natl Acad. Sci. USA 116, 970–975 (2019).

    CAS  PubMed  Google Scholar 

  141. Miao, E. A. et al. Caspase-1-induced pyroptosis is an innate immune effector mechanism against intracellular bacteria. Nat. Immunol. 11, 1136–1142 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  142. Bergsbaken, T., Fink, S. L. & Cookson, B. T. Pyroptosis: host cell death and inflammation. Nat. Rev. Microbiol. 7, 99–109 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  143. Prochnicki, T., Mangan, M. S. & Latz, E. Recent insights into the molecular mechanisms of the NLRP3 inflammasome activation. F1000Res 5, 1469 (2016).

    Google Scholar 

  144. Guo, H., Callaway, J. B. & Ting, J. P. Inflammasomes: mechanism of action, role in disease, and therapeutics. Nat. Med. 21, 677–687 (2015).

    PubMed  PubMed Central  Google Scholar 

  145. Schroder, K. & Tschopp, J. The inflammasomes. Cell 140, 821–832 (2010).

    CAS  PubMed  Google Scholar 

  146. Jo, E. K., Kim, J. K., Shin, D. M. & Sasakawa, C. Molecular mechanisms regulating NLRP3 inflammasome activation. Cell Mol. Immunol. 13, 148–159 (2016).

    CAS  PubMed  Google Scholar 

  147. Latz, E., Xiao, T. S. & Stutz, A. Activation and regulation of the inflammasomes. Nat. Rev. Immunol. 13, 397–411 (2013).

    CAS  PubMed  Google Scholar 

  148. Tschopp, J., Martinon, F. & Burns, K. NALPs: a novel protein family involved in inflammation. Nat. Rev. Mol. Cell Biol. 4, 95–104 (2003).

    CAS  PubMed  Google Scholar 

  149. Shimada, K. et al. Oxidized mitochondrial DNA activates the NLRP3 inflammasome during apoptosis. Immunity 36, 401–414 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  150. Tao, L. et al. The kinase receptor-interacting protein 1 is required for inflammasome activation induced by endoplasmic reticulum stress. Cell Death Dis. 9, 641 (2018).

    PubMed  PubMed Central  Google Scholar 

  151. Broz, P. & Dixit, V. M. Inflammasomes: mechanism of assembly, regulation and signalling. Nat. Rev. Immunol. 16, 407–420 (2016).

    CAS  PubMed  Google Scholar 

  152. Zhang, Z. et al. Protein kinase D at the Golgi controls NLRP3 inflammasome activation. J. Exp. Med. 214, 2671–2693 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  153. Chen, J. & Chen, Z. J. PtdIns4P on dispersed trans-Golgi network mediates NLRP3 inflammasome activation. Nature 564, 71–76 (2018).

    CAS  PubMed  Google Scholar 

  154. Huang, X. et al. Caspase-11, a specific sensor for intracellular lipopolysaccharide recognition, mediates the non-canonical inflammatory pathway of pyroptosis. Cell Biosci. 9, 31 (2019).

    PubMed  PubMed Central  Google Scholar 

  155. Shi, J. et al. Inflammatory caspases are innate immune receptors for intracellular LPS. Nature 514, 187–192 (2014).

    CAS  PubMed  Google Scholar 

  156. Sborgi, L. et al. GSDMD membrane pore formation constitutes the mechanism of pyroptotic cell death. EMBO J. 35, 1766–1778 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  157. He, W. T. et al. Gasdermin D is an executor of pyroptosis and required for interleukin-1β secretion. Cell Res. 25, 1285–1298 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  158. Kayagaki, N. et al. Caspase-11 cleaves gasdermin D for non-canonical inflammasome signalling. Nature 526, 666–671 (2015).

    CAS  PubMed  Google Scholar 

  159. Shi, J., Gao, W. & Shao, F. Pyroptosis: gasdermin-mediated programmed necrotic cell death. Trends Biochem. Sci. 42, 245–254 (2017).

    CAS  PubMed  Google Scholar 

  160. Frank, D. & Vince, J. E. Pyroptosis versus necroptosis: similarities, differences, and crosstalk. Cell Death Differ. 26, 99–114 (2019).

    PubMed  Google Scholar 

  161. Ruan, J., Xia, S., Liu, X., Lieberman, J. & Wu, H. Cryo-EM structure of the gasdermin A3 membrane pore. Nature 557, 62–67 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  162. Kesavardhana, S., Malireddi, R. K. S. & Kanneganti, T. D. Caspases in cell death, inflammation, and pyroptosis. Annu. Rev. Immunol. 38, 567–595 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  163. Conos, S. A., Lawlor, K. E., Vaux, D. L., Vince, J. E. & Lindqvist, L. M. Cell death is not essential for caspase-1-mediated interleukin-1β activation and secretion. Cell Death Differ. 23, 1827–1838 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  164. Martin-Sanchez, F. et al. Inflammasome-dependent IL-1β release depends upon membrane permeabilisation. Cell Death Differ. 23, 1219–1231 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  165. Rashidi, M. et al. The pyroptotic cell death effector gasdermin D is activated by gout-associated uric acid crystals but is dispensable for cell death and IL-1β release. J. Immunol. 203, 736–748 (2019).

    CAS  PubMed  Google Scholar 

  166. Park, Y. H., Wood, G., Kastner, D. L. & Chae, J. J. Pyrin inflammasome activation and RhoA signaling in the autoinflammatory diseases FMF and HIDS. Nat. Immunol. 17, 914–921 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  167. Kuemmerle-Deschner, J. B. CAPS–pathogenesis, presentation and treatment of an autoinflammatory disease. Semin. Immunopathol. 37, 377–385 (2015).

    CAS  PubMed  Google Scholar 

  168. Hoffman, H. M. & Broderick, L. The role of the inflammasome in patients with autoinflammatory diseases. J. Allergy Clin. Immunol. 138, 3–14 (2016).

    CAS  PubMed  Google Scholar 

  169. Brydges, S. D. et al. Divergence of IL-1, IL-18, and cell death in NLRP3 inflammasomopathies. J. Clin. Invest. 123, 4695–4705 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  170. Kanneganti, A. et al. GSDMD is critical for autoinflammatory pathology in a mouse model of familial Mediterranean fever. J. Exp. Med. 215, 1519–1529 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  171. Xiao, J. et al. Gasdermin D mediates the pathogenesis of neonatal-onset multisystem inflammatory disease in mice. PLoS Biol. 16, e3000047 (2018).

    PubMed  PubMed Central  Google Scholar 

  172. Chen, C. J. et al. MyD88-dependent IL-1 receptor signaling is essential for gouty inflammation stimulated by monosodium urate crystals. J. Clin. Invest. 116, 2262–2271 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  173. Reber, L. L. et al. Contribution of mast cell-derived interleukin-1β to uric acid crystal-induced acute arthritis in mice. Arthritis Rheumatol. 66, 2881–2891 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  174. Kelly, G. et al. Dysregulated cytokine expression in lesional and nonlesional skin in hidradenitis suppurativa. Br. J. Dermatol. 173, 1431–1439 (2015).

    CAS  PubMed  Google Scholar 

  175. Campbell, L., Raheem, I., Malemud, C. J. & Askari, A. D. The relationship between NALP3 and autoinflammatory syndromes. Int. J. Mol. Sci. 17, 725 (2016).

    PubMed Central  Google Scholar 

  176. Yin, Y. et al. Early hyperlipidemia promotes endothelial activation via a caspase-1-sirtuin 1 pathway. Arterioscler. Thromb. Vasc. Biol. 35, 804–816 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  177. Zhang, Y. et al. Coronary endothelial dysfunction induced by nucleotide oligomerization domain-like receptor protein with pyrin domain containing 3 inflammasome activation during hypercholesterolemia: beyond inflammation. Antioxid. Redox Signal. 22, 1084–1096 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  178. England, B. R., Thiele, G. M., Anderson, D. R. & Mikuls, T. R. Increased cardiovascular risk in rheumatoid arthritis: mechanisms and implications. BMJ 361, k1036 (2018).

    PubMed  PubMed Central  Google Scholar 

  179. Blum, A. & Adawi, M. Rheumatoid arthritis (RA) and cardiovascular disease. Autoimmun. Rev. 18, 679–690 (2019).

    CAS  PubMed  Google Scholar 

  180. Liew, J. W., Ramiro, S. & Gensler, L. S. Cardiovascular morbidity and mortality in ankylosing spondylitis and psoriatic arthritis. Best Pract. Res. Clin. Rheumatol. 32, 369–389 (2018).

    PubMed  Google Scholar 

  181. Giannelou, M. & Mavragani, C. P. Cardiovascular disease in systemic lupus erythematosus: a comprehensive update. J. Autoimmun. 82, 1–12 (2017).

    PubMed  Google Scholar 

  182. Bartoloni, E. et al. Targeting inflammation to prevent cardiovascular disease in chronic rheumatic diseases: myth or reality? Front. Cardiovasc. Med. 5, 177 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  183. Nurmohamed, M. T., Heslinga, M. & Kitas, G. D. Cardiovascular comorbidity in rheumatic diseases. Nat. Rev. Rheumatol. 11, 693–704 (2015).

    CAS  PubMed  Google Scholar 

  184. Lee, K. H. et al. Neutrophil extracellular traps (NETs) in autoimmune diseases: a comprehensive review. Autoimmun. Rev. 16, 1160–1173 (2017).

    CAS  PubMed  Google Scholar 

  185. Morshed, M. et al. NADPH oxidase-independent formation of extracellular DNA traps by basophils. J. Immunol. 192, 5314–5323 (2014).

    CAS  PubMed  Google Scholar 

  186. Yousefi, S. et al. Catapult-like release of mitochondrial DNA by eosinophils contributes to antibacterial defense. Nat. Med. 14, 949–953 (2008).

    CAS  PubMed  Google Scholar 

  187. Goldmann, O. & Medina, E. The expanding world of extracellular traps: not only neutrophils but much more. Front. Immunol. 3, 420 (2012).

    PubMed  Google Scholar 

  188. Yousefi, S., Mihalache, C., Kozlowski, E., Schmid, I. & Simon, H. U. Viable neutrophils release mitochondrial DNA to form neutrophil extracellular traps. Cell Death Differ. 16, 1438–1444 (2009).

    CAS  PubMed  Google Scholar 

  189. Sollberger, G. et al. Gasdermin D plays a vital role in the generation of neutrophil extracellular traps. Sci. Immunol. 3, eaar6689 (2018).

    PubMed  Google Scholar 

  190. Chen, K. W. et al. Noncanonical inflammasome signaling elicits gasdermin D-dependent neutrophil extracellular traps. Sci. Immunol. 3, eaar6676 (2018).

    PubMed  Google Scholar 

  191. Kaplan, M. J. & Radic, M. Neutrophil extracellular traps: double-edged swords of innate immunity. J. Immunol. 189, 2689–2695 (2012).

    CAS  PubMed  Google Scholar 

  192. Brinkmann, V. et al. Neutrophil extracellular traps kill bacteria. Science 303, 1532–1535 (2004).

    CAS  PubMed  Google Scholar 

  193. Remijsen, Q. et al. Dying for a cause: NETosis, mechanisms behind an antimicrobial cell death modality. Cell Death Differ. 18, 581–588 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  194. Branzk, N. et al. Neutrophils sense microbe size and selectively release neutrophil extracellular traps in response to large pathogens. Nat. Immunol. 15, 1017–1025 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  195. Malireddi, R. K. S. et al. TAK1 restricts spontaneous NLRP3 activation and cell death to control myeloid proliferation. J. Exp. Med. 215, 1023–1034 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  196. Pierini, R. et al. AIM2/ASC triggers caspase-8-dependent apoptosis in Francisella-infected caspase-1-deficient macrophages. Cell Death Differ. 19, 1709–1721 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  197. Sagulenko, V. et al. AIM2 and NLRP3 inflammasomes activate both apoptotic and pyroptotic death pathways via ASC. Cell Death Differ. 20, 1149–1160 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  198. Vince, J. E. et al. Inhibitor of apoptosis proteins limit RIP3 kinase-dependent interleukin-1 activation. Immunity 36, 215–227 (2012).

    CAS  PubMed  Google Scholar 

  199. Orning, P. et al. Pathogen blockade of TAK1 triggers caspase-8-dependent cleavage of gasdermin D and cell death. Science 362, 1064–1069 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  200. Lawlor, K. E. et al. XIAP loss triggers RIPK3- and caspase-8-driven IL-1β activation and cell death as a consequence of TLR-MyD88-induced cIAP1-TRAF2 degradation. Cell Rep. 20, 668–682 (2017).

    CAS  PubMed  Google Scholar 

  201. Wicki, S. et al. Loss of XIAP facilitates switch to TNFα-induced necroptosis in mouse neutrophils. Cell Death Dis. 7, e2422 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  202. Yabal, M. et al. XIAP restricts TNF- and RIP3-dependent cell death and inflammasome activation. Cell Rep. 7, 1796–1808 (2014).

    CAS  PubMed  Google Scholar 

  203. Gutierrez, K. D. et al. MLKL activation triggers NLRP3-mediated processing and release of IL-1β independently of gasdermin-D. J. Immunol. 198, 2156–2164 (2017).

    CAS  PubMed  Google Scholar 

  204. Amini, P. et al. NET formation can occur independently of RIPK3 and MLKL signaling. Eur. J. Immunol. 46, 178–184 (2016).

    CAS  PubMed  Google Scholar 

  205. Desai, J., Mulay, S. R., Nakazawa, D. & Anders, H. J. Matters of life and death. How neutrophils die or survive along NET release and is “NETosis”=necroptosis? Cell Mol. Life Sci. 73, 2211–2219 (2016).

    CAS  PubMed  Google Scholar 

  206. Yousefi, S. et al. Untangling “NETosis” from NETs. Eur. J. Immunol. 49, 221–227 (2019).

    CAS  PubMed  Google Scholar 

  207. Radner, H. & Aletaha, D. Anti-TNF in rheumatoid arthritis: an overview. Wien. Med. Wochenschr. 165, 3–9 (2015).

    PubMed  Google Scholar 

  208. Maxwell, L. J. et al. TNF-alpha inhibitors for ankylosing spondylitis. Cochrane Database Syst. Rev. 4, CD005468 (2015).

    Google Scholar 

  209. Lubrano, E., Scriffignano, S. & Perrotta, F. M. TNF-alpha inhibitors for the six treatment targets of psoriatic arthritis. Expert. Rev. Clin. Immunol. 15, 1303–1312 (2019).

    CAS  PubMed  Google Scholar 

  210. Danese, S., Vuitton, L. & Peyrin-Biroulet, L. Biologic agents for IBD: practical insights. Nat. Rev. Gastroenterol. Hepatol. 12, 537–545 (2015).

    CAS  PubMed  Google Scholar 

  211. Narazaki, M., Tanaka, T. & Kishimoto, T. The role and therapeutic targeting of IL-6 in rheumatoid arthritis. Expert. Rev. Clin. Immunol. 13, 535–551 (2017).

    CAS  PubMed  Google Scholar 

  212. Sakkas, L. I., Zafiriou, E. & Bogdanos, D. P. Mini review: new treatments in psoriatic arthritis. Focus on the IL-23/17 axis. Front. Pharmacol. 10, 872 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  213. Sieper, J., Poddubnyy, D. & Miossec, P. The IL-23–IL-17 pathway as a therapeutic target in axial spondyloarthritis. Nat. Rev. Rheumatol. 15, 747–757 (2019).

    CAS  PubMed  Google Scholar 

  214. Zwicky, P., Unger, S. & Becher, B. Targeting interleukin-17 in chronic inflammatory disease: a clinical perspective. J. Exp. Med. 217, e20191123 (2020).

    PubMed  Google Scholar 

  215. Place, D. E. & Kanneganti, T. D. Cell death-mediated cytokine release and its therapeutic implications. J. Exp. Med. 216, 1474–1486 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  216. Bae, J. M., Kwon, H. S., Kim, G. M., Park, K. S. & Kim, K. J. Paradoxical psoriasis following anti-TNF therapy in ankylosing spondylitis: a population-based cohort study. J. Allergy Clin. Immunol. 142, 1001–1003.e2 (2018).

    PubMed  Google Scholar 

  217. Pugliese, D. et al. Paradoxical psoriasis in a large cohort of patients with inflammatory bowel disease receiving treatment with anti-TNF alpha: 5-year follow-up study. Aliment. Pharmacol. Ther. 42, 880–888 (2015).

    CAS  PubMed  Google Scholar 

  218. Yamauchi, P. S., Bissonnette, R., Teixeira, H. D. & Valdecantos, W. C. Systematic review of efficacy of anti-tumor necrosis factor (TNF) therapy in patients with psoriasis previously treated with a different anti-TNF agent. J. Am. Acad. Dermatol. 75, 612–618.e6 (2016).

    CAS  PubMed  Google Scholar 

  219. Conrad, C. et al. TNF blockade induces a dysregulated type I interferon response without autoimmunity in paradoxical psoriasis. Nat. Commun. 9, 25 (2018).

    PubMed  PubMed Central  Google Scholar 

  220. Poreba, M. et al. Unnatural amino acids increase sensitivity and provide for the design of highly selective caspase substrates. Cell Death Differ. 21, 1482–1492 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  221. Brumatti, G. et al. The caspase-8 inhibitor emricasan combines with the SMAC mimetic birinapant to induce necroptosis and treat acute myeloid leukemia. Sci. Transl Med. 8, 339ra369 (2016).

    Google Scholar 

  222. Smith, C. E. et al. Non-steroidal anti-inflammatory drugs are caspase inhibitors. Cell Chem. Biol. 24, 281–292 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  223. Harris, P. A. et al. Discovery of a first-in-class receptor interacting protein 1 (RIP1) kinase specific clinical candidate (GSK2982772) for the treatment of inflammatory diseases. J. Med. Chem. 60, 1247–1261 (2017).

    CAS  PubMed  Google Scholar 

  224. Martens, S., Hofmans, S., Declercq, W., Augustyns, K. & Vandenabeele, P. Inhibitors targeting RIPK1/RIPK3: old and new drugs. Trends Pharmacol. Sci. 41, 209–224 (2020).

    CAS  PubMed  Google Scholar 

  225. Newton, K. et al. Activity of protein kinase RIPK3 determines whether cells die by necroptosis or apoptosis. Science 343, 1357–1360 (2014).

    CAS  PubMed  Google Scholar 

  226. Mandal, P. et al. RIP3 induces apoptosis independent of pronecrotic kinase activity. Mol. Cell 56, 481–495 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  227. Sun, L. et al. Mixed lineage kinase domain-like protein mediates necrosis signaling downstream of RIP3 kinase. Cell 148, 213–227 (2012).

    CAS  PubMed  Google Scholar 

  228. Yan, B. et al. Discovery of a new class of highly potent necroptosis inhibitors targeting the mixed lineage kinase domain-like protein. Chem. Commun. 53, 3637–3640 (2017).

    CAS  Google Scholar 

  229. Mangan, M. S. J. et al. Targeting the NLRP3 inflammasome in inflammatory diseases. Nat. Rev. Drug. Discov. 17, 588–606 (2018).

    CAS  PubMed  Google Scholar 

  230. Pandeya, A., Li, L., Li, Z. & Wei, Y. Gasdermin D (GSDMD) as a new target for the treatment of infection. Medchemcomm 10, 660–667 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  231. Rathkey, J. K. et al. Chemical disruption of the pyroptotic pore-forming protein gasdermin D inhibits inflammatory cell death and sepsis. Sci. Immunol. 3, eaat2738 (2018).

    PubMed  PubMed Central  Google Scholar 

  232. Heneka, M. T. et al. NLRP3 is activated in Alzheimer’s disease and contributes to pathology in APP/PS1 mice. Nature 493, 674–678 (2013).

    CAS  PubMed  Google Scholar 

  233. Flores, J. et al. Caspase-1 inhibition alleviates cognitive impairment and neuropathology in an Alzheimer’s disease mouse model. Nat. Commun. 9, 3916 (2018).

    PubMed  PubMed Central  Google Scholar 

  234. Tan, M. S. et al. Amyloid-β induces NLRP1-dependent neuronal pyroptosis in models of Alzheimer’s disease. Cell Death Dis. 5, e1382 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  235. Pontillo, A., Catamo, E., Arosio, B., Mari, D. & Crovella, S. NALP1/NLRP1 genetic variants are associated with Alzheimer disease. Alzheimer Dis. Assoc. Disord. 26, 277–281 (2012).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The work of the authors is supported by the Walter and Eliza Hall Institute of Medical Research Indigenous Fund; Reid Charitable Trusts, the National Health and Medical Research Council of Australia (fellowships 1107149 to J.S. and 1023407 to I.P.W.); and the Victorian State Government (Operational Infrastructure Grant).

Author information

Authors and Affiliations

Authors

Contributions

H.A. researched data for the article. All authors wrote the article, provided substantial contributions to discussions of content and reviewed and/or edited the manuscript before submission.

Corresponding author

Correspondence to John Silke.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anderton, H., Wicks, I.P. & Silke, J. Cell death in chronic inflammation: breaking the cycle to treat rheumatic disease. Nat Rev Rheumatol 16, 496–513 (2020). https://doi.org/10.1038/s41584-020-0455-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41584-020-0455-8

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing