Global epidemiology of gout: prevalence, incidence, treatment patterns and risk factors

Subjects

Abstract

Gout is the most common inflammatory arthritis and occurs when hyperuricaemia, sustained elevation of serum urate levels resulting in supersaturation of body tissues with urate, leads to the formation and deposition of monosodium urate crystals in and around the joints. Recent reports of the prevalence and incidence of gout vary widely according to the population studied and methods employed but range from a prevalence of <1% to 6.8% and an incidence of 0.58–2.89 per 1,000 person-years. Gout is more prevalent in men than in women, with increasing age, and in some ethnic groups. Despite rising prevalence and incidence, suboptimal management of gout continues in many countries. Typically, only a third to half of patients with gout receive urate-lowering therapy, which is a definitive, curative treatment, and fewer than a half of patients adhere to treatment. Many gout risk factors exist, including obesity, dietary factors and comorbid conditions. As well as a firmly established increased risk of cardiovascular disease and chronic kidney disease in those with gout, novel associations of gout with other comorbidities have been reported, including erectile dysfunction, atrial fibrillation, obstructive sleep apnoea, osteoporosis and venous thromboembolism. Discrete patterns of comorbidity clustering in individuals with gout have been described. Increasing prevalence and incidence of obesity and comorbidities are likely to contribute substantially to the rising burden of gout.

Key points

  • Gout is a common chronic crystal deposition disorder that affects between <1% and 6.8% of the population depending upon the population studied.

  • Both prevalence and incidence of gout seem to be rising across the globe.

  • Management of gout continues to be poor, with fewer than one half of patients receiving definitive ‘curative’ urate-lowering therapy.

  • Adherence to urate-lowering therapy is often poor and rates of non-persistence are high.

  • Obesity and comorbidities are important risk factors for gout and are important drivers of its rising prevalence and incidence.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Estimated prevalence of gout worldwide.
Fig. 2: Age-specific prevalence of gout in five countries/territories.
Fig. 3: Trends in gout incidence in five countries/territories.
Fig. 4: Patterns of comorbidity clustering in individuals with gout.

References

  1. 1.

    Kuo, C. F., Grainge, M. J., Zhang, W. & Doherty, M. Global epidemiology of gout: prevalence, incidence and risk factors. Nat. Rev. Rheumatol. 11, 649–662 (2015).

    PubMed  Article  Google Scholar 

  2. 2.

    Wijnands, J. M. et al. Determinants of the prevalence of gout in the general population: a systematic review and meta-regression. Eur. J. Epidemiol. 30, 19–33 (2015).

    PubMed  Article  Google Scholar 

  3. 3.

    Robinson, P. C., Taylor, W. J. & Dalbeth, N. An observational study of gout prevalence and quality of care in a national Australian general practice population. J. Rheumatol. 42, 1702–1707 (2015).

    CAS  PubMed  Article  Google Scholar 

  4. 4.

    Gonzalez-Chica, D. A., Vanlint, S., Hoon, E. & Stocks, N. Epidemiology of arthritis, chronic back pain, gout, osteoporosis, spondyloarthropathies and rheumatoid arthritis among 1.5 million patients in Australian general practice: NPS MedicineWise MedicineInsight dataset. BMC Musculoskelet. Disord. 19, 20 (2018).

    PubMed  PubMed Central  Article  Google Scholar 

  5. 5.

    Ting, K., Gill, T. K., Keen, H., Tucker, G. R. & Hill, C. L. Prevalence and associations of gout and hyperuricaemia: results from an Australian population-based study. Intern. Med. J. 46, 566–573 (2016).

    CAS  PubMed  Article  Google Scholar 

  6. 6.

    Pisaniello, H. L. et al. Gout prevalence and predictors of urate-lowering therapy use: results from a population-based study. Arthritis Res. Ther. 20, 143 (2018).

    PubMed  PubMed Central  Article  Google Scholar 

  7. 7.

    Zhu, Y., Pandya, B. J. & Choi, H. K. Prevalence of gout and hyperuricemia in the US general population: the National Health and Nutrition Examination Survey 2007–2008. Arthritis Rheum. 63, 3136–3141 (2011).

    PubMed  Article  Google Scholar 

  8. 8.

    Chen-Xu, M., Yokose, C., Rai, S. K., Pillinger, M. H. & Choi, H. K. Contemporary prevalence of gout and hyperuricemia in the United States and decadal trends: the National Health and Nutrition Examination Survey, 2007–2016. Arthritis Rheumatol. 71, 991–999 (2019).

    PubMed  PubMed Central  Article  Google Scholar 

  9. 9.

    Rai, S. K. et al. The rising prevalence and incidence of gout in British Columbia, Canada: population-based trends from 2000 to 2012. Semin. Arthritis Rheum. 46, 451–456 (2017).

    PubMed  Article  Google Scholar 

  10. 10.

    Health Canada. Arthritis in Canada: an Ongoing Challenge (Health Canada, 2003).

  11. 11.

    Branco, J. C. et al. Prevalence of rheumatic and musculoskeletal diseases and their impact on health-related quality of life, physical function and mental health in Portugal: results from EpiReumaPt – a national health survey. RMD Open 2, e000166 (2016).

    PubMed  PubMed Central  Article  Google Scholar 

  12. 12.

    Kapetanovic, M. C. et al. Prevalence and incidence of gout in southern Sweden from the socioeconomic perspective. RMD Open 2, e000326 (2016).

    PubMed  PubMed Central  Article  Google Scholar 

  13. 13.

    Dehlin, M., Drivelegka, P., Sigurdardottir, V., Svard, A. & Jacobsson, L. T. Incidence and prevalence of gout in Western Sweden. Arthritis Res. Ther. 18, 164 (2016).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  14. 14.

    Wandell, P., Carlsson, A. C. & Ljunggren, G. Gout and its comorbidities in the total population of Stockholm. Prev. Med. 81, 387–391 (2015).

    PubMed  Article  Google Scholar 

  15. 15.

    Kinge, J. M., Knudsen, A. K., Skirbekk, V. & Vollset, S. E. Musculoskeletal disorders in Norway: prevalence of chronicity and use of primary and specialist health care services. BMC Musculoskelet. Disord. 16, 75 (2015).

    PubMed  PubMed Central  Article  Google Scholar 

  16. 16.

    Zobbe, K. et al. Secular trends in the incidence and prevalence of gout in Denmark from 1995 to 2015: a nationwide register-based study. Rheumatology 58, 836–839 (2019).

    PubMed  Article  Google Scholar 

  17. 17.

    Zeng, S. Y. et al. Changes in the prevalence of rheumatic diseases in Shantou, China, in the past three decades: a COPCORD study. PLoS ONE 10, e0138492 (2015).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  18. 18.

    Chen, Y. Z. et al. The prevalence of gout in mainland China from 2000 to 2016: a systematic review and meta-analysis. J. Public Health 25, 521–529 (2017).

    Article  Google Scholar 

  19. 19.

    Kim, J. W. et al. Prevalence and incidence of gout in Korea: data from the national health claims database 2007-2015. Rheumatol. Int. 37, 1499–1506 (2017).

    PubMed  Article  Google Scholar 

  20. 20.

    Al Saleh, J., Sayed, M. E., Monsef, N. & Darwish, E. The prevalence and the determinants of musculoskeletal diseases in Emiratis attending primary health care clinics in Dubai. Oman Med. J. 31, 117–123 (2016).

    PubMed  PubMed Central  Article  Google Scholar 

  21. 21.

    Courage, U. U. et al. Prevalence of musculoskeletal diseases in a semi-urban Nigerian community: results of a cross-sectional survey using COPCORD methodology. Clin. Rheumatol. 36, 2509–2516 (2017).

    PubMed  Article  Google Scholar 

  22. 22.

    Guevara-Pacheco, S. et al. Prevalence of musculoskeletal disorders and rheumatic diseases in Cuenca, Ecuador: a WHO-ILAR COPCORD study. Rheumatol. Int. 36, 1195–1204 (2016).

    PubMed  Article  Google Scholar 

  23. 23.

    Wandell, P. et al. Gout in immigrant groups: a cohort study in Sweden. Clin. Rheumatol. 36, 1091–1102 (2017).

    PubMed  PubMed Central  Article  Google Scholar 

  24. 24.

    Anagnostopoulos, I. et al. The prevalence of rheumatic diseases in central Greece: a population survey. BMC Musculoskelet. Disord. 11, 98 (2010).

    PubMed  PubMed Central  Article  Google Scholar 

  25. 25.

    Sicras-Mainar, A., Navarro-Artieda, R. & Ibanez-Nolla, J. Resource use and economic impact of patients with gout: a multicenter, population-wide study. Reumatol. Clin. 9, 94–100 (2013).

    PubMed  Article  Google Scholar 

  26. 26.

    Elfishawi, M. M. et al. The rising incidence of gout and the increasing burden of comorbidities: a population-based study over 20 years. J. Rheumatol. 45, 574–579 (2018).

    PubMed  Article  Google Scholar 

  27. 27.

    Fischer, A. et al. The direct economic burden of gout in an elderly Canadian population. J. Rheumatol. 44, 95–101 (2017).

    PubMed  Article  Google Scholar 

  28. 28.

    Kapetanovic, M. C. et al. The risk of clinically diagnosed gout by serum urate levels: results from 30 years follow-up of the Malmo Preventive Project cohort in southern Sweden. Arthritis Res. Ther. 20, 190 (2018).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  29. 29.

    Aitken, M. J. Developments in Gout Treatment: New Approaches to an Old Disease (Nova, 2017).

  30. 30.

    Saag, K. G. et al. Lesinurad combined with allopurinol: a randomized, double-blind, placebo-controlled study in gout patients with an inadequate response to standard-of-care allopurinol (a US-based study). Arthritis Rheumatol. 69, 203–212 (2017).

    CAS  PubMed  Article  Google Scholar 

  31. 31.

    Dalbeth, N. et al. Lesinurad, a selective uric acid reabsorption inhibitor, in combination with febuxostat in patients with tophaceous gout: findings of a phase III clinical trial. Arthritis Rheumatol. 69, 1903–1913 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  32. 32.

    Doherty, M. et al. Gout: why is this curable disease so seldom cured? Ann. Rheum. Dis. 71, 1765–1770 (2012).

    PubMed  Article  Google Scholar 

  33. 33.

    Kim, J. W., Kwak, S. G. & Park, S. H. Prescription pattern of urate-lowering therapy in Korean gout patients: data from the national health claims database. Korean J. Intern. Med. 33, 228–229 (2018).

    PubMed  Article  Google Scholar 

  34. 34.

    Kuo, C. F., Grainge, M. J., Mallen, C., Zhang, W. & Doherty, M. Eligibility for and prescription of urate-lowering treatment in patients with incident gout in England. JAMA 312, 2684–2686 (2014).

    PubMed  Article  Google Scholar 

  35. 35.

    Dehlin, M. et al. Factors associated with initiation and persistence of urate-lowering therapy. Arthritis Res. Ther. 19, 6 (2017).

    PubMed  PubMed Central  Article  Google Scholar 

  36. 36.

    Scheepers, L. E. J. M. et al. Medication adherence among patients with gout: a systematic review and meta-analysis. Semin. Arthritis Rheum. 47, 689–702 (2018).

    PubMed  Article  Google Scholar 

  37. 37.

    Scheepers, L. E. J. M. et al. Medication adherence among gout patients initiated allopurinol: a retrospective cohort study in the Clinical Practice Research Datalink (CPRD). Rheumatology 57, 1641–1650 (2018).

    CAS  PubMed  Article  Google Scholar 

  38. 38.

    McGowan, B., Bennett, K., Silke, C. & Whelan, B. Adherence and persistence to urate-lowering therapies in the Irish setting. Clin. Rheumatol. 35, 715–721 (2016).

    PubMed  Article  Google Scholar 

  39. 39.

    Chua, X. H. J. et al. Factors influencing medication adherence in patients with gout: a descriptive correlational study. J. Clin. Nurs. 27, e213–e222 (2018).

    PubMed  Article  Google Scholar 

  40. 40.

    Sheng, F., Fang, W., Zhang, B., Sha, Y. & Zeng, X. Adherence to gout management recommendations of Chinese patients. Medicine 96, e8532 (2017).

    PubMed  PubMed Central  Article  Google Scholar 

  41. 41.

    Spencer, K., Carr, A. & Doherty, M. Patient and provider barriers to effective management of gout in general practice: a qualitative study. Ann. Rheum. Dis. 71, 1490–1495 (2012).

    PubMed  Article  Google Scholar 

  42. 42.

    Goldfien, R., Pressman, A., Jacobson, A., Ng, M. & Avins, A. A pharmacist-staffed, virtual gout management clinic for achieving target serum uric acid levels: a randomized clinical trial. Perm. J. 20, 15–234 (2016).

    PubMed  PubMed Central  Google Scholar 

  43. 43.

    Doherty, M. et al. Efficacy and cost-effectiveness of nurse-led care involving education and engagement of patients and a treat-to-target urate-lowering strategy versus usual care for gout: a randomised controlled trial. Lancet 392, 1403–1412 (2018).

    PubMed  PubMed Central  Article  Google Scholar 

  44. 44.

    Dalbeth, N. et al. Relationship between serum urate concentration and clinically evident incident gout: an individual participant data analysis. Ann. Rheum. Dis. 77, 1048–1052 (2018).

    CAS  PubMed  Article  Google Scholar 

  45. 45.

    Evans, P. L. et al. Obesity, hypertension and diuretic use as risk factors for incident gout: a systematic review and meta-analysis of cohort studies. Arthritis Res. Ther. 20, 136 (2018).

    PubMed  PubMed Central  Article  Google Scholar 

  46. 46.

    Larsson, S. C., Burgess, S. & Michaëlsson, K. Genetic association between adiposity and gout: a Mendelian randomization study. Rheumatology 57, 2145–2148 (2018).

    CAS  PubMed  Article  Google Scholar 

  47. 47.

    Maglio, C. et al. Effects of bariatric surgery on gout incidence in the Swedish Obese Subjects study: a non-randomised, prospective, controlled intervention trial. Ann. Rheum. Dis. 76, 688–693 (2017).

    PubMed  Article  Google Scholar 

  48. 48.

    Teng, G. G., Pan, A., Yuan, J.-M. & Koh, W.-P. Food sources of protein and risk of incident gout in the Singapore Chinese Health Study. Arthritis Rheumatol. 67, 1933–1942 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  49. 49.

    Ayoub-Charette, S. et al. Important food sources of fructose-containing sugars and incident gout: a systematic review and meta-analysis of prospective cohort studies. BMJ Open 9, e024171 (2019).

    PubMed  PubMed Central  Article  Google Scholar 

  50. 50.

    Jamnik, J. et al. Fructose intake and risk of gout and hyperuricemia: a systematic review and meta-analysis of prospective cohort studies. BMJ Open 6, e013191 (2016).

    PubMed  PubMed Central  Article  Google Scholar 

  51. 51.

    Rai, S. K. et al. The Dietary Approaches to Stop Hypertension (DASH) diet, Western diet, and risk of gout in men: prospective cohort study. BMJ 357, j1794 (2017).

    PubMed  PubMed Central  Article  Google Scholar 

  52. 52.

    Chiu, T. H. T., Liu, C.-H., Chang, C.-C., Lin, M.-N. & Lin, C.-L. Vegetarian diet and risk of gout in two separate prospective cohort studies. Clin. Nutr. 39, 837–844 (2020).

    PubMed  Article  Google Scholar 

  53. 53.

    Major, T. J., Topless, R. K., Dalbeth, N. & Merriman, T. R. Evaluation of the diet wide contribution to serum urate levels: meta-analysis of population based cohorts. BMJ 363, k3951 (2018).

    PubMed  PubMed Central  Article  Google Scholar 

  54. 54.

    Rai, S. K., Zhang, Y., Hu, F. B., Pearce, N. & Choi, H. K. The paradox of ubiquitous risk factors for gout. BMJ 363, k3951 (2018).

    Google Scholar 

  55. 55.

    Choi, H. K. et al. Population impact attributable to modifiable risk factors for hyperuricemia. Arthritis Rheumatol. 72, 157–165 (2020).

    CAS  PubMed  Article  Google Scholar 

  56. 56.

    Kuo, C.-F., Grainge, M. J., Mallen, C., Zhang, W. & Doherty, M. Comorbidities in patients with gout prior to and following diagnosis: case-control study. Ann. Rheum. Dis. 75, 210–217 (2016).

    PubMed  Article  Google Scholar 

  57. 57.

    Jaffe, D. H. et al. Incident gout and chronic kidney disease: healthcare utilization and survival. BMC Rheumatol. 3, 11 (2019).

    PubMed  PubMed Central  Article  Google Scholar 

  58. 58.

    Roughley, M. et al. Risk of chronic kidney disease in patients with gout and the impact of urate lowering therapy: a population-based cohort study. Arthritis Res. Ther. 20, 243 (2018).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  59. 59.

    Singh, J. A. & Cleveland, J. D. Gout is associated with a higher risk of chronic renal disease in older adults: a retrospective cohort study of U.S. Medicare population. BMC Nephrol. 20, 93 (2019).

    PubMed  PubMed Central  Article  Google Scholar 

  60. 60.

    Tan, V. S. et al. The 3-year incidence of gout in elderly patients with CKD. Clin. J. Am. Soc. Nephrol. 12, 577–584 (2017).

    PubMed  PubMed Central  Article  Google Scholar 

  61. 61.

    Drivelegka, P., Sigurdardottir, V., Svärd, A., Jacobsson, L. T. H. & Dehlin, M. Comorbidity in gout at the time of first diagnosis: sex differences that may have implications for dosing of urate lowering therapy. Arthritis Res. Ther. 20, 108 (2018).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  62. 62.

    Clarson, L. E. et al. Increased risk of vascular disease associated with gout: a retrospective, matched cohort study in the UK Clinical Practice Research Datalink. Ann. Rheum. Dis. 74, 642–647 (2015).

    PubMed  Article  Google Scholar 

  63. 63.

    Abdul Sultan, A. et al. Gout and subsequent erectile dysfunction: a population-based cohort study from England. Arthritis Res. Ther. 19, 123 (2017).

    PubMed  PubMed Central  Article  Google Scholar 

  64. 64.

    Chen, Y. F. et al. Gout and a subsequent increased risk of erectile dysfunction in men aged 64 and under: a nationwide cohort study in Taiwan. J. Rheumatol. 42, 1898–1905 (2015).

    CAS  PubMed  Article  Google Scholar 

  65. 65.

    Hsu, C. Y., Lin, C. L. & Kao, C. H. Gout is associated with organic and psychogenic erectile dysfunction. Eur. J. Intern. Med. 26, 691–695 (2015).

    PubMed  Article  Google Scholar 

  66. 66.

    Singh, J. A. & Cleveland, J. D. Gout and the risk of incident atrial fibrillation in older adults: a study of US Medicare data. RMD Open 4, e000712 (2018).

    PubMed  PubMed Central  Article  Google Scholar 

  67. 67.

    Kuo, Y. J. et al. The risk of atrial fibrillation in patients with gout: a nationwide population-based study. Sci. Rep. 6, 32220 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  68. 68.

    Kuo, C. F., Grainge, M. J., Mallen, C., Zhang, W. & Doherty, M. Impact of gout on the risk of atrial fibrillation. Rheumatology 55, 721–728 (2016).

    PubMed  Article  Google Scholar 

  69. 69.

    Kim, S. C., Liu, J. & Solomon, D. H. Risk of incident atrial fibrillation in gout: a cohort study. Ann. Rheum. Dis. 75, 1473–1478 (2016).

    PubMed  Article  Google Scholar 

  70. 70.

    Hasday, J. D. & Grum, C. M. Nocturnal increase of urinary uric acid:creatinine ratio. A biochemical correlate of sleep-associated hypoxemia. Am. Rev. Respir. Dis. 135, 534–538 (1987).

    CAS  PubMed  Google Scholar 

  71. 71.

    Glantzounis, G. K., Tsimoyiannis, E. C., Kappas, A. M. & Galaris, D. A. Uric acid and oxidative stress. Curr. Pharm. Des. 11, 4145–4151 (2005).

    CAS  PubMed  Article  Google Scholar 

  72. 72.

    Zhang, Y. et al. Sleep apnea and the risk of incident gout: a population-based, body mass index-matched cohort study. Arthritis Rheumatol. 67, 3298–3302 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  73. 73.

    Blagojevic-Bucknall, M. et al. The risk of gout among patients with sleep apnea: a matched cohort study. Arthritis Rheumatol. 71, 154–160 (2019).

    PubMed  Article  Google Scholar 

  74. 74.

    Singh, J. A. & Cleveland, J. D. Gout and the risk of incident obstructive sleep apnea in adults 65 years or older: an observational study. J. Clin. Sleep. Med. 14, 1521–1527 (2018).

    PubMed  PubMed Central  Article  Google Scholar 

  75. 75.

    Wang, Y. et al. Association of gout with osteoporotic fractures. Int. Orthop. 42, 2041–2047 (2018).

    PubMed  Article  Google Scholar 

  76. 76.

    Tzeng, H.-E., Lin, C.-C., Wang, I. K., Huang, P.-H. & Tsai, C.-H. Gout increases risk of fracture: a nationwide population-based cohort study. Medicine 95, e4669 (2016).

    PubMed  PubMed Central  Article  Google Scholar 

  77. 77.

    Paik, J. M. et al. Gout and risk of fracture in women: a prospective cohort study. Arthritis Rheumatol. 69, 422–428 (2017).

    PubMed  PubMed Central  Article  Google Scholar 

  78. 78.

    Kok, V. C. et al. Gout as a risk factor for osteoporosis: epidemiologic evidence from a population-based longitudinal study involving 108,060 individuals. Osteoporos. Int. 29, 973–985 (2018).

    CAS  PubMed  Article  Google Scholar 

  79. 79.

    Sultan, A. A. et al. Risk of fragility fracture among patients with gout and the effect of urate-lowering therapy. CMAJ 190, E581–E587 (2018).

    PubMed  PubMed Central  Article  Google Scholar 

  80. 80.

    Kim, S. C., Paik, J. M., Liu, J., Curhan, G. C. & Solomon, D. H. Gout and the risk of non-vertebral fracture. J. Bone Miner. Res. 32, 230–236 (2017).

    CAS  PubMed  Article  Google Scholar 

  81. 81.

    Huang, C. C. et al. An independent risk of gout on the development of deep vein thrombosis and pulmonary embolism: a nationwide, population-based cohort study. Medicine 94, e2140 (2015).

    PubMed  PubMed Central  Article  Google Scholar 

  82. 82.

    Chiu, C. C. et al. Association between previous history of gout attack and risk of deep vein thrombosis – a nationwide population-based cohort study. Sci. Rep. 6, 26541 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  83. 83.

    Li, L. et al. Trends of venous thromboembolism risk before and after diagnosis of gout: a general population-based study. Rheumatology 59, 1099–1107 (2020).

    PubMed  Article  Google Scholar 

  84. 84.

    Sultan, A. A. et al. Venous thromboembolism in patients with gout and the impact of hospital admission, disease duration and urate-lowering therapy. CMAJ 191, E597–E603 (2019).

    PubMed  PubMed Central  Article  Google Scholar 

  85. 85.

    Kubota, Y., McAdams-DeMarco, M. & Folsom, A. R. Serum uric acid, gout, and venous thromboembolism: the Atherosclerosis Risk In Communities Study. Thromb. Res. 144, 144–148 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  86. 86.

    Jung, J. H. et al. Metabolic syndrome: prevalence and risk factors in Korean gout patients. Korean J. Intern. Med. 33, 815–822 (2018).

    PubMed  Article  Google Scholar 

  87. 87.

    Choi, H. K., Ford, E. S., Li, C. & Curhan, G. Prevalence of the metabolic syndrome in patients with gout: the Third National Health and Nutrition Examination Survey. Arthritis Rheum. 57, 109–115 (2007).

    PubMed  Article  Google Scholar 

  88. 88.

    Tu, F.-Y. et al. Prevalence of gout with comorbidity aggregations in southern Taiwan. Joint Bone Spine 82, 45–51 (2015).

    PubMed  Article  Google Scholar 

  89. 89.

    Richette, P., Clerson, P., Périssin, L., Flipo, R.-M. & Bardin, T. Revisiting comorbidities in gout: a cluster analysis. Ann. Rheum. Dis. 74, 142–147 (2015).

    PubMed  Article  Google Scholar 

  90. 90.

    Bevis, M., Blagojevic-Bucknall, M., Mallen, C., Hider, S. & Roddy, E. Comorbidity clusters in people with gout: an observational cohort study with linked medical record review. Rheumatology 57, 1358–1363 (2018).

    PubMed  Article  Google Scholar 

  91. 91.

    Huang, C.-F. et al. Longitudinal transition trajectory of gouty arthritis and its comorbidities: a population-based study. Rheumatol. Int. 37, 313–322 (2017).

    PubMed  Article  Google Scholar 

  92. 92.

    GBD 2016 Disease and Injury Incidence and Prevalence Collaborators. Global, regional, and national incidence, prevalence, and years lived with disability for 328 diseases and injuries for 195 countries, 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet 390, 1211–1259 (2017).

    Article  Google Scholar 

  93. 93.

    Ng, M. et al. Global, regional, and national prevalence of overweight and obesity in children and adults during 1980–2013: a systematic analysis for the Global Burden of Disease Study 2013. Lancet 384, 766–781 (2014).

    PubMed  PubMed Central  Article  Google Scholar 

  94. 94.

    Han, G.-M., Michaud, K., Yu, F., Watanabe-Galloway, S. & Mikuls, T. R. Increasing public health burden of arthritis and other rheumatic conditions and comorbidity: results from a Statewide Health Surveillance System, 2007–2012. Arthritis Care Res. 68, 1417–1427 (2016).

    Article  Google Scholar 

  95. 95.

    Kiadaliri, A. A. & Englund, M. Temporal trends and regional disparity in rheumatoid arthritis and gout hospitalizations in Sweden, 1998–2015. Clin. Rheumatol. 37, 825–830 (2018).

    PubMed  PubMed Central  Article  Google Scholar 

  96. 96.

    Lim, S. Y. et al. Trends in gout and rheumatoid arthritis hospitalizations in the United States, 1993–2011. JAMA 315, 2345–2347 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  97. 97.

    Russell, M. et al. Rising incidence of acute hospital admissions due to gout. J. Rheumatol. 47, 619–623 (2020).

    PubMed  Article  Google Scholar 

  98. 98.

    Robinson, P. C., Kempe, S., Tebbutt, I. & Roberts, L. Epidemiology of inpatient gout in Australia and New Zealand: temporal trends, comorbidities and gout flare site. Int. J. Rheum. Dis. 20, 779–784 (2017).

    PubMed  Article  Google Scholar 

Download references

Acknowledgements

The authors thank L. Hammarbäck and E. Hessman of Biomedical Libraries at Gothenburg University Library, Sweden, for help with the literature search.

Review criteria

Articles for inclusion in this Review were obtained by multiple searches of PubMed, SCOPUS and the Cochrane Database with the search terms categorized as ‘epidemiology-related’ (‘gout’, ‘gouty arthritis’, ‘uric acid’, ‘hyperuricaemia’, ‘tophus’, ‘monosodium urate crystals’, ‘prevalence’, ‘incidence’, ‘relative risks’ and ‘odds ratios’), ‘urate lowering therapy-related’ (‘urate-lowering therapy’, ‘ULT’, ‘allopurinol’, ‘benzbromarone’, ‘febuxostat’, ‘pegloticase’, ‘probenecid’, ‘lesinurad’ and ‘prophylactic treatment/therapy’) and ‘risk factors-related’ (‘hyperuricaemia’, ‘urate’, ‘uric acid’, ‘tophus’, ‘monosodium urate crystals’, ‘obesity’, ‘overweight’, ‘adiposity’, ‘diet’, ‘dietary factors’, ‘food’, ‘comorbidity’, ‘alcoholism’, ‘alcohol abuse’, ‘cancer’, ‘chronic kidney disease’, ‘CKD’, ‘renal disease’, ‘kidney failure’, ‘chronic lung disease’, ‘lung disease’, ‘pulmonary disease’, ‘heart disease’, ‘heart failure’, ‘haematological disease’, ‘anemia’, ‘sickle cell anemia’, ‘polycythemia’, ‘hypertension’, ‘metabolic syndrome’, ‘psoriasis’, ‘thyroid disease’ and ‘comorbid condition’). Only articles published in English and in the period from January 2015 to the end of May 2019 were included.

Author information

Affiliations

Authors

Contributions

All authors contributed equally to all aspects of the writing of this paper.

Corresponding author

Correspondence to Edward Roddy.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Dehlin, M., Jacobsson, L. & Roddy, E. Global epidemiology of gout: prevalence, incidence, treatment patterns and risk factors. Nat Rev Rheumatol 16, 380–390 (2020). https://doi.org/10.1038/s41584-020-0441-1

Download citation

Further reading

Search

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing