Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Revisiting the gut–joint axis: links between gut inflammation and spondyloarthritis

A Publisher Correction to this article was published on 30 July 2020

This article has been updated

Abstract

Gut inflammation is strongly associated with spondyloarthritis (SpA), as exemplified by the high prevalence of inflammatory bowel disease (IBD) and the even higher occurrence of subclinical gut inflammation in patients with SpA. The gut–joint axis of inflammation in SpA is further reinforced by similarities in immunopathogenesis at both anatomical sites and by the clinical success of therapies blocking TNF and IL-23 in IBD and in some forms of SpA. Many genetic risk factors are shared between SpA and IBD, and changes in the composition of gut microbiota are seen in both diseases. Current dogma is that inflammation in SpA initiates in the gut and leads to joint inflammation; however, although conceptually attractive, some research does not support this causal relationship. For example, therapies targeting IL-17A are efficacious in the joint but not the gut, and interfering with gut trafficking by targeting molecules such as α4β7 in IBD can lead to onset or flares of SpA. Several important knowledge gaps remain that must be addressed in future studies. Determining the true nature of the gut–joint axis has real-world implications for the treatment of patients with co-incident IBD and SpA and for the repurposing of therapeutics from one disease to the other.

Key points

  • The majority of European patients with spondyloarthritis (SpA) have subclinical gut inflammation, and a minority have coexisting inflammatory bowel disease.

  • Many genetic risk factors for ankylosing spondylitis (AS) are shared with inflammatory bowel disease, and some of these AS risk factors cluster in pathways that are important in gut immunity.

  • Type 3 immune cytokines (for example, IL-17) are important in the gut and joint; however, their effects might be tissue specific.

  • Intestinal microbial dysbiosis occurs in SpA, but whether it is a cause, or effect, of underlying immunological alterations is unknown.

  • The failure rate of current therapies for SpA is unacceptably high; whether this failure is related to underlying gut inflammation is unknown.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Clinical manifestations of the gut–joint axis of inflammation in SpA.
Fig. 2: Shared and disease-specific GWAS-identified risk genes for AS and Crohn’s disease.
Fig. 3: Immunological changes in the gut–joint axis of inflammation in SpA.
Fig. 4: The relationship between gut and joint inflammation in SpA.

Similar content being viewed by others

Change history

References

  1. Tito, R. Y. et al. Brief report: dialister as a microbial marker of disease activity in spondyloarthritis. Arthritis Rheumatol. 69, 114–121 (2017).

    CAS  PubMed  Google Scholar 

  2. Breban, M. et al. Faecal microbiota study reveals specific dysbiosis in spondyloarthritis. Ann. Rheum. Dis. 76, 1614–1622 (2017).

    CAS  PubMed  Google Scholar 

  3. Ciccia, F. et al. Dysbiosis and zonulin upregulation alter gut epithelial and vascular barriers in patients with ankylosing spondylitis. Ann. Rheum. Dis. 76, 1123–1132 (2017).

    CAS  PubMed  Google Scholar 

  4. Hueber, W. et al. Secukinumab, a human anti-IL-17A monoclonal antibody, for moderate to severe Crohn’s disease: unexpected results of a randomised, double-blind placebo-controlled trial. Gut 61, 1693–1700 (2012).

    CAS  PubMed  Google Scholar 

  5. Stolwijk, C. et al. The epidemiology of extra-articular manifestations in ankylosing spondylitis: a population-based matched cohort study. Ann. Rheum. Dis. 74, 1373–1378 (2015).

    PubMed  Google Scholar 

  6. Wilkinson, M. & Bywaters, E. G. Clinical features and course of ankylosing spondylitis; as seen in a follow-up of 222 hospital referred cases. Ann. Rheum. Dis. 17, 209–228 (1958).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Granfors, K. et al. Yersinia antigens in synovial-fluid cells from patients with reactive arthritis. N. Engl. J. Med. 320, 216–221 (1989).

    CAS  PubMed  Google Scholar 

  8. Granfors, K. et al. Salmonella lipopolysaccharide in synovial cells from patients with reactive arthritis. Lancet 335, 685–688 (1990).

    CAS  PubMed  Google Scholar 

  9. Hermann, E., Yu, D. T., Meyer zum Büschenfelde, K. H. & Fleischer, B. HLA-B27-restricted CD8 T cells derived from synovial fluids of patients with reactive arthritis and ankylosing spondylitis. Lancet 342, 646–650 (1993).

    CAS  PubMed  Google Scholar 

  10. Mielants, H. et al. The evolution of spondyloarthropathies in relation to gut histology. I. Clinical aspects. J. Rheumatol. 22, 2266–2272 (1995).

    CAS  PubMed  Google Scholar 

  11. Mielants, H. et al. The evolution of spondyloarthropathies in relation to gut histology. III. Relation between gut and joint. J. Rheumatol. 22, 2279–2284 (1995).

    CAS  PubMed  Google Scholar 

  12. Mielants, H. et al. The evolution of spondyloarthropathies in relation to gut histology. II. Histological aspects. J. Rheumatol. 22, 2273–2278 (1995).

    CAS  PubMed  Google Scholar 

  13. Leirisalo-Repo, M., Turunen, U., Stenman, S., Helenius, P. & Seppälä, K. High frequency of silent inflammatory bowel disease in spondylarthropathy. Arthritis Rheum. 37, 23–31 (1994).

    CAS  PubMed  Google Scholar 

  14. De Vos, M., Mielants, H., Cuvelier, C., Elewaut, A. & Veys, E. Long-term evolution of gut inflammation in patients with spondyloarthropathy. Gastroenterology 110, 1696–703 (1996).

    PubMed  Google Scholar 

  15. Varkas, G. et al. Association of inflammatory bowel disease and acute anterior uveitis, but not psoriasis, with disease duration in patients with axial spondyloarthritis. Arthritis Rheumatol. 70, 1588–1596 (2018).

    CAS  PubMed  Google Scholar 

  16. Van Praet, L., Jacques, P., Van den Bosch, F. & Elewaut, D. The transition of acute to chronic bowel inflammation in spondyloarthritis. Nat. Rev. Rheumatol. 8, 288–295 (2012).

    PubMed  Google Scholar 

  17. Van Praet, L. et al. Microscopic gut inflammation in axial spondyloarthritis: a multiparametric predictive model. Ann. Rheum. Dis. 72, 414–417 (2013).

    PubMed  Google Scholar 

  18. Goyette, P. et al. High-density mapping of the MHC identifies a shared role for HLA-DRB1*01:03 in inflammatory bowel diseases and heterozygous advantage in ulcerative colitis. Nat. Genet. 47, 172–179 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Karreman, M. C., Luime, J. J., Hazes, J. M. W. & Weel, A. E. A. M. The prevalence and incidence of axial and peripheral spondyloarthritis in inflammatory bowel disease: a systematic review and meta-analysis. J. Crohns Colitis 11, jjw199 (2016).

    Google Scholar 

  20. Malaty, H., Lo, G. & Hou, J. Characterization and prevalence of spondyloarthritis and peripheral arthritis among patients with inflammatory bowel disease. Clin. Exp. Gastroenterol. 10, 259–263 (2017).

    PubMed  PubMed Central  Google Scholar 

  21. Ossum, A. M. et al. Ankylosing spondylitis and axial spondyloarthritis in patients with long-term inflammatory bowel disease: results from 20 years of follow-up in the IBSEN Study. J. Crohns Colitis 12, 96–104 (2018).

    PubMed  Google Scholar 

  22. Hamilton, L., Macgregor, A., Warmington, V., Pinch, E. & Gaffney, K. The prevalence of inflammatory back pain in a UK primary care population. Rheumatology 53, 161–164 (2014).

    PubMed  Google Scholar 

  23. Chan, J. et al. Prevalence of sacroiliitis in inflammatory bowel disease using a standardized computed tomography scoring system. Arthritis Care Res. 70, 807–810 (2018).

    Google Scholar 

  24. Michielan, A. & D’Incà, R. Intestinal permeability in inflammatory bowel disease: pathogenesis, clinical evaluation, and therapy of leaky gut. Mediators Inflamm. 2015, 628157 (2015).

    PubMed  PubMed Central  Google Scholar 

  25. Bischoff, S. C. et al. Intestinal permeability — a new target for disease prevention and therapy. BMC Gastroenterol. 14, 189 (2014).

    PubMed  PubMed Central  Google Scholar 

  26. Hollander, D. et al. Increased intestinal permeability in patients with Crohn’s disease and their relatives. Ann. Intern. Med. 105, 883 (1986).

    CAS  PubMed  Google Scholar 

  27. Kevans, D. et al. Determinants of intestinal permeability in healthy first-degree relatives of individuals with Crohn’s disease. Inflamm. Bowel Dis. 21, 879–887 (2015).

    PubMed  Google Scholar 

  28. Martínez-González, O., Cantero-Hinojosa, J., Paule-Sastre, P., Gómez-Magán, J. C. & Salvatierra-Ríos, D. Intestinal permeability in patients with ankylosing spondylitis and their healthy relatives. Br. J. Rheumatol. 33, 644–647 (1994).

    PubMed  Google Scholar 

  29. Laurent, M. R. & Panayi, G. S. Acute-phase proteins and serum immunoglobulins in ankylosing spondylitis. Ann. Rheum. Dis. 42, 524–528 (1983).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. De Winter, J. J., Paramarta, J. E., De Jong, H. M., Van De Sande, M. G. & Baeten, D. L. Peripheral disease contributes significantly to the level of disease activity in axial spondyloarthritis. RMD Open 5, e000802 (2019).

    PubMed  PubMed Central  Google Scholar 

  31. Vermeire, S., Assche, G. Van & Rutgeerts, P. Laboratory markers in IBD: useful, magic, or unnecessary toys? Gut 55, 426 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Gossec, L. et al. Preliminary definitions of ‘flare’ in axial spondyloarthritis, based on pain, BASDAI and ASDAS-CRP: an ASAS initiative. Ann. Rheum. Dis. 75, 991–996 (2016).

    PubMed  Google Scholar 

  33. Cypers, H. et al. Elevated calprotectin levels reveal bowel inflammation in spondyloarthritis. Ann. Rheum. Dis. 75, 1357–1362 (2016).

    CAS  PubMed  Google Scholar 

  34. Walsham, N. E. & Sherwood, R. A. Fecal calprotectin in inflammatory bowel disease. Clin. Exp. Gastroenterol. 9, 21–29 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Veys, E. M. & van Leare, M. Serum IgG, IgM, and IgA levels in ankylosing spondylitis. Ann. Rheum. Dis. 32, 493–496 (1973).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Ellinghaus, D. et al. Analysis of five chronic inflammatory diseases identifies 27 new associations and highlights disease-specific patterns at shared loci. Nat. Genet. 48, 510–518 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Cortes, A. et al. Identification of multiple risk variants for ankylosing spondylitis through high-density genotyping of immune-related loci. Nat. Genet. 45, 730–738 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Song, I.-H. et al. Different response to rituximab in tumor necrosis factor blocker-naive patients with active ankylosing spondylitis and in patients in whom tumor necrosis factor blockers have failed: a twenty-four-week clinical trial. Arthritis Rheum. 62, 1290–1297 (2010).

    CAS  PubMed  Google Scholar 

  39. Demetter, P. et al. Increase in lymphoid follicles and leukocyte adhesion molecules emphasizes a role for the gut in spondyloarthropathy pathogenesis. J. Pathol. 198, 517–522 (2002).

    CAS  PubMed  Google Scholar 

  40. Hamada, H. et al. Identification of multiple isolated lymphoid follicles on the antimesenteric wall of the mouse small intestine. J. Immunol. 168, 57–64 (2002).

    CAS  PubMed  Google Scholar 

  41. Bolton, P. M., James, S. L., Newcombe, R. G., Whitehead, R. H. & Hughes, L. E. The immune competence of patients with inflammatory bowel disease. Gut 15, 213–219 (1974).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Macpherson, A., Khoo, U. Y., Forgacs, I., Philpott-Howard, J. & Bjarnason, I. Mucosal antibodies in inflammatory bowel disease are directed against intestinal bacteria. Gut 38, 365–375 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Tsui, F. W. L., Tsui, H. W., Las Heras, F., Pritzker, K. P. H. & Inman, R. D. Serum levels of novel noggin and sclerostin-immune complexes are elevated in ankylosing spondylitis. Ann. Rheum. Dis. 73, 1873–1879 (2014).

    CAS  PubMed  Google Scholar 

  44. Baraliakos, X., Baerlecken, N., Witte, T., Heldmann, F. & Braun, J. High prevalence of anti-CD74 antibodies specific for the HLA class II-associated invariant chain peptide (CLIP) in patients with axial spondyloarthritis. Ann. Rheum. Dis. 73, 1079–1082 (2014).

    CAS  PubMed  Google Scholar 

  45. Wright, C. et al. Detection of multiple autoantibodies in patients with ankylosing spondylitis using nucleic acid programmable protein arrays. Mol. Cell. Proteom. 11, M9.00384 (2012).

    Google Scholar 

  46. Mitsuyama, K. et al. Antibody markers in the diagnosis of inflammatory bowel disease. World J. Gastroenterol. 22, 1304–1310 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Kuna, A. T. Serological markers of inflammatory bowel disease. Biochem. Med. 23, 28–42 (2013).

    Google Scholar 

  48. Wallis, D. et al. Elevated serum anti-flagellin antibodies implicate subclinical bowel inflammation in ankylosing spondylitis: an observational study. Arthritis Res. Ther. 15, R166 (2013).

    PubMed  PubMed Central  Google Scholar 

  49. Aydin, S. Z. et al. Anti-Saccharomyces cerevisiae antibodies (ASCA) in spondyloarthropathies: a reassessment. Rheumatology 47, 142–144 (2008).

    CAS  PubMed  Google Scholar 

  50. Viladomiu, M. et al. IgA-coated E. coli enriched in Crohn’s disease spondyloarthritis promote TH17-dependent inflammation. Sci. Transl Med. 9, eaaf9655 (2017).

    PubMed  PubMed Central  Google Scholar 

  51. Wang, C.-R. et al. Rare occurrence of inflammatory bowel disease in a cohort of Han Chinese ankylosing spondylitis patients — a single institute study. Sci. Rep. 7, 13165 (2017).

    PubMed  PubMed Central  Google Scholar 

  52. Lai, S.-W., Kuo, Y.-H. & Liao, K.-F. Incidence of inflammatory bowel disease in patients with ankylosing spondylitis. Ann. Rheum. Dis. https://doi.org/10.1136/annrheumdis-2019-216362 (2019).

    Article  PubMed  Google Scholar 

  53. Chi, K. R. Epidemiology: rising in the east. Nature 540, S100–S102. (2016).

    CAS  PubMed  Google Scholar 

  54. Sieper, J. et al. The Assessment of SpondyloArthritis international Society (ASAS) handbook: a guide to assess spondyloarthritis. Ann. Rheum. Dis. 68, ii1–ii44 (2009).

    PubMed  Google Scholar 

  55. Brown, M. A. Breakthroughs in genetic studies of ankylosing spondylitis. Rheumatology 47, 132–137 (2007).

    PubMed  Google Scholar 

  56. Schlosstein, L., Terasaki, P. I., Bluestone, R. & Pearson, C. M. High association of an HL-A antigen, W27, with ankylosing spondylitis. N. Engl. J. Med. 288, 704–706 (1973).

    CAS  PubMed  Google Scholar 

  57. Brewerton, D. A. et al. Ankylosing spondylitis and HL-A 27. Lancet 1, 904–907 (1973).

    CAS  PubMed  Google Scholar 

  58. Cortes, A. et al. Association study of genes related to bone formation and resorption and the extent of radiographic change in ankylosing spondylitis. Ann. Rheum. Dis. 74, 1387–1393 (2015).

    CAS  PubMed  Google Scholar 

  59. Polachek, A. et al. The association between HLA genetic susceptibility markers and sonographic enthesitis in psoriatic arthritis. Arthritis Rheumatol. 70, 756–762 (2018).

    CAS  PubMed  Google Scholar 

  60. Chandran, V., Tolusso, D. C., Cook, R. J. & Gladman, D. D. Risk factors for axial inflammatory arthritis in patients with psoriatic arthritis. J. Rheumatol. 37, 809–815 (2010).

    PubMed  Google Scholar 

  61. Castillo-Gallego, C., Aydin, S. Z., Emery, P., McGonagle, D. G. & Marzo-Ortega, H. Magnetic resonance imaging assessment of axial psoriatic arthritis: extent of disease relates to HLA-B27. Arthritis Rheum. 65, 2274–2278 (2013).

    PubMed  Google Scholar 

  62. Bowness, P. HLA-B27. Annu. Rev. Immunol. 33, 29–48 (2015).

    CAS  PubMed  Google Scholar 

  63. Ranganathan, V., Gracey, E., Brown, M. A., Inman, R. D. & Haroon, N. Pathogenesis of ankylosing spondylitis — recent advances and future directions. Nat. Rev. Rheumatol. 13, 359–367 (2017).

    CAS  PubMed  Google Scholar 

  64. Farh, K. K. H. et al. Genetic and epigenetic fine mapping of causal autoimmune disease variants. Nature 518, 337–343 (2015).

    CAS  PubMed  Google Scholar 

  65. McCole, D. F. IBD candidate genes and intestinal barrier regulation. Inflamm. Bowel Dis. 20, 1829–1849 (2014).

    PubMed  Google Scholar 

  66. Kellermayer, Z. et al. IL-22–independent protection from colitis in the absence of Nkx2.3 transcription factor in mice. J. Immunol. 202, 1833–1844 (2019).

    CAS  PubMed  Google Scholar 

  67. Tsukahara, T. et al. G protein-coupled receptor 35 contributes to mucosal repair in mice via migration of colonic epithelial cells. Pharmacol. Res. 123, 27–39 (2017).

    CAS  PubMed  Google Scholar 

  68. de Lange, K. M. et al. Genome-wide association study implicates immune activation of multiple integrin genes in inflammatory bowel disease. Nat. Genet. 49, 256–261 (2017).

    PubMed  PubMed Central  Google Scholar 

  69. Laukens, D. et al. CARD15 gene polymorphisms in patients with spondyloarthropathies identify a specific phenotype previously related to Crohn’s disease. Ann. Rheum. Dis. 64, 930–935 (2005).

    CAS  PubMed  Google Scholar 

  70. Crane, A. M. et al. Role of NOD2 variants in spondylarthritis. Arthritis Rheum. 46, 1629–1633 (2002).

    CAS  PubMed  Google Scholar 

  71. Cortes, A. & Brown, M. A. Promise and pitfalls of the Immunochip. Arthritis Res. Ther. 13, 101 (2011).

    PubMed  PubMed Central  Google Scholar 

  72. Gibbs, R. A. et al. A global reference for human genetic variation. Nature 526, 68–74 (2015).

    Google Scholar 

  73. Australo-Anglo-American Spondyloarthritis Consortium (TASC). et al. Genome-wide association study of ankylosing spondylitis identifies non-MHC susceptibility loci. Nat. Genet. 42, 123–127 (2010).

    Google Scholar 

  74. Davidson, S. I. et al. Association of ERAP1, but not IL23R, with ankylosing spondylitis in a Han Chinese population. Arthritis Rheum. 60, 3263–3268 (2009).

    CAS  PubMed  Google Scholar 

  75. Lee, J. S. et al. Interleukin-23-independent IL-17 production regulates intestinal epithelial permeability. Immunity 43, 727–738 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Pickert, G. et al. STAT3 links IL-22 signaling in intestinal epithelial cells to mucosal wound healing. J. Exp. Med. 206, 1465–1472 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Hainzl, E. et al. Intestinal epithelial cell tyrosine kinase 2 transduces IL-22 signals to protect from acute colitis. J. Immunol. 195, 5011–5024 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Liang, S. C. et al. Interleukin (IL)-22 and IL-17 are coexpressed by TH17 cells and cooperatively enhance expression of antimicrobial peptides. J. Exp. Med. 203, 2271–2279 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Turner, J.-E., Stockinger, B. & Helmby, H. IL-22 mediates goblet cell hyperplasia and worm expulsion in intestinal helminth infection. PloS Pathog. 9, e1003698 (2013).

    PubMed  PubMed Central  Google Scholar 

  80. Withers, D. R. et al. Transient inhibition of ROR-γt therapeutically limits intestinal inflammation by reducing TH17 cells and preserving group 3 innate lymphoid cells. Nat. Med. 22, 319–323 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Leppkes, M. et al. RORγ-expressing TH17 cells induce murine chronic intestinal inflammation via redundant effects of IL-17A and IL-17F. Gastroenterology 136, 257–267 (2009).

    CAS  PubMed  Google Scholar 

  82. Gronke, K. et al. Interleukin-22 protects intestinal stem cells against genotoxic stress. Nature 566, 249–253 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Grizotte-Lake, M. et al. Commensals suppress intestinal epithelial cell retinoic acid synthesis to regulate interleukin-22 activity and prevent microbial dysbiosis. Immunity 49, 1103–1115 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Sherlock, J. P. et al. IL-23 induces spondyloarthropathy by acting on ROR-γt+CD3+CD4CD8 entheseal resident T cells. Nat. Med. 18, 1069–1076 (2012).

    CAS  PubMed  Google Scholar 

  85. Cuthbert, R. J. et al. Brief report: group 3 innate lymphoid cells in human enthesis. Arthritis Rheumatol. 69, 1816–1822 (2017).

    CAS  PubMed  Google Scholar 

  86. Ono, T. et al. IL-17-producing γδ T cells enhance bone regeneration. Nat. Commun. 7, 10928 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Ciccia, F. et al. Overexpression of interleukin-23, but not interleukin-17, as an immunologic signature of subclinical intestinal inflammation in ankylosing spondylitis. Arthritis Rheum. 60, 955–965 (2009).

    CAS  PubMed  Google Scholar 

  88. Gracey, E. et al. Sexual dimorphism in the TH17 signature of ankylosing spondylitis. Arthritis Rheumatol. 68, 679–689 (2016).

    CAS  PubMed  Google Scholar 

  89. Mens, L. J. J. et al. Brief report: interleukin-17 blockade with secukinumab in peripheral spondyloarthritis impacts synovial immunopathology without compromising systemic immune responses. Arthritis Rheumatol. 70, 1994–2002 (2018).

    PubMed  Google Scholar 

  90. Benham, H. et al. Interleukin-23 mediates the intestinal response to microbial β-1,3-glucan and the development of spondyloarthritis pathology in SKG mice. Arthritis Rheumatol. 66, 1755–1767 (2014).

    CAS  PubMed  Google Scholar 

  91. Glatigny, S. et al. Proinflammatory Th17 cells are expanded and induced by dendritic cells in spondylarthritis-prone HLA-B27-transgenic rats. Arthritis Rheum. 64, 110–120 (2012).

    CAS  PubMed  Google Scholar 

  92. van Tok, M. N. et al. The initiation, but not the persistence, of experimental spondyloarthritis is dependent on interleukin-23 signaling. Front. Immunol. 9, 1550 (2018).

    PubMed  PubMed Central  Google Scholar 

  93. DeLay, M. L. et al. HLA-B27 misfolding and the unfolded protein response augment interleukin-23 production and are associated with Th17 activation in transgenic rats. Arthritis Rheum. 60, 2633–2643 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. McNamee, E. N. et al. Chemokine receptor CCR7 regulates the intestinal TH1/TH17/Treg balance during Crohn’s-like murine ileitis. J. Leukoc. Biol. 97, 1011–1022 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Zwerina, K. et al. Anti IL-17A therapy inhibits bone loss in TNF-α-mediated murine arthritis by modulation of the T-cell balance. Eur. J. Immunol. 42, 413–423 (2012).

    CAS  PubMed  Google Scholar 

  96. Gracey, E. et al. IL-7 primes IL-17 in mucosal-associated invariant T (MAIT) cells, which contribute to the Th17-axis in ankylosing spondylitis. Ann. Rheum. Dis. 75, 2124–2132 (2016).

    CAS  PubMed  Google Scholar 

  97. Shen, H., Goodall, J. C. & Hill Gaston, J. S. Frequency and phenotype of peripheral blood Th17 cells in ankylosing spondylitis and rheumatoid arthritis. Arthritis Rheum. 60, 1647–1656 (2009).

    CAS  PubMed  Google Scholar 

  98. Kenna, T. J. et al. Enrichment of circulating interleukin-17-secreting interleukin-23 receptor-positive γ/δ T cells in patients with active ankylosing spondylitis. Arthritis Rheum. 64, 1420–1429 (2012).

    CAS  PubMed  Google Scholar 

  99. Ciccia, F. et al. Type 3 innate lymphoid cells producing IL-17 and IL-22 are expanded in the gut, in the peripheral blood, synovial fluid and bone marrow of patients with ankylosing spondylitis. Ann. Rheum. Dis. 74, 1739–1747 (2015).

    CAS  PubMed  Google Scholar 

  100. Mowat, A. M. & Agace, W. W. Regional specialization within the intestinal immune system. Nat. Rev. Immunol. 14, 667–685 (2014).

    CAS  PubMed  Google Scholar 

  101. Venken, K. et al. RORγt inhibition selectively targets IL-17 producing iNKT and γδ-T cells enriched in spondyloarthritis patients. Nat. Commun. 10, 9 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Al-Mossawi, M. H. et al. Unique transcriptome signatures and GM-CSF expression in lymphocytes from patients with spondyloarthritis. Nat. Commun. 8, 1510 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Bowness, P. et al. Th17 cells expressing KIR3DL2+ and responsive to HLA-B27 homodimers are increased in ankylosing spondylitis. J. Immunol. 186, 2672–2680 (2011).

    CAS  PubMed  Google Scholar 

  104. Menon, B. et al. Interleukin-17+CD8+T cells are enriched in the joints of patients with psoriatic arthritis and correlate with disease activity and joint damage progression. Arthritis Rheumatol. 66, 1272–1281 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Cuthbert, R. J. et al. Evidence that tissue resident human enthesis γδT-cells can produce IL-17A independently of IL-23R transcript expression. Ann. Rheum. Dis. 78, 1559–1565 (2019).

    CAS  PubMed  Google Scholar 

  106. Reinhardt, A. et al. Interleukin-23-dependent γ/δ T cells produce interleukin-17 and accumulate in the enthesis, aortic valve, and ciliary body in mice. Arthritis Rheumatol. 68, 2476–2486 (2016).

    CAS  PubMed  Google Scholar 

  107. Moschen, A. R., Tilg, H. & Raine, T. I. IL-12, IL-23 and IL-17 in IBD: immunobiology and therapeutic targeting. Nat. Rev. Gastroenterol. Hepatol. 16, 185–196 (2019).

    CAS  PubMed  Google Scholar 

  108. Torres, J., Mehandru, S., Colombel, J. F. & Peyrin-Biroulet, L. Crohn’s disease. Lancet 389, 1741–1755 (2017).

    PubMed  Google Scholar 

  109. Lutter, L., Hoytema van Konijnenburg, D. P., Brand, E. C., Oldenburg, B. & van Wijk, F. The elusive case of human intraepithelial T cells in gut homeostasis and inflammation. Nat. Rev. Gastroenterol. Hepatol. 15, 637–649 (2018).

    CAS  PubMed  Google Scholar 

  110. Friedrich, M., Pohin, M. & Powrie, F. Cytokine networks in the pathophysiology of inflammatory bowel disease. Immunity 50, 992–1006 (2019).

    CAS  PubMed  Google Scholar 

  111. Shevach, E. M. Foxp3+ T regulatory cells: still many unanswered questions — a perspective after 20 years of study. Front. Immunol. 9, 1048 (2018).

    PubMed  PubMed Central  Google Scholar 

  112. Sharma, A. & Rudra, D. Emerging functions of regulatory T cells in tissue homeostasis. Front. Immunol. 9, 883 (2018).

    PubMed  PubMed Central  Google Scholar 

  113. Yang, B.-H. et al. Foxp3+ T cells expressing RORγt represent a stable regulatory T-cell effector lineage with enhanced suppressive capacity during intestinal inflammation. Mucosal Immunol. 9, 444–457 (2016).

    CAS  PubMed  Google Scholar 

  114. Britton, G. J. et al. Microbiotas from humans with inflammatory bowel disease alter the balance of gut Th17 and RORγt+ regulatory T cells and exacerbate colitis in mice. Immunity 50, 212–224 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Sefik, E. et al. Individual intestinal symbionts induce a distinct population of RORγ+ regulatory T cells. Science. 349, 993–997 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Guo, H. et al. Functional defects in CD4+ CD25high FoxP3+regulatory cells in ankylosing spondylitis. Sci. Rep. 6, 37559 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Wu, Y. et al. Reduced immunomodulation potential of bone marrow-derived mesenchymal stem cells induced CCR4+CCR6+Th/Treg cell subset imbalance in ankylosing spondylitis. Arthritis Res. Ther. 13, R29 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Ciccia, F. et al. Expansion of intestinal CD4+CD25high Treg cells in patients with ankylosing spondylitis: a putative role for interleukin-10 in preventing intestinal Th17 response. Arthritis Rheum. 62, 3625–3634 (2010).

    CAS  PubMed  Google Scholar 

  119. Rosenzwajg, M. et al. Immunological and clinical effects of low-dose interleukin-2 across 11 autoimmune diseases in a single, open clinical trial. Ann. Rheum. Dis. 78, 209–217 (2019).

    CAS  PubMed  Google Scholar 

  120. Habtezion, A., Nguyen, L. P., Hadeiba, H. & Butcher, E. C. Leukocyte trafficking to the small intestine and colon. Gastroenterology 150, 340–354 (2016).

    CAS  PubMed  Google Scholar 

  121. Elewaut, D. et al. Enrichment of T cells carrying β7 integrins in inflamed synovial tissue from patients with early spondyloarthropathy, compared to rheumatoid arthritis. J. Rheumatol. 25, 1932–1937 (1998).

    CAS  PubMed  Google Scholar 

  122. Salmi, M. & Jalkanen, S. Human leukocyte subpopulations from inflamed gut bind to joint vasculature using distinct sets of adhesion molecules. J. Immunol. 166, 4650–4657 (2001).

    CAS  PubMed  Google Scholar 

  123. Qaiyum, Z., Gracey, E., Yao, Y. & Inman, R. D. Integrin and transcriptomic profiles identify a distinctive synovial CD8+T cell subpopulation in spondyloarthritis. Ann. Rheum. Dis. 78, 1566–1575 (2019).

    CAS  PubMed  Google Scholar 

  124. Adams, D. H. & Eksteen, B. Aberrant homing of mucosal T cells and extra-intestinal manifestations of inflammatory bowel disease. Nat. Rev. Immunol. 6, 244–251 (2006).

    CAS  PubMed  Google Scholar 

  125. Salmi, M., Rajala, P. & Jalkanen, S. Homing of mucosal leukocytes to joints distinct endothelial ligands in synovium mediate leukocyte-subtype specific adhesion. J. Clin. Invest. 99, 2165–2172 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Norman, E., Lefferts, A. & Kuhn, K. Gut-joint T cell trafficking in a model of bacteria-driven murine IBD-SpA [abstract]. Arthritis Rheumatol. 70, 1828 (2018).

    Google Scholar 

  127. Teng, F. et al. Gut microbiota drive autoimmune arthritis by promoting differentiation and migration of Peyer’s patch T follicular helper cells. Immunity 44, 875–888 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Tajik, N. et al. Targeting zonulin and intestinal epithelial barrier function to prevent onset of arthritis. Nat. Commun. 11, 1–14 (2020).

    Google Scholar 

  129. Hirata, I., Berrebi, G., Austin, L. L., Keren, D. F. & Dobbins, W. O. Immunohistological characterization of intraepithelial and lamina propria lymphocytes in control ileum and colon and in inflammatory bowel disease. Dig. Dis. Sci. 31, 593–603 (1986).

    CAS  PubMed  Google Scholar 

  130. Park, C. O. & Kupper, T. S. The emerging role of resident memory T cells in protective immunity and inflammatory disease. Nat. Med. 21, 688–697 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  131. Edelblum, K. L. et al. γδ Intraepithelial lymphocyte migration limits transepithelial pathogen invasion and systemic disease in mice. Gastroenterology 148, 1417–1426 (2015).

    PubMed  Google Scholar 

  132. Hoytema van Konijnenburg DP. et al. Intestinal epithelial and intraepithelial T cell crosstalk mediates a dynamic response to infection. Cell 171, 783–794 (2017).

    PubMed  PubMed Central  Google Scholar 

  133. Regner, E. H. et al. Functional intraepithelial lymphocyte changes in inflammatory bowel disease and spondyloarthritis have disease specific correlations with intestinal microbiota. Arthritis Res. Ther. 20, 149 (2018).

    PubMed  PubMed Central  Google Scholar 

  134. Watad, A. et al. Normal human enthesis harbours conventional CD4+ and CD8+ T cells with regulatory features and inducible IL-17A and TNF expression. Ann. Rheum. Dis. https://doi.org/10.1136/annrheumdis-2020-217309 (2020).

    Article  PubMed  Google Scholar 

  135. Gracey, E. et al. Altered cytotoxicity profile of CD 8+ T cells in ankylosing spondylitis. Arthritis Rheumatol. 72, 428–434 (2020).

    CAS  PubMed  Google Scholar 

  136. Dendrou, C. A. et al. Resolving TYK2 locus genotype-to-phenotype differences in autoimmunity. Sci. Transl Med. 8, 363ra149 (2016).

    PubMed  PubMed Central  Google Scholar 

  137. Gracey, E. et al. TYK2 inhibition reduces type 3 immunity and modifies disease progression in murine spondyloarthritis. J. Clin. Invest. 130, 1863–1878 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  138. Di Meglio, P. et al. The IL23R R381Q gene variant protects against immune-mediated diseases by impairing IL-23-induced TH17 effector response in humans. PloS One 6, e17160 (2011).

    PubMed  PubMed Central  Google Scholar 

  139. Vecellio, M. et al. The genetic association of RUNX3 with ankylosing spondylitis can be explained by allele-specific effects on IRF4 recruitment that alter gene expression. Ann. Rheum. Dis. 75, 1534–1540 (2016).

    CAS  PubMed  Google Scholar 

  140. Brenner, O. et al. Loss of Runx3 function in leukocytes is associated with spontaneously developed colitis and gastric mucosal hyperplasia. Proc. Natl Acad. Sci. USA 101, 16016–16021 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  141. Lau, M. C. et al. Genetic association of ankylosing spondylitis with TBX21 influences T-bet and pro-inflammatory cytokine expression in humans and SKG mice as a model of spondyloarthritis. Ann. Rheum. Dis. 76, 261–269 (2017).

    CAS  PubMed  Google Scholar 

  142. Neurath, M. F. et al. The transcription factor T-bet regulates mucosal T cell activation in experimental colitis and Crohn’s disease. J. Exp. Med. 195, 1129–1143 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  143. Ruscher, R., Kummer, R. L., Lee, Y. J., Jameson, S. C. & Hogquist, K. A. CD8αα intraepithelial lymphocytes arise from two main thymic precursors. Nat. Immunol. 18, 771–779 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  144. Reis, B. S., Hoytema van Konijnenburg, D. P., Grivennikov, S. I. & Mucida, D. Transcription factor T-bet regulates intraepithelial lymphocyte functional maturation. Immunity 41, 244–256 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  145. Mackay, L. K. et al. T-box transcription factors combine with the cytokines TGF-β and IL-15 to control tissue-resident memory T cell fate. Immunity 43, 1101–1111 (2015).

    CAS  PubMed  Google Scholar 

  146. Milner, J. J. et al. Runx3 programs CD8+ T cell residency in non-lymphoid tissues and tumours. Nature 552, 253–257 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  147. Best, J. A. et al. Transcriptional insights into the CD8+ T cell response to infection and memory T cell formation. Nat. Immunol. 14, 404–412 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  148. Liu, Z. et al. The increased expression of IL-23 in inflammatory bowel disease promotes intraepithelial and lamina propria lymphocyte inflammatory responses and cytotoxicity. J. Leukoc. Biol. 89, 597–606 (2011).

    CAS  PubMed  Google Scholar 

  149. Kamanaka, M. et al. Expression of interleukin-10 in intestinal lymphocytes detected by an interleukin-10 reporter knockin tiger mouse. Immunity 25, 941–952 (2006).

    CAS  PubMed  Google Scholar 

  150. Herndler-Brandstetter, D. et al. KLRG1+ effector CD8+ T cells lose KLRG1, differentiate into all memory T cell lineages, and convey enhanced protective immunity. Immunity 48, 716–729 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  151. De Wilde, K. et al. A20 inhibition of STAT1 expression in myeloid cells: a novel endogenous regulatory mechanism preventing development of enthesitis. Ann. Rheum. Dis. 76, 585–592 (2017).

    PubMed  Google Scholar 

  152. Matmati, M. et al. A20 (TNFAIP3) deficiency in myeloid cells triggers erosive polyarthritis resembling rheumatoid arthritis. Nat. Genet. 43, 908–912 (2011).

    CAS  PubMed  Google Scholar 

  153. Hammer, G. E. et al. Expression of A20 by dendritic cells preserves immune homeostasis and prevents colitis and spondyloarthritis. Nat. Immunol. 12, 1184–1193 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  154. Bassler, K., Schulte-Schrepping, J., Warnat-Herresthal, S., Aschenbrenner, A. C. & Schultze, J. L. The myeloid cell compartment — cell by cell. Annu. Rev. Immunol. 37, 269–293 (2019).

    CAS  PubMed  Google Scholar 

  155. Bridgewood, C. et al. Identification of myeloid cells in the human enthesis as the main source of local IL-23 production. Ann. Rheum. Dis. 78, 929–933 (2019).

    CAS  PubMed  Google Scholar 

  156. Cambré, I. et al. Mechanical strain determines the site-specific localization of inflammation and tissue damage in arthritis. Nat. Commun. 9, 4613 (2018).

    PubMed  PubMed Central  Google Scholar 

  157. Chen, S. et al. Histologic evidence that mast cells contribute to local tissue inflammation in peripheral spondyloarthritis by regulating interleukin-17A content. Rheumatology 58, 617–627 (2019).

    CAS  PubMed  Google Scholar 

  158. Noordenbos, T. et al. Interleukin-17-positive mast cells contribute to synovial inflammation in spondylarthritis. Arthritis Rheum. 64, 99–109 (2012).

    CAS  PubMed  Google Scholar 

  159. Appel, H. et al. Analysis of IL-17+ cells in facet joints of patients with spondyloarthritis suggests that the innate immune pathway might be of greater relevance than the Th17-mediated adaptive immune response. Arthritis Res. Ther. 13, R95 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  160. Noordenbos, T. et al. Human mast cells capture, store, and release bioactive, exogenous IL-17A. J. Leukoc. Biol. 100, 453–462 (2016).

    CAS  PubMed  Google Scholar 

  161. Appel, H. et al. In situ analysis of interleukin-23- and interleukin-12-positive cells in the spine of patients with ankylosing spondylitis. Arthritis Rheum. 65, 1522–1529 (2013).

    CAS  PubMed  Google Scholar 

  162. Ambarus, C. A., Noordenbos, T., de Hair, M. J. H., Tak, P. P. & Baeten, D. L. P. Intimal lining layer macrophages but not synovial sublining macrophages display an IL-10 polarized-like phenotype in chronic synovitis. Arthritis Res. Ther. 14, R74 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  163. Demetter, P. et al. Colon mucosa of patients both with spondyloarthritis and Crohn’s disease is enriched with macrophages expressing the scavenger receptor CD163. Ann. Rheum. Dis. 64, 321–324 (2005).

    CAS  PubMed  Google Scholar 

  164. Ciccia, F. et al. Macrophage phenotype in the subclinical gut inflammation of patients with ankylosing spondylitis. Rheumatology 53, 104–113 (2014).

    CAS  PubMed  Google Scholar 

  165. Ciccia, F. et al. Proinflammatory CX3CR1+CD59+tumor necrosis factor–like molecule 1A+interleukin-23+ monocytes are expanded in patients with ankylosing spondylitis and modulate innate lymphoid cell 3 immune functions. Arthritis Rheumatol. 70, 2003–2013 (2018).

    CAS  PubMed  Google Scholar 

  166. Ermoza, K. et al. Tolerogenic XCR1+ dendritic cell population is dysregulated in HLA-B27 transgenic rat model of spondyloarthritis. Arthritis Res. Ther. 21, 46 (2019).

    PubMed  PubMed Central  Google Scholar 

  167. Adamopoulos, I. E. et al. IL-23 is critical for induction of arthritis, osteoclast formation, and maintenance of bone mass. J. Immunol. 187, 951–959 (2011).

    CAS  PubMed  Google Scholar 

  168. Jo, S. et al. IL-17A induces osteoblast differentiation by activating JAK2/STAT3 in ankylosing spondylitis. Arthritis Res. Ther. 20, 115 (2018).

    PubMed  PubMed Central  Google Scholar 

  169. Adamopoulos, I. E. et al. Interleukin-17A upregulates receptor activator of NF-κB on osteoclast precursors. Arthritis Res. Ther. 12, R29 (2010).

    PubMed  PubMed Central  Google Scholar 

  170. Croes, M. et al. Proinflammatory T cells and IL-17 stimulate osteoblast differentiation. Bone 84, 262–270 (2016).

    CAS  PubMed  Google Scholar 

  171. Millar, N. L. et al. IL-17A mediates inflammatory and tissue remodelling events in early human tendinopathy. Sci. Rep. 6, 27149 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  172. Rehaume, L. M. et al. ZAP-70 genotype disrupts the relationship between microbiota and host, leading to spondyloarthritis and ileitis in SKG mice. Arthritis Rheumatol. 66, 2780–2792 (2014).

    CAS  PubMed  Google Scholar 

  173. McInnes, I. B. et al. Efficacy and safety of ustekinumab in patients with active psoriatic arthritis: 1 year results of the phase 3, multicentre, double-blind, placebo-controlled PSUMMIT 1 trial. Lancet 382, 780–789 (2013).

    CAS  PubMed  Google Scholar 

  174. Ritchlin, C. et al. Efficacy and safety of the anti-IL-12/23 p40 monoclonal antibody, ustekinumab, in patients with active psoriatic arthritis despite conventional non-biological and biological anti-tumour necrosis factor therapy: 6-month and 1-year results of the phase 3, multicentre, double-blind, placebo-controlled, randomised PSUMMIT 2 trial. Ann. Rheum. Dis. 73, 990–999 (2014).

    CAS  PubMed  Google Scholar 

  175. Deodhar, A. et al. Efficacy and safety of guselkumab in patients with active psoriatic arthritis: a randomised, double-blind, placebo-controlled, phase 2 study. Lancet 391, 2213–2224 (2018).

    CAS  PubMed  Google Scholar 

  176. Deodhar, A. et al. Three multicenter, randomized, double-blind, placebo-controlled studies evaluating the efficacy and safety of ustekinumab in axial spondyloarthritis. Arthritis Rheumatol. 71, 258–270 (2019).

    CAS  PubMed  Google Scholar 

  177. Baeten, D. et al. Risankizumab, an IL-23 inhibitor, for ankylosing spondylitis: results of a randomised, double-blind, placebo-controlled, proof-of-concept, dose-finding phase 2 study. Ann. Rheum. Dis. 77, 1295–1302 (2018).

    CAS  PubMed  Google Scholar 

  178. Feagan, B. G. et al. Risankizumab in patients with moderate to severe Crohn’s disease: an open-label extension study. Lancet Gastroenterol. Hepatol. 3, 671–680 (2018).

    PubMed  Google Scholar 

  179. Mease, P. J. et al. Secukinumab inhibition of interleukin-17A in patients with psoriatic arthritis. N. Engl. J. Med. 373, 1329–1339 (2015).

    CAS  PubMed  Google Scholar 

  180. McInnes, I. B. et al. Secukinumab, a human anti-interleukin-17A monoclonal antibody, in patients with psoriatic arthritis (FUTURE 2): a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet 386, 1137–1146 (2015).

    CAS  PubMed  Google Scholar 

  181. Mease, P. J. et al. Ixekizumab, an interleukin-17A specific monoclonal antibody, for the treatment of biologic-naive patients with active psoriatic arthritis: results from the 24-week randomised, double-blind, placebo-controlled and active (adalimumab)-controlled period of the phase III trial SPIRIT-P1. Ann. Rheum. Dis. 76, 79–87 (2017).

    CAS  PubMed  Google Scholar 

  182. Nash, P. et al. Ixekizumab for the treatment of patients with active psoriatic arthritis and an inadequate response to tumour necrosis factor inhibitors: results from the 24-week randomised, double-blind, placebo-controlled period of the SPIRIT-P2 phase 3 trial. Lancet 389, 2317–2327 (2017).

    CAS  PubMed  Google Scholar 

  183. van der Heijde, D. et al. Ixekizumab, an interleukin-17A antagonist in the treatment of ankylosing spondylitis or radiographic axial spondyloarthritis in patients previously untreated with biological disease-modifying anti-rheumatic drugs (COAST-V): 16 week results of a phase 3 randomised, double-blind, active-controlled and placebo-controlled trial. Lancet 392, 2441–2451 (2018).

    PubMed  Google Scholar 

  184. Rosenbaum, J. T. & Asquith, M. The microbiome and HLA-B27-associated acute anterior uveitis. Nat. Rev. Rheumatol. 14, 704–713 (2018).

    PubMed  PubMed Central  Google Scholar 

  185. Gill, T., Asquith, M., Rosenbaum, J. T. & Colbert, R. A. The intestinal microbiome in spondyloarthritis. Curr. Opin. Rheumatol. 27, 319 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  186. Turpin, W. et al. Association of host genome with intestinal microbial composition in a large healthy cohort. Nat. Genet. 48, 1413–1417 (2016).

    CAS  PubMed  Google Scholar 

  187. Rothschild, D. et al. Environment dominates over host genetics in shaping human gut microbiota. Nature 555, 210–215 (2018).

    CAS  PubMed  Google Scholar 

  188. Costello, M.-E. et al. Brief report: intestinal dysbiosis in ankylosing spondylitis. Arthritis Rheumatol. 67, 686–691 (2015).

    PubMed  Google Scholar 

  189. Manasson, J. et al. Gut microbiota perturbations in reactive arthritis and postinfectious spondyloarthritis. Arthritis Rheumatol. 70, 242–254 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  190. Asquith, M. et al. HLA alleles associated with risk of ankylosing spondylitis and rheumatoid arthritis influence the gut microbiome. Arthritis Rheumatol. 71, 1642–1650 (2019).

    CAS  PubMed  Google Scholar 

  191. Colmegna, I., Cuchacovich, R. & Espinoza, L. R. HLA-B27-associated reactive arthritis: pathogenetic and clinical considerations. Clin. Microbiol. Rev. 17, 348–369 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  192. Berthelot J.-M. & Wendling D. Translocation of dead or alive bacteria from mucosa to joints and epiphyseal bone-marrow: facts and hypotheses. Joint Bone Spine (2020).

  193. Manfredo Vieira, S. et al. Translocation of a gut pathobiont drives autoimmunity in mice and humans. Science 359, 1156–1161 (2018).

    CAS  PubMed  Google Scholar 

  194. Ni, J., Wu, G. D., Albenberg, L. & Tomov, V. T. Gut microbiota and IBD: causation or correlation? Nat. Rev. Gastroenterol. Hepatol. 14, 573–584 (2017).

    PubMed  PubMed Central  Google Scholar 

  195. Vieira-Silva, S. et al. Quantitative microbiome profiling disentangles inflammation- and bile duct obstruction-associated microbiota alterations across PSC/IBD diagnoses. Nat. Microbiol. 4, 1826–1831 (2019).

    CAS  PubMed  Google Scholar 

  196. Halfvarson, J. et al. Dynamics of the human gut microbiome in inflammatory bowel disease. Nat. Microbiol. 2, 17004 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  197. Limon, J. J., Skalski, J. H. & Underhill, D. M. Commensal fungi in health and disease. Cell Host Microbe 22, 156–165 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  198. Richard, M. L. & Sokol, H. The gut mycobiota: insights into analysis, environmental interactions and role in gastrointestinal diseases. Nat. Rev. Gastroenterol. Hepatol. 16, 331–345 (2019).

    PubMed  Google Scholar 

  199. Neil, J. A. et al. IFN-I and IL-22 mediate protective effects of intestinal viral infection. Nat. Microbiol. 4, 1737–1749 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  200. Rooks, M. G. & Garrett, W. S. Gut microbiota, metabolites and host immunity. Nat. Rev. Immunol. 16, 341–352 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  201. Taurog, J. D. et al. The germfree state prevents development of gut and joint inflammatory disease in HLA-B27 transgenic rats. J. Exp. Med. 180, 2359–2364 (1994).

    CAS  PubMed  Google Scholar 

  202. Roulis, M. et al. Host and microbiota interactions are critical for development of murine Crohn’s-like ileitis. Mucosal Immunol. 9, 787–797 (2016).

    CAS  PubMed  Google Scholar 

  203. Schaubeck, M. et al. Dysbiotic gut microbiota causes transmissible Crohn’s disease-like ileitis independent of failure in antimicrobial defence. Gut 65, 225–337 (2016).

    CAS  PubMed  Google Scholar 

  204. Lin, P. et al. HLA-B27 and human β2-microglobulin affect the gut microbiota of transgenic rats. PLoS One 9, e105684 (2014).

    PubMed  PubMed Central  Google Scholar 

  205. Gill, T., Asquith, M., Brooks, S. R., Rosenbaum, J. T. & Colbert, R. A. Effects of HLA-B27 on gut microbiota in experimental spondyloarthritis implicate an ecological model of dysbiosis. Arthritis Rheumatol. 70, 555–565 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  206. Rehaume, L. M. et al. IL-23 favours outgrowth of spondyloarthritis-associated pathobionts and suppresses host support for homeostatic microbiota. Ann. Rheum. Dis. 78, 494–503 (2019).

    CAS  PubMed  Google Scholar 

  207. Maeda, Y. et al. Dysbiosis contributes to arthritis development via activation of autoreactive T cells in the intestine. Arthritis Rheumatol. 68, 2646–2661 (2016).

    CAS  PubMed  Google Scholar 

  208. Targan, S. R. et al. A short-term study of chimeric monoclonal antibody cA2 to tumor necrosis factor α for Crohn’s Disease. N. Engl. J. Med. 337, 1029–1036 (1997).

    CAS  PubMed  Google Scholar 

  209. Rutgeerts, P. et al. Efficacy and safety of retreatment with anti-tumor necrosis factor antibody (infliximab) to maintain remission in Crohn’s disease. Gastroenterology 117, 761–769 (1999).

    CAS  PubMed  Google Scholar 

  210. Present, D. H. et al. Infliximab for the treatment of fistulas in patients with Crohn’s disease. N. Engl. J. Med. 340, 1398–1405 (1999).

    CAS  PubMed  Google Scholar 

  211. Van den Bosch, F., Kruithof, E., De Vos, M., De Keyser, F. & Mielants, H. Crohn’s disease associated with spondyloarthropathy: effect of TNF-α blockade with infliximab on articular symptoms. Lancet 356, 1821–1822 (2000).

    PubMed  Google Scholar 

  212. Van den Bosch, F. et al. Effects of a loading dose regimen of three infusions of chimeric monoclonal antibody to tumour necrosis factor α (infliximab) in spondyloarthropathy: an open pilot study. Ann. Rheum. Dis. 59, 428–433 (2000).

    PubMed  PubMed Central  Google Scholar 

  213. Gladman, D. et al. Tofacitinib for psoriatic arthritis in patients with an inadequate response to TNF inhibitors. N. Engl. J. Med. 377, 1525–1536 (2017).

    CAS  PubMed  Google Scholar 

  214. Mease, P. et al. Tofacitinib or adalimumab versus placebo for psoriatic arthritis. N. Engl. J. Med. 377, 1537–1550 (2017).

    CAS  PubMed  Google Scholar 

  215. Mease, P. et al. Efficacy and safety of filgotinib, a selective Janus kinase 1 inhibitor, in patients with active psoriatic arthritis (EQUATOR): results from a randomised, placebo-controlled, phase 2 trial. Lancet 392, 2367–2377 (2018).

    CAS  PubMed  Google Scholar 

  216. Edwards, C. J. et al. Apremilast, an oral phosphodiesterase 4 inhibitor, in patients with psoriatic arthritis and current skin involvement: a phase III, randomised, controlled trial (PALACE 3). Ann. Rheum. Dis. 75, 1065–1073 (2016).

    CAS  PubMed  Google Scholar 

  217. Celgene. Study of apremilast to treat subjects with active ankylosing spondylitis (POSTURE) https://clinicaltrials.gov/ct2/show/NCT01583374 (2020)

  218. van der Heijde, D. et al. Tofacitinib in patients with ankylosing spondylitis: a phase II, 16-week, randomised, placebo-controlled, dose-ranging study. Ann. Rheum. Dis. 76, 1340–1347 (2017).

    PubMed  Google Scholar 

  219. van der Heijde, D. et al. Efficacy and safety of filgotinib, a selective Janus kinase 1 inhibitor, in patients with active ankylosing spondylitis (TORTUGA): results from a randomised, placebo-controlled, phase 2 trial. Lancet 392, 2378–2387 (2018).

    PubMed  Google Scholar 

  220. Antoni, C. et al. Infliximab improves signs and symptoms of psoriatic arthritis: results of the IMPACT 2 trial. Ann. Rheum. Dis. 64, 1150–1157 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  221. Mease, P. J. et al. Secukinumab in the treatment of psoriatic arthritis: efficacy and safety results through 3 years from the year 1 extension of the randomised phase III FUTURE 1 trial. RMD Open 4, e000723 (2018).

    PubMed  PubMed Central  Google Scholar 

  222. van der Heijde, D. et al. Efficacy and safety of infliximab in patients with ankylosing spondylitis: results of a randomized, placebo-controlled trial (ASSERT). Arthritis Rheum. 52, 582–591 (2005).

    PubMed  Google Scholar 

  223. Davis, J. C. et al. Recombinant human tumor necrosis factor receptor (etanercept) for treating ankylosing spondylitis: a randomized, controlled trial. Arthritis Rheum. 48, 3230–3236 (2003).

    CAS  PubMed  Google Scholar 

  224. Braun, J. et al. Effect of secukinumab on clinical and radiographic outcomes in ankylosing spondylitis: 2-year results from the randomised phase III MEASURE 1 study. Ann. Rheum. Dis. 76, 1070–1077 (2017).

    CAS  PubMed  Google Scholar 

  225. Maneiro, J. R., Souto, A., Salgado, E., Mera, A. & Gomez-Reino, J. J. Predictors of response to TNF antagonists in patients with ankylosing spondylitis and psoriatic arthritis: systematic review and meta-analysis. RMD Open 1, e000017 (2015).

    PubMed  PubMed Central  Google Scholar 

  226. van der Heijde, D. et al. Efficacy and safety of adalimumab in patients with ankylosing spondylitis: results of a multicenter, randomized, double-blind, placebo-controlled trial. Arthritis Rheum. 54, 2136–2146 (2006).

    PubMed  Google Scholar 

  227. Landewé, R. et al. Efficacy of certolizumab pegol on signs and symptoms of axial spondyloarthritis including ankylosing spondylitis: 24-week results of a double-blind randomised placebo-controlled phase 3 study. Ann. Rheum. Dis. 73, 39–47 (2014).

    PubMed  Google Scholar 

  228. Inman, R. D. et al. Efficacy and safety of golimumab in patients with ankylosing spondylitis: results of a randomized, double-blind, placebo-controlled, phase III trial. Arthritis Rheum. 58, 3402–3412 (2008).

    CAS  PubMed  Google Scholar 

  229. Mease, P. J. et al. Etanercept treatment of psoriatic arthritis: safety, efficacy, and effect on disease progression. Arthritis Rheum. 50, 2264–2272 (2004).

    CAS  PubMed  Google Scholar 

  230. Mease, P. J. et al. Adalimumab for the treatment of patients with moderately to severely active psoriatic arthritis: results of a double-blind, randomized, placebo-controlled trial. Arthritis Rheum. 52, 3279–3289 (2005).

    CAS  PubMed  Google Scholar 

  231. Kavanaugh, A. et al. Golimumab, a new human tumor necrosis factor α antibody, administered every four weeks as a subcutaneous injection in psoriatic arthritis: twenty-four-week efficacy and safety results of a randomized, placebo-controlled study. Arthritis Rheum. 60, 976–986 (2009).

    CAS  PubMed  Google Scholar 

  232. Mease, P. J. et al. Effect of certolizumab pegol on signs and symptoms in patients with psoriatic arthritis: 24-week results of a phase 3 double-blind randomised placebo-controlled study (RAPID-PsA). Ann. Rheum. Dis. 73, 48–55 (2014).

    CAS  PubMed  Google Scholar 

  233. Hanauer, S. B. et al. Human anti–tumor necrosis factor monoclonal antibody (adalimumab) in Crohn’s disease: the CLASSIC-I trial. Gastroenterology 130, 323–333 (2006).

    CAS  PubMed  Google Scholar 

  234. Sandborn, W. J. et al. Adalimumab for maintenance treatment of Crohn’s disease: results of the CLASSIC II trial. Gut 56, 1232–1239 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  235. Sandborn, W. J. et al. Subcutaneous golimumab induces clinical response and remission in patients with moderate-to-severe ulcerative colitis. Gastroenterology 146, 85–95 (2014).

    CAS  PubMed  Google Scholar 

  236. Sandborn, W. J. et al. Subcutaneous golimumab maintains clinical response in patients with moderate-to-severe ulcerative colitis. Gastroenterology 146, 96–109 (2014).

    CAS  PubMed  Google Scholar 

  237. Sandborn, W. J. et al. Certolizumab pegol for the treatment of Crohn’s disease. N. Engl. J. Med. 357, 228–238 (2007).

    CAS  PubMed  Google Scholar 

  238. Schreiber, S. et al. Maintenance therapy with certolizumab pegol for Crohn’s disease. N. Engl. J. Med. 357, 239–250 (2007).

    CAS  PubMed  Google Scholar 

  239. Marzo-Ortega, H., McGonagle, D., O’Connor, P. & Emery, P. Efficacy of etanercept for treatment of Crohn’s related spondyloarthritis but not colitis. Ann. Rheum. Dis. 62, 74–76 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  240. Sandborn, W. J. et al. Etanercept for active Crohn’s disease: a randomized, double-blind, placebo-controlled trial. Gastroenterology 121, 1088–1094 (2001).

    CAS  PubMed  Google Scholar 

  241. Siebert, S., Millar, N. L. & McInnes, I. B. Why did IL-23p19 inhibition fail in AS: a tale of tissues, trials or translation? Ann. Rheum. Dis. 78, 1015–1018 (2018).

    PubMed  Google Scholar 

  242. Panés, J. et al. Tofacitinib for induction and maintenance therapy of Crohn’s disease: results of two phase IIb randomised placebo-controlled trials. Gut 66, 1049–1059 (2017).

    PubMed  Google Scholar 

  243. Sandborn, W. J. et al. Tofacitinib as induction and maintenance therapy for ulcerative colitis. N. Engl. J. Med. 376, 1723–1736 (2017).

    CAS  PubMed  Google Scholar 

  244. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02914561 (2020).

  245. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02914522 (2020).

  246. Vermeire, S. et al. Long-term efficacy of vedolizumab for Crohn’s disease. J. Crohns Colitis 11, jjw176 (2016).

    Google Scholar 

  247. Loftus, E. V. et al. Long-term efficacy of vedolizumab for ulcerative colitis. J. Crohns Colitis 11, jjw177 (2016).

    Google Scholar 

  248. Targan, S. R. et al. Natalizumab for the treatment of active Crohn’s disease: results of the ENCORE Trial. Gastroenterology 132, 1672–1683 (2007).

    CAS  PubMed  Google Scholar 

  249. Ciccia, F. et al. Clinical efficacy of α4 integrin block with natalizumab in ankylosing spondylitis. Ann. Rheum. Dis. 75, 2053–2054 (2016).

    PubMed  Google Scholar 

  250. Varkas, G. et al. An induction or flare of arthritis and/or sacroiliitis by vedolizumab in inflammatory bowel disease: a case series. Ann. Rheum. Dis. 76, 878–881 (2017).

    CAS  PubMed  Google Scholar 

  251. Dubash, S. et al. Emergence of severe spondyloarthropathy-related entheseal pathology following successful vedolizumab therapy for inflammatory bowel disease. Rheumatology 58, 963–968 (2019).

    CAS  PubMed  Google Scholar 

  252. Orlando, A. et al. Clinical benefit of vedolizumab on articular manifestations in patients with active spondyloarthritis associated with inflammatory bowel disease. Ann. Rheum. Dis. 76, e31 (2017).

    PubMed  Google Scholar 

  253. Varkas, G., Van den Bosch, F. & Elewaut, D. Response to: ‘Clinical benefit of vedolizumab on articular manifestations in patients with active spondyloarthritis associated with inflammatory bowel disease’ by Orlando et al. Ann. Rheum. Dis. 76, e32 (2017).

    CAS  PubMed  Google Scholar 

  254. Feagan, B. G. et al. Incidence of arthritis/arthralgia in inflammatory bowel disease with long-term vedolizumab treatment: post hoc analyses of the GEMINI trials. J. Crohns Colitis 13, 50–57 (2019).

    PubMed  Google Scholar 

  255. Tadbiri, S. et al. Impact of vedolizumab therapy on extra-intestinal manifestations in patients with inflammatory bowel disease: a multicentre cohort study nested in the OBSERV-IBD cohort. Aliment. Pharmacol. Ther. 47, 485–493 (2018).

    CAS  PubMed  Google Scholar 

  256. Fischer, A. et al. Differential effects of α4β7 and GPR15 on homing of effector and regulatory T cells from patients with UC to the inflamed gut in vivo. Gut 65, 1642–1664 (2016).

    CAS  PubMed  Google Scholar 

  257. Appel, H. et al. Synovial and peripheral blood CD4+FoxP3+ T cells in spondyloarthritis. J. Rheumatol. 38, 2445–2451 (2011).

    CAS  PubMed  Google Scholar 

  258. Lee, J. C. et al. Genome-wide association study identifies distinct genetic contributions to prognosis and susceptibility in Crohn’s disease. Nat. Genet. 49, 262–268 (2017).

    PubMed  PubMed Central  Google Scholar 

  259. van der Linden, S., Valkenburg, H. A. & Cats, A. Evaluation of diagnostic criteria for ankylosing spondylitis. A proposal for modification of the New York criteria. Arthritis Rheum. 27, 361–368 (1984).

    PubMed  Google Scholar 

  260. Khan, M. A., van Der Linden, S. M., Kushner, I., Valkenburg, H. A. & Cats, A. Spondylitic disease without radiologic evidence of sacroiliitis in relatives of HLA-B27 positive ankylosing spondylitis patients. Arthritis Rheum. 28, 40–43 (1985).

    CAS  PubMed  Google Scholar 

  261. Rudwaleit, M. et al. The development of Assessment of SpondyloArthritis international Society classification criteria for axial spondyloarthritis (part I): classification of paper patients by expert opinion including uncertainty appraisal. Ann. Rheum. Dis. 68, 770–776 (2009).

    CAS  PubMed  Google Scholar 

  262. Taylor, W. et al. Classification criteria for psoriatic arthritis: development of new criteria from a large international study. Arthritis Rheum. 54, 2665–2673 (2006).

    PubMed  Google Scholar 

  263. Rudwaleit, M. et al. The Assessment of SpondyloArthritis international Society classification criteria for peripheral spondyloarthritis and for spondyloarthritis in general. Ann. Rheum. Dis. 70, 25–31 (2011).

    CAS  PubMed  Google Scholar 

  264. Furey, T. S., Sethupathy, P. & Sheikh, S. Z. Redefining the IBDs using genome-scale molecular phenotyping. Nat. Rev. Gastroenterol. Hepatol. 16, 296–311 (2019).

    PubMed  PubMed Central  Google Scholar 

  265. Sandborn, W. J. et al. Safety of celecoxib in patients with ulcerative colitis in remission: a randomized, placebo-controlled, pilot study. Clin. Gastroenterol. Hepatol. 4, 203–211 (2006).

    CAS  PubMed  Google Scholar 

  266. El Miedany, Y., Youssef, S., Ahmed, I. & El Gaafary, M. The gastrointestinal safety and effect on disease activity of etoricoxib, a selective COX-2 inhibitor in inflammatory bowel diseases. Am. J. Gastroenterol. 101, 311–317 (2006).

    CAS  PubMed  Google Scholar 

  267. Kvasnovsky, C. L., Aujla, U. & Bjarnason, I. Nonsteroidal anti-inflammatory drugs and exacerbations of inflammatory bowel disease. Scand. J. Gastroenterol. 50, 255–263 (2014).

    PubMed  Google Scholar 

  268. Ash, Z. et al. A systematic literature review of drug therapies for the treatment of psoriatic arthritis: current evidence and meta-analysis informing the EULAR recommendations for the management of psoriatic arthritis. Ann. Rheum. Dis. 71, 319–326 (2012).

    CAS  PubMed  Google Scholar 

  269. Feagan, B. G. et al. Ustekinumab as induction and maintenance therapy for Crohn’s disease. N. Engl. J. Med. 375, 1946–1960 (2016).

    CAS  PubMed  Google Scholar 

  270. Sands, B. E. et al. Infliximab maintenance therapy for fistulizing Crohn’s disease. N. Engl. J. Med. 350, 876–885 (2004).

    CAS  PubMed  Google Scholar 

  271. Rutgeerts, P. et al. Adalimumab induces and maintains mucosal healing in patients with Crohn’s disease: data from the EXTEND trial. Gastroenterology 142, 1102–1111 (2012).

    CAS  PubMed  Google Scholar 

  272. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02289417 (2020).

  273. Danese, S. et al. Effects of apremilast, an oral inhibitor of phosphodiesterase 4, in a randomized trial of patients with active ulcerative colitis. Clin. Gastroenterol. Hepatol. https://doi.org/10.1016/j.cgh.2019.12.032 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  274. Haibel, H. et al. Efficacy of oral prednisolone in active ankylosing spondylitis: results of a double-blind, randomised, placebo-controlled short-term trial. Ann. Rheum. Dis. 73, 243–246 (2014).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank A. Hoorens (UZ Gent) for providing the histology pictures in Fig. 1.

Author information

Authors and Affiliations

Authors

Contributions

E.G. researched data for the article; E.G., L.V., D.M., G.S., F.V.d.B. and D.E. made substantial contributions to discussions of the content; E.G., M.F., F.V.d.B. and D.E. wrote the article and E.G., M.F., G.S., S.D., M.D.V., F.V.d.B. and D.E. reviewed and/or edited the manuscript before submission.

Corresponding authors

Correspondence to Eric Gracey or Dirk Elewaut.

Ethics declarations

Competing interests

F.V.d.B. declares that he has received speaker’s and/or consultancy fees from Abbvie, Bristol-Myers Squibb, Celgene, Eli Lilly, Janssen, Galapagos, Merck, Pfizer, Novartis, Sanofi and UCB. D.E. declares that his work is supported by grants from the Fund for Scientific Research Flanders, the Research Council of Ghent University and an Excellence of Science (EOS) grant from the Fund for Scientific Research Flanders. The other authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Rheumatology thanks F. Ciccia, H. Xu and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gracey, E., Vereecke, L., McGovern, D. et al. Revisiting the gut–joint axis: links between gut inflammation and spondyloarthritis. Nat Rev Rheumatol 16, 415–433 (2020). https://doi.org/10.1038/s41584-020-0454-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41584-020-0454-9

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing