Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Restoring synovial homeostasis in rheumatoid arthritis by targeting fibroblast-like synoviocytes

Abstract

Rheumatoid arthritis (RA) is a chronic immune-mediated disease that primarily affects the synovium of diarthrodial joints. During the course of RA, the synovium transforms into a hyperplastic invasive tissue that causes destruction of cartilage and bone. Fibroblast-like synoviocytes (FLS), which form the lining of the joint, are epigenetically imprinted with an aggressive phenotype in RA and have an important role in these pathological processes. In addition to producing the extracellular matrix and joint lubricants, FLS in RA produce pathogenic mediators such as cytokines and proteases that contribute to disease pathogenesis and perpetuation. The development of multi-omics integrative analyses have enabled new ways to dissect the mechanisms that imprint FLS, have helped to identify potential FLS subsets with distinct functions and have identified differences in FLS phenotypes between joints in individual patients. This Review provides an overview of advances in understanding of FLS biology and highlights omics approaches and studies that hold promise for identifying future therapeutic targets.

Key points

  • Rheumatoid arthritis (RA) is a complex immune-mediated disease with clinical manifestations primarily involving synovial inflammation and joint damage.

  • Fibroblast-like synoviocytes (FLS) contribute to the pathogenesis of RA and are epigenetically imprinted with an aggressive phenotype in RA.

  • Synovial fibroblasts, including FLS, can have distinct phenotypes with different functional characteristics.

  • Epigenetic mechanisms associated with FLS imprinting in RA include alterations in DNA methylation, histone modifications and microRNA expression.

  • Integration of data from multi-omics analyses is needed to improve the characterization of FLS in RA.

  • Therapies that target FLS are emerging as promising therapeutic tools, raising hope for future applications in RA.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The synovial joint in health and in RA.
Fig. 2: Genetic and epigenetic mechanisms involved in FLS imprinting in RA.
Fig. 3: Diversity of FLS in RA.
Fig. 4: The hallmark features of FLS in RA.

Similar content being viewed by others

References

  1. Klareskog, L., Catrina, A. I. & Paget, S. Rheumatoid arthritis. Lancet 373, 659–672 (2009).

    Article  CAS  PubMed  Google Scholar 

  2. Arnett, F. C. et al. The American Rheumatism Association 1987 revised criteria for the classification of rheumatoid arthritis. Arthritis Rheum. 31, 315–324 (1988).

    Article  CAS  PubMed  Google Scholar 

  3. Choy, E. H., Kavanaugh, A. F. & Jones, S. A. The problem of choice: current biologic agents and future prospects in RA. Nat. Rev. Rheumatol. 9, 154–163 (2013).

    Article  CAS  PubMed  Google Scholar 

  4. Holers, V. M. et al. Rheumatoid arthritis and the mucosal origins hypothesis: protection turns to destruction. Nat. Rev. Rheumatol. 14, 542–557 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Bartok, B. & Firestein, G. S. Fibroblast-like synoviocytes: key effector cells in rheumatoid arthritis. Immunol. Rev. 233, 233–255 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Filer, A. The fibroblast as a therapeutic target in rheumatoid arthritis. Curr. Opin. Pharmacol. 13, 413–419 (2013).

    Article  CAS  PubMed  Google Scholar 

  7. Firestein, G. S. Biomedicine. Every joint has a silver lining. Science 315, 952–953 (2007).

    Article  CAS  PubMed  Google Scholar 

  8. Valencia, X. et al. Cadherin-11 provides specific cellular adhesion between fibroblast-like synoviocytes. J. Exp. Med. 200, 1673–1679 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Bottini, N. & Firestein, G. S. Duality of fibroblast-like synoviocytes in RA: passive responders and imprinted aggressors. Nat. Rev. Rheumatol. 9, 24–33 (2013).

    Article  CAS  PubMed  Google Scholar 

  10. Blewis, M. E. et al. Interactive cytokine regulation of synoviocyte lubricant secretion. Tissue Eng. Part A 16, 1329–1337 (2010).

    Article  CAS  PubMed  Google Scholar 

  11. McInnes, I. B. & Schett, G. Cytokines in the pathogenesis of rheumatoid arthritis. Nat. Rev. Immunol. 7, 429–442 (2007).

    Article  CAS  PubMed  Google Scholar 

  12. Firestein, G. S. Invasive fibroblast-like synoviocytes in rheumatoid arthritis. Passive responders or transformed aggressors? Arthritis Rheum. 39, 1781–1790 (1996).

    Article  CAS  PubMed  Google Scholar 

  13. Ai, R. et al. DNA methylome signature in synoviocytes from patients with early rheumatoid arthritis compared to synoviocytes from patients with longstanding rheumatoid arthritis. Arthritis Rheumatol. 67, 1978–1980 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Veale, D. & Firestein, G. S. in Kelley and Firestein’s textbook of rheumatology 10th edn, (eds Firestein, G. S. et al.) 20–33 (Elsevier, 2016).

  15. Lever, J. D. & Ford, E. H. Histological, histochemical and electron microscopic observations on synovial membrane. Anat. Rec. 132, 525–539 (1958).

    Article  CAS  PubMed  Google Scholar 

  16. Barland, P., Novikoff, A. B. & Hamerman, D. Electron microscopy of the human synovial membrane. J. Cell Biol. 14, 207–220 (1962).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Castor, C. W. The microscopic structure of normal human synovial tissue. Arthritis Rheum. 3, 140–151 (1960).

    Article  CAS  PubMed  Google Scholar 

  18. Culemann, S. et al. Locally renewing resident synovial macrophages provide a protective barrier for the joint. Nature 572, 670–675 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Buckley, C. D. Macrophages form a protective cellular barrier in joints. Nature 572, 590–592 (2019).

    Article  CAS  PubMed  Google Scholar 

  20. Jay, G. D., Britt, D. E. & Cha, C. J. Lubricin is a product of megakaryocyte stimulating factor gene expression by human synovial fibroblasts. J. Rheumatol. 27, 594–600 (2000).

    CAS  PubMed  Google Scholar 

  21. Jay, G. D. & Waller, K. A. The biology of lubricin: near frictionless joint motion. Matrix Biol. 39, 17–24 (2014).

    Article  CAS  PubMed  Google Scholar 

  22. Swann, D. A., Silver, F. H., Slayter, H. S., Stafford, W. & Shore, E. The molecular structure and lubricating activity of lubricin isolated from bovine and human synovial fluids. Biochem. J. 225, 195–201 (1985).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Firestein, G. S. Etiology and pathogenesis of rheumatoid arthritis, In Kelley and Firestein’s Textbook of Rheumatology 10th edn, (eds Firestein, G. S. et al.) 1115–1166 (Elsevier, Philadelphia, 2017)

    Google Scholar 

  24. Sabeh, F., Fox, D. & Weiss, S. J. Membrane-type I matrix metalloproteinase-dependent regulation of rheumatoid arthritis synoviocyte function. J. Immunol. 184, 6396–6406 (2010).

    Article  CAS  PubMed  Google Scholar 

  25. Noss, E. H. & Brenner, M. B. The role and therapeutic implications of fibroblast-like synoviocytes in inflammation and cartilage erosion in rheumatoid arthritis. Immunol. Rev. 223, 252–270 (2008).

    Article  CAS  PubMed  Google Scholar 

  26. Muller-Ladner, U., Pap, T., Gay, R. E., Neidhart, M. & Gay, S. Mechanisms of disease: the molecular and cellular basis of joint destruction in rheumatoid arthritis. Nat. Clin. Pract. Rheumatol. 1, 102–110 (2005).

    Article  PubMed  CAS  Google Scholar 

  27. Burrage, P. S., Mix, K. S. & Brinckerhoff, C. E. Matrix metalloproteinases: role in arthritis. Front. Biosci. 11, 529–543 (2006).

    Article  CAS  PubMed  Google Scholar 

  28. Lafyatis, R. et al. Anchorage-independent growth of synoviocytes from arthritic and normal joints. Stimulation by exogenous platelet-derived growth factor and inhibition by transforming growth factor-β and retinoids. J. Clin. Invest. 83, 1267–1276 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Korb, A., Pavenstadt, H. & Pap, T. Cell death in rheumatoid arthritis. Apoptosis 14, 447–454 (2009).

    Article  PubMed  Google Scholar 

  30. Kato, M., Ospelt, C., Gay, R. E., Gay, S. & Klein, K. Dual role of autophagy in stress-induced cell death in rheumatoid arthritis synovial fibroblasts. Arthritis Rheumatol. 66, 40–48 (2014).

    Article  CAS  PubMed  Google Scholar 

  31. Shin, Y. J. et al. Autophagy induction and CHOP under-expression promotes survival of fibroblasts from rheumatoid arthritis patients under endoplasmic reticulum stress. Arthritis Res. Ther. 12, R19 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Steenvoorden, M. M. et al. Transition of healthy to diseased synovial tissue in rheumatoid arthritis is associated with gain of mesenchymal/fibrotic characteristics. Arthritis Res. Ther. 8, R165 (2006).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Marinova-Mutafchieva, L., Williams, R. O., Funa, K., Maini, R. N. & Zvaifler, N. J. Inflammation is preceded by tumor necrosis factor-dependent infiltration of mesenchymal cells in experimental arthritis. Arthritis Rheum. 46, 507–513 (2002).

    Article  CAS  PubMed  Google Scholar 

  34. Corr, M. & Zvaifler, N. J. Mesenchymal precursor cells. Ann. Rheum. Dis. 61, 3–5 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Lefevre, S. et al. Synovial fibroblasts spread rheumatoid arthritis to unaffected joints. Nat. Med. 15, 1414–1420 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Tolboom, T. C. et al. Invasive properties of fibroblast-like synoviocytes: correlation with growth characteristics and expression of MMP-1, MMP-3, and MMP-10. Ann. Rheum. Dis. 61, 975–980 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Miller, M. C. et al. Membrane type 1 matrix metalloproteinase is a crucial promoter of synovial invasion in human rheumatoid arthritis. Arthritis Rheum. 60, 686–697 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Smolen, J. S. et al. Rheumatoid arthritis. Nat. Rev. Dis. Primers 4, 18001 (2018).

    Article  PubMed  Google Scholar 

  39. Izquierdo, E. et al. Synovial fibroblast hyperplasia in rheumatoid arthritis: clinicopathologic correlations and partial reversal by anti-tumor necrosis factor therapy. Arthritis Rheum. 63, 2575–2583 (2011).

    Article  CAS  PubMed  Google Scholar 

  40. Redlich, K. & Smolen, J. S. Inflammatory bone loss: pathogenesis and therapeutic intervention. Nat. Rev. Drug Discov. 11, 234–250 (2012).

    Article  CAS  PubMed  Google Scholar 

  41. Armaka, M., Ospelt, C., Pasparakis, M. & Kollias, G. The p55TNFR-IKK2-Ripk3 axis orchestrates arthritis by regulating death and inflammatory pathways in synovial fibroblasts. Nat. Commun. 9, 618 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Armaka, M. et al. Mesenchymal cell targeting by TNF as a common pathogenic principle in chronic inflammatory joint and intestinal diseases. J. Exp. Med. 205, 331–337 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Ahn, J. K. et al. GC/TOF-MS-based metabolomic profiling in cultured fibroblast-like synoviocytes from rheumatoid arthritis. Joint Bone Spine 83, 707–713 (2016).

    Article  CAS  PubMed  Google Scholar 

  44. Epstein, T., Gatenby, R. A. & Brown, J. S. The Warburg effect as an adaptation of cancer cells to rapid fluctuations in energy demand. PLoS One 12, e0185085 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Hua, S. & Dias, T. H. Hypoxia-inducible factor (HIF) as a target for novel therapies in rheumatoid arthritis. Front. Pharmacol. 7, 184 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Bustamante, M. F. et al. Hexokinase 2 as a novel selective metabolic target for rheumatoid arthritis. Ann. Rheum. Dis. 77, 1636–1643 (2018).

    Article  CAS  PubMed  Google Scholar 

  47. Garcia-Carbonell, R. et al. Critical role of glucose metabolism in rheumatoid arthritis fibroblast-like synoviocytes. Arthritis Rheumatol. 68, 1614–1626 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. de Oliveira, P. G., Farinon, M., Sanchez-Lopez, E., Miyamoto, S. & Guma, M. Fibroblast-like synoviocytes glucose metabolism as a therapeutic target in rheumatoid arthritis. Front. Immunol. 10, 1743 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Bustamante, M. F., Garcia-Carbonell, R., Whisenant, K. D. & Guma, M. Fibroblast-like synoviocyte metabolism in the pathogenesis of rheumatoid arthritis. Arthritis Res. Ther. 19, 110 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Fox, D. A., Gizinski, A., Morgan, R. & Lundy, S. K. Cell-cell interactions in rheumatoid arthritis synovium. Rheum. Dis. Clin. North Am. 36, 311–323 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  51. Szekanecz, Z., Besenyei, T., Paragh, G. & Koch, A. E. New insights in synovial angiogenesis. Joint Bone Spine 77, 13–19 (2010).

    Article  CAS  PubMed  Google Scholar 

  52. Buckley, C. D. Why does chronic inflammation persist: an unexpected role for fibroblasts. Immunol. Lett. 138, 12–14 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Buckley, C. D. et al. Fibroblasts regulate the switch from acute resolving to chronic persistent inflammation. Trends Immunol. 22, 199–204 (2001).

    Article  CAS  PubMed  Google Scholar 

  54. Filer, A. et al. Differential survival of leukocyte subsets mediated by synovial, bone marrow, and skin fibroblasts: site-specific versus activation-dependent survival of T cells and neutrophils. Arthritis Rheum. 54, 2096–2108 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Reparon-Schuijt, C. C. et al. Regulation of synovial B cell survival in rheumatoid arthritis by vascular cell adhesion molecule 1 (CD106) expressed on fibroblast-like synoviocytes. Arthritis Rheum. 43, 1115–1121 (2000).

    Article  CAS  PubMed  Google Scholar 

  56. Burger, J. A., Zvaifler, N. J., Tsukada, N., Firestein, G. S. & Kipps, T. J. Fibroblast-like synoviocytes support B-cell pseudoemperipolesis via a stromal cell-derived factor-1- and CD106 (VCAM-1)-dependent mechanism. J. Clin. Invest. 107, 305–315 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Bombardieri, M. et al. A BAFF/APRIL-dependent TLR3-stimulated pathway enhances the capacity of rheumatoid synovial fibroblasts to induce AID expression and Ig class-switching in B cells. Ann. Rheum. Dis. 70, 1857–1865 (2011).

    Article  CAS  PubMed  Google Scholar 

  58. de Brito Rocha, S., Baldo, D. C. & Andrade, L. E. C. Clinical and pathophysiologic relevance of autoantibodies in rheumatoid arthritis. Adv. Rheumatol. 59, 2 (2019).

    Article  PubMed  Google Scholar 

  59. van Venrooij, W. J., van Beers, J. J. & Pruijn, G. J. Anti-CCP antibody, a marker for the early detection of rheumatoid arthritis. Ann. N. Y. Acad. Sci. 1143, 268–285 (2008).

    Article  PubMed  CAS  Google Scholar 

  60. Take, Y. et al. Specifically modified osteopontin in rheumatoid arthritis fibroblast-like synoviocytes supports interaction with B cells and enhances production of interleukin-6. Arthritis Rheum. 60, 3591–3601 (2009).

    Article  CAS  PubMed  Google Scholar 

  61. Carmona-Rivera, C. et al. Synovial fibroblast-neutrophil interactions promote pathogenic adaptive immunity in rheumatoid arthritis. Sci. Immunol. 2, eaag3358 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  62. Tran, C. N. et al. Presentation of arthritogenic peptide to antigen-specific T cells by fibroblast-like synoviocytes. Arthritis Rheum. 56, 1497–1506 (2007).

    Article  CAS  PubMed  Google Scholar 

  63. Yamamura, Y. et al. Effector function of resting T cells: activation of synovial fibroblasts. J. Immunol. 166, 2270–2275 (2001).

    Article  CAS  PubMed  Google Scholar 

  64. Chabaud, M. et al. Human interleukin-17: a T cell-derived proinflammatory cytokine produced by the rheumatoid synovium. Arthritis Rheum. 42, 963–970 (1999).

    Article  CAS  PubMed  Google Scholar 

  65. Tran, C. N. et al. Molecular interactions between T cells and fibroblast-like synoviocytes: role of membrane tumor necrosis factor-α on cytokine-activated T cells. Am. J. Pathol. 171, 1588–1598 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Naylor, A. J., Filer, A. & Buckley, C. D. The role of stromal cells in the persistence of chronic inflammation. Clin. Exp. Immunol. 171, 30–35 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Lee, A. et al. Tumor necrosis factor α induces sustained signaling and a prolonged and unremitting inflammatory response in rheumatoid arthritis synovial fibroblasts. Arthritis Rheum. 65, 928–938 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Migita, K. et al. TNF-α-induced miR-155 regulates IL-6 signaling in rheumatoid synovial fibroblasts. BMC Res. Notes 10, 403 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  69. Jiao, Z. et al. Notch signaling mediates TNF-α-induced IL-6 production in cultured fibroblast-like synoviocytes from rheumatoid arthritis. Clin. Dev. Immunol. 2012, 350209 (2012).

    Article  PubMed  CAS  Google Scholar 

  70. Perlman, H. et al. IL-6 and matrix metalloproteinase-1 are regulated by the cyclin-dependent kinase inhibitor p21 in synovial fibroblasts. J. Immunol. 170, 838–845 (2003).

    Article  CAS  PubMed  Google Scholar 

  71. Loupasakis, K. et al. Tumor Necrosis Factor dynamically regulates the mRNA stabilome in rheumatoid arthritis fibroblast-like synoviocytes. PLoS One 12, e0179762 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  72. Donlin, L. T., Jayatilleke, A., Giannopoulou, E. G., Kalliolias, G. D. & Ivashkiv, L. B. Modulation of TNF-induced macrophage polarization by synovial fibroblasts. J. Immunol. 193, 2373–2383 (2014).

    Article  CAS  PubMed  Google Scholar 

  73. Kuo, D. et al. HBEGF+ macrophages in rheumatoid arthritis induce fibroblast invasiveness. Sci. Transl. Med. 11, eaau8587 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Jones, D. H., Kong, Y. Y. & Penninger, J. M. Role of RANKL and RANK in bone loss and arthritis. Ann. Rheum. Dis. 61 (Suppl. 2), ii32–ii39 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Diarra, D. et al. Dickkopf-1 is a master regulator of joint remodeling. Nat. Med. 13, 156–163 (2007).

    Article  CAS  PubMed  Google Scholar 

  76. Klein, D. The tumor vascular endothelium as decision maker in cancer therapy. Front. Oncol. 2, eaag3358 (2018).

    Google Scholar 

  77. Filer, A. et al. Identification of a transitional fibroblast function in very early rheumatoid arthritis. Ann. Rheum. Dis. 76, 2105–2112 (2017).

    Article  CAS  PubMed  Google Scholar 

  78. Lewis, M. J. et al. Molecular portraits of early rheumatoid arthritis identify clinical and treatment response phenotypes. Cell Rep. 28, 2455–2470.e5 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Humby, F. et al. Synovial cellular and molecular signatures stratify clinical response to csDMARD therapy and predict radiographic progression in early rheumatoid arthritis patients. Ann. Rheum. Dis. 78, 761–772 (2019).

    Article  CAS  PubMed  Google Scholar 

  80. Ekwall, A. K. et al. The tumour-associated glycoprotein podoplanin is expressed in fibroblast-like synoviocytes of the hyperplastic synovial lining layer in rheumatoid arthritis. Arthritis Res. Ther. 13, R40 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Kiener, H. P. et al. Synovial fibroblasts self-direct multicellular lining architecture and synthetic function in three-dimensional organ culture. Arthritis Rheum. 62, 742–752 (2010).

    Article  CAS  PubMed  Google Scholar 

  82. Lee, D. M. et al. Cadherin-11 in synovial lining formation and pathology in arthritis. Science 315, 1006–1010 (2007).

    Article  CAS  PubMed  Google Scholar 

  83. Chang, S. K., Gu, Z. & Brenner, M. B. Fibroblast-like synoviocytes in inflammatory arthritis pathology: the emerging role of cadherin-11. Immunol. Rev. 233, 256–266 (2010).

    Article  CAS  PubMed  Google Scholar 

  84. Noss, E. H. et al. Evidence for cadherin-11 cleavage in the synovium and partial characterization of its mechanism. Arthritis Res. Ther. 17, 126 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  85. Vandooren, B. et al. Tumor necrosis factor α drives cadherin 11 expression in rheumatoid inflammation. Arthritis Rheum. 58, 3051–3062 (2008).

    Article  CAS  PubMed  Google Scholar 

  86. Wicki, A. et al. Tumor invasion in the absence of epithelial-mesenchymal transition: podoplanin-mediated remodeling of the actin cytoskeleton. Cancer Cell 9, 261–272 (2006).

    Article  CAS  PubMed  Google Scholar 

  87. Martín-Villar, E. et al. Characterization of human PA2.26 antigen (T1α-2, podoplanin), a small membrane mucin induced in oral squamous cell carcinomas. Int. J. Cancer 113, 899–910 (2005).

    Article  PubMed  CAS  Google Scholar 

  88. Donlin, L. T. et al. Methods for high-dimensonal analysis of cells dissociated from cyropreserved synovial tissue. Arthritis Res. Ther. 20, 139 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  89. Mizoguchi, F. et al. Functionally distinct disease-associated fibroblast subsets in rheumatoid arthritis. Nat. Commun. 9, 789 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  90. Stephenson, W. et al. Single-cell RNA-seq of rheumatoid arthritis synovial tissue using low-cost microfluidic instrumentation. Nat. Commun. 9, 791 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  91. Zhang, F. et al. Defining inflammatory cell states in rheumatoid arthritis joint synovial tissues by integrating single-cell transcriptomics and mass cytometry. Nat. Immunol. 20, 928–942 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  92. Croft, A. P. et al. Rheumatoid synovial fibroblasts differentiate into distinct subsets in the presence of cytokines and cartilage. Arthritis Res. Ther. 18, 270 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  93. Croft, A. P. et al. Distinct fibroblast subsets drive inflammation and damage in arthritis. Nature 570, 246–251 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Tak, P. P., Zvaifler, N. J., Green, D. R. & Firestein, G. S. Rheumatoid arthritis and p53: how oxidative stress might alter the course of inflammatory diseases. Immunol. Today 21, 78–82 (2000).

    Article  CAS  PubMed  Google Scholar 

  95. Lane, D. P. Cancer. p53, guardian of the genome. Nature 358, 15–16 (1992).

    Article  CAS  PubMed  Google Scholar 

  96. Firestein, G. S. et al. Apoptosis in rheumatoid arthritis: p53 overexpression in rheumatoid arthritis synovium. Am. J. Pathol. 149, 2143–2151 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Yamanishi, Y. et al. p53 tumor suppressor gene mutations in fibroblast-like synoviocytes from erosion synovium and non-erosion synovium in rheumatoid arthritis. Arthritis Res. Ther. 7, R12–R18 (2005).

    Article  CAS  PubMed  Google Scholar 

  98. Horn, H. F. & Vousden, K. H. Coping with stress: multiple ways to activate p53. Oncogene 26, 1306–1316 (2007).

    Article  CAS  PubMed  Google Scholar 

  99. Theoret, M. R. et al. Relationship of p53 overexpression on cancers and recognition by anti-p53 T cell receptor-transduced T cells. Hum. Gene Ther. 19, 1219–1232 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Han, Z., Boyle, D. L., Shi, Y., Green, D. R. & Firestein, G. S. Dominant-negative p53 mutations in rheumatoid arthritis. Arthritis Rheum. 42, 1088–1092 (1999).

    Article  CAS  PubMed  Google Scholar 

  101. Pap, T., Aupperle, K. R., Gay, S., Firestein, G. S. & Gay, R. E. Invasiveness of synovial fibroblasts is regulated by p53 in the SCID mouse in vivo model of cartilage invasion. Arthritis Rheum. 44, 676–681 (2001).

    Article  CAS  PubMed  Google Scholar 

  102. Weisbart, R. H. et al. BRAF drives synovial fibroblast transformation in rheumatoid arthritis. J. Biol. Chem. 285, 34299–34303 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Bang, H. et al. Mutation and citrullination modifies vimentin to a novel autoantigen for rheumatoid arthritis. Arthritis Rheum. 56, 2503–2511 (2007).

    Article  CAS  PubMed  Google Scholar 

  104. Da Sylva, T. R., Connor, A., Mburu, Y., Keystone, E. & Wu, G. E. Somatic mutations in the mitochondria of rheumatoid arthritis synoviocytes. Arthritis Res. Ther. 7, R844–R851 (2005).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  105. Maximo, V., Soares, P., Lima, J., Cameselle-Teijeiro, J. & Sobrinho-Simoes, M. Mitochondrial DNA somatic mutations (point mutations and large deletions) and mitochondrial DNA variants in human thyroid pathology: a study with emphasis on Hurthle cell tumors. Am. J. Pathol. 160, 1857–1865 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Okada, Y. et al. Genetics of rheumatoid arthritis contributes to biology and drug discovery. Nature 506, 376–381 (2014).

    Article  CAS  PubMed  Google Scholar 

  107. Viatte, S., Plant, D. & Raychaudhuri, S. Genetics and epigenetics of rheumatoid arthritis. Nat. Rev. Rheumatol. 9, 141–153 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Kim, K., Bang, S. Y., Lee, H. S. & Bae, S. C. Update on the genetic architecture of rheumatoid arthritis. Nat. Rev. Rheumatol. 13, 13–24 (2017).

    Article  CAS  PubMed  Google Scholar 

  109. Maeshima, K. et al. Abnormal PTPN11 enhancer methylation promotes rheumatoid arthritis fibroblast-like synoviocyte aggressiveness and joint inflammation. JCI Insight https://doi.org/10.1172/jci.insight.86580 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  110. Matsuda, S. et al. Regulation of the cell cycle and inflammatory arthritis by the transcription cofactor. J. Immunol. 199, 2316–2322 (2017).

    Article  CAS  PubMed  Google Scholar 

  111. Aho, K., Koskenvuo, M., Tuominen, J. & Kaprio, J. Occurrence of rheumatoid arthritis in a nationwide series of twins. J. Rheumatol. 13, 899–902 (1986).

    CAS  PubMed  Google Scholar 

  112. MacGregor, A. J. et al. Characterizing the quantitative genetic contribution to rheumatoid arthritis using data from twins. Arthritis Rheum. 43, 30–37 (2000).

    Article  CAS  PubMed  Google Scholar 

  113. Svendsen, A. J. et al. On the origin of rheumatoid arthritis: the impact of environment and genes-a population based twin study. PLoS One 8, e57304 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Doody, K. M., Bottini, N. & Firestein, G. S. Epigenetic alterations in rheumatoid arthritis fibroblast-like synoviocytes. Epigenomics 9, 479–492 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Jablonka, E. & Raz, G. Transgenerational epigenetic inheritance: prevalence, mechanisms, and implications for the study of heredity and evolution. Q. Rev. Biol. 84, 131–176 (2009).

    Article  PubMed  Google Scholar 

  116. Allis, C. D. & Jenuwein, T. The molecular hallmarks of epigenetic control. Nat. Rev. Genet. 17, 487–500 (2016).

    Article  CAS  PubMed  Google Scholar 

  117. Karouzakis, E., Gay, R. E., Gay, S. & Neidhart, M. Epigenetic deregulation in rheumatoid arthritis. Adv. Exp. Med. Biol. 711, 137–149 (2011).

    Article  CAS  PubMed  Google Scholar 

  118. Schubeler, D. Function and information content of DNA methylation. Nature 517, 321–326 (2015).

    Article  CAS  PubMed  Google Scholar 

  119. Robertson, K. D. DNA methylation and human disease. Nat. Rev. Genet. 6, 597–610 (2005).

    Article  CAS  PubMed  Google Scholar 

  120. Jin, B., Li, Y. & Robertson, K. D. DNA methylation: superior or subordinate in the epigenetic hierarchy? Genes Cancer 2, 607–617 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Kulis, M. & Esteller, M. DNA methylation and cancer. Adv. Genet. 70, 27–56 (2010).

    Article  PubMed  Google Scholar 

  122. Karouzakis, E., Gay, R. E., Michel, B. A., Gay, S. & Neidhart, M. DNA hypomethylation in rheumatoid arthritis synovial fibroblasts. Arthritis Rheum. 60, 3613–3622 (2009).

    Article  CAS  PubMed  Google Scholar 

  123. Takami, N. et al. Hypermethylated promoter region of DR3, the death receptor 3 gene, in rheumatoid arthritis synovial cells. Arthritis Rheum. 54, 779–787 (2006).

    Article  CAS  PubMed  Google Scholar 

  124. Nakano, K., Whitaker, J. W., Boyle, D. L., Wang, W. & Firestein, G. S. DNA methylome signature in rheumatoid arthritis. Ann. Rheum. Dis. 72, 110–117 (2013).

    Article  CAS  PubMed  Google Scholar 

  125. Nakano, K., Boyle, D. L. & Firestein, G. S. Regulation of DNA methylation in rheumatoid arthritis synoviocytes. J. Immunol. 190, 1297–1303 (2013).

    Article  CAS  PubMed  Google Scholar 

  126. Whitaker, J. W. et al. An imprinted rheumatoid arthritis methylome signature reflects pathogenic phenotype. Genome Med. 5, 40 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. de la Rica, L. et al. Identification of novel markers in rheumatoid arthritis through integrated analysis of DNA methylation and microRNA expression. J. Autoimmun. 41, 6–16 (2013).

    Article  PubMed  CAS  Google Scholar 

  128. Rhead, B. et al. Rheumatoid arthritis naive T cells share hypermethylation sites with synoviocytes. Arthritis Rheumatol. 69, 550–559 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Ai, R. et al. Comprehensive epigenetic landscape of rheumatoid arthritis fibroblast-like synoviocytes. Nat. Commun. 9, 1921 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  130. Karouzakis, E. et al. Analysis of early changes in DNA methylation in synovial fibroblasts of RA patients before diagnosis. Sci. Rep. 8, 7370 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  131. Firestein, G. S. Pathogenesis of rheumatoid arthritis: the intersection of genetics and epigenetics. Trans. Am. Clin. Climatol. Assoc. 129, 171–182 (2018).

    PubMed  PubMed Central  Google Scholar 

  132. Hammond, S. M. An overview of microRNAs. Adv. Drug Deliv. Rev. 87, 3–14 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Farh, K. K. et al. Genetic and epigenetic fine mapping of causal autoimmune disease variants. Nature 518, 337–343 (2015).

    Article  CAS  PubMed  Google Scholar 

  134. Klein, K. & Gay, S. Epigenetics in rheumatoid arthritis. Curr. Opin. Rheumatol. 27, 76–82 (2015).

    Article  CAS  PubMed  Google Scholar 

  135. Niederer, F. et al. Down-regulation of microRNA-34a* in rheumatoid arthritis synovial fibroblasts promotes apoptosis resistance. Arthritis Rheum. 64, 1771–1779 (2012).

    Article  CAS  PubMed  Google Scholar 

  136. Stanczyk, J. et al. Altered expression of microRNA-203 in rheumatoid arthritis synovial fibroblasts and its role in fibroblast activation. Arthritis Rheum. 63, 373–381 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  137. Stanczyk, J. et al. Altered expression of microRNA in synovial fibroblasts and synovial tissue in rheumatoid arthritis. Arthritis Rheum. 58, 1001–1009 (2008).

    Article  PubMed  Google Scholar 

  138. Kurowska-Stolarska, M. et al. MicroRNA-155 as a proinflammatory regulator in clinical and experimental arthritis. Proc. Natl Acad. Sci. USA 108, 11193–11198 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Bluml, S. et al. Essential role of microRNA-155 in the pathogenesis of autoimmune arthritis in mice. Arthritis Rheum. 63, 1281–1288 (2011).

    Article  PubMed  CAS  Google Scholar 

  140. Nakamachi, Y. et al. MicroRNA-124a is a key regulator of proliferation and monocyte chemoattractant protein 1 secretion in fibroblast-like synoviocytes from patients with rheumatoid arthritis. Arthritis Rheum. 60, 1294–1304 (2009).

    Article  PubMed  Google Scholar 

  141. Pandis, I. et al. Identification of microRNA-221/222 and microRNA-323-3p association with rheumatoid arthritis via predictions using the human tumour necrosis factor transgenic mouse model. Ann. Rheum. Dis. 71, 1716–1723 (2012).

    Article  CAS  PubMed  Google Scholar 

  142. Araki, Y. et al. Histone methylation and STAT-3 differentially regulate interleukin-6-induced matrix metalloproteinase gene activation in rheumatoid arthritis synovial fibroblasts. Arthritis Rheumatol. 68, 1111–1123 (2016).

    CAS  PubMed  Google Scholar 

  143. Dong, X. & Weng, Z. The correlation between histone modifications and gene expression. Epigenomics 5, 113–116 (2013).

    Article  CAS  PubMed  Google Scholar 

  144. Nicodeme, E. et al. Suppression of inflammation by a synthetic histone mimic. Nature 468, 1119–1123 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Angiolilli, C., Baeten, D. L., Radstake, T. R. & Reedquist, K. A. The acetyl code in rheumatoid arthritis and other rheumatic diseases. Epigenomics 9, 447–461 (2017).

    Article  CAS  PubMed  Google Scholar 

  146. Horiuchi, M. et al. Expression and function of histone deacetylases in rheumatoid arthritis synovial fibroblasts. J. Rheumatol. 36, 1580–1589 (2009).

    Article  CAS  PubMed  Google Scholar 

  147. Niederer, F. et al. SIRT1 overexpression in the rheumatoid arthritis synovium contributes to proinflammatory cytokine production and apoptosis resistance. Ann. Rheum. Dis. 70, 1866–1873 (2011).

    Article  CAS  PubMed  Google Scholar 

  148. Woo, S. J. et al. Myeloid deletion of SIRT1 suppresses collagen-induced arthritis in mice by modulating dendritic cell maturation. Exp. Mol. Med. 48, e221 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Sohn, C. et al. Prolonged tumor necrosis factor α primes fibroblast-like synoviocytes in a gene-specific manner by altering chromatin. Arthritis Rheumatol. 67, 86–95 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Kawabata, T. et al. Increased activity and expression of histone deacetylase 1 in relation to tumor necrosis factor-α in synovial tissue of rheumatoid arthritis. Arthritis Res. Ther. 12, R133 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  151. Angiolilli, C. et al. Inflammatory cytokines epigenetically regulate rheumatoid arthritis fibroblast-like synoviocyte activation by suppressing HDAC5 expression. Ann. Rheum. Dis. 75, 430–438 (2016).

    Article  CAS  PubMed  Google Scholar 

  152. Whitaker, J. W. et al. Integrative omics analysis of rheumatoid arthritis identifies non-obvious therapeutic targets. PLoS One 10, e0124254 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  153. Hammaker, D. et al. LBH gene transcription regulation by the interplay of an enhancer risk allele and DNA methylation in rheumatoid arthritis. Arthritis Rheumatol. 68, 2637–2645 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Ekwall, A. K. et al. The rheumatoid arthritis risk gene LBH regulates growth in fibroblast-like synoviocytes. Arthritis Rheumatol. 67, 1193–1202 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Matsuda, S. et al. Regulation of the cell cycle and inflammatory arthritis by the transcription cofactor LBH gene. J. Immunol. 199, 2316–2322 (2017).

    Article  CAS  PubMed  Google Scholar 

  156. Stanford, S. M. et al. Protein tyrosine phosphatase expression profile of rheumatoid arthritis fibroblast-like synoviocytes: a novel role of SH2 domain-containing phosphatase 2 as a modulator of invasion and survival. Arthritis Rheum. 65, 1171–1180 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Tolboom, T. C. et al. Invasiveness of fibroblast-like synoviocytes is an individual patient characteristic associated with the rate of joint destruction in patients with rheumatoid arthritis. Arthritis Rheum. 52, 1999–2002 (2005).

    Article  PubMed  Google Scholar 

  158. Laragione, T., Brenner, M., Mello, A., Symons, M. & Gulko, P. S. The arthritis severity locus Cia5d is a novel genetic regulator of the invasive properties of synovial fibroblasts. Arthritis Rheum. 58, 2296–2306 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Laragione, T. et al. Huntingtin-interacting protein 1 (HIP1) regulates arthritis severity and synovial fibroblast invasiveness by altering PDGFR and Rac1 signalling. Ann. Rheum. Dis. 11, 1627–1635 (2018).

    Article  CAS  Google Scholar 

  160. Kraan, M. C. et al. Comparison of synovial tissues from the knee joints and the small joints of rheumatoid arthritis patients: implications for pathogenesis and evaluation of treatment. Arthritis Rheum. 46, 2034–2038 (2002).

    Article  PubMed  Google Scholar 

  161. Ai, R. et al. Joint-specific DNA methylation and transcriptome signatures in rheumatoid arthritis identify distinct pathogenic processes. Nat. Commun. 7, 11849 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Frank-Bertoncelj, M. et al. Epigenetically-driven anatomical diversity of synovial fibroblasts guides joint-specific fibroblast functions. Nat. Commun. 8, 14852 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Wang, P. et al. Cyclic mechanical stretch downregulates IL-1β-induced COX-2 expression and PGE(2) production in rheumatoid arthritis fibroblast-like synoviocytes. Connect. Tissue Res. 52, 190–197 (2011).

    Article  CAS  PubMed  Google Scholar 

  164. Hammaker, D. et al. Joint location-specific JAK-STAT signaling in rheumatoid arthritis fibroblast-like synoviocytes. ACR Open Rheumatol. 1, 640–648 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  165. Krumlauf, R. Hox genes in vertebrate development. Cell 78, 191–201 (1994).

    Article  CAS  PubMed  Google Scholar 

  166. Zakany, J. & Duboule, D. The role of Hox genes during vertebrate limb development. Curr. Opin. Genet. Dev. 17, 359–366 (2007).

    Article  CAS  PubMed  Google Scholar 

  167. Wang, K. C. et al. A long noncoding RNA maintains active chromatin to coordinate homeotic gene expression. Nature 472, 120–124 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Hanahan, D. & Weinberg, R. A. The hallmarks of cancer. Cell 100, 57–70 (2000).

    Article  CAS  PubMed  Google Scholar 

  169. Hanahan, D. & Weinberg, R. A. Hallmarks of cancer: the next generation. Cell 144, 646–674 (2011).

    Article  CAS  PubMed  Google Scholar 

  170. Neumann, E., Lefevre, S., Zimmermann, B., Gay, S. & Muller-Ladner, U. Rheumatoid arthritis progression mediated by activated synovial fibroblasts. Trends Mol. Med. 16, 458–468 (2010).

    Article  CAS  PubMed  Google Scholar 

  171. Sanchez-Lopez, E., Cheng, A. & Guma, M. Can metabolic pathways be therapeutic targets in rheumatoid arthritis? J. Clin. Med. 8, E753 (2019).

    Article  PubMed  CAS  Google Scholar 

  172. McGarry, T. et al. JAK/STAT blockade alters synovial bioenergetics, mitochondrial function, and proinflammatory mediators in rheumatoid arthritis. Arthritis Rheumatol. 70, 1959–1970 (2018).

    Article  CAS  PubMed  Google Scholar 

  173. Finch, R. et al. OP0224 results of a phase 2 study of RG6125, an anti-cadherin-11 monoclonal antibody, in rheumatoid arthritis patients with an inadequate response to anti-TNFα therapy. Ann. Rheum. Dis. 78, 189 (2019).

    Google Scholar 

  174. Doody, K. M. et al. Targeting phosphatase-dependent proteoglycan switch for rheumatoid arthritis therapy. Sci. Transl. Med. 7, 288ra276 (2015).

    Article  CAS  Google Scholar 

  175. Stanford, S. M. et al. TGFβ responsive tyrosine phosphatase promotes rheumatoid synovial fibroblast invasiveness. Ann. Rheum. Dis. 75, 295–302 (2016).

    Article  CAS  PubMed  Google Scholar 

  176. Stanford, S. M. et al. Receptor protein tyrosine phosphatase α-mediated enhancement of rheumatoid synovial fibroblast signaling and promotion of arthritis in mice. Arthritis Rheumatol. 68, 359–369 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Stanford, S. M. & Bottini, N. Targeting tyrosine phosphatases: time to end the stigma. Trends Pharmacol. Sci. 38, 524–540 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Kim, C. et al. The kinase p38α serves cell type-specific inflammatory functions in skin injury and coordinates pro- and anti-inflammatory gene expression. Nat. Immunol. 9, 1019–1027 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Ananieva, O. et al. The kinases MSK1 and MSK2 act as negative regulators of Toll-like receptor signaling. Nat. Immunol. 9, 1028–1036 (2008).

    Article  CAS  PubMed  Google Scholar 

  180. Guma, M. et al. Antiinflammatory functions of p38 in mouse models of rheumatoid arthritis: advantages of targeting upstream kinases MKK-3 or MKK-6. Arthritis Rheum. 64, 2887–2895 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Yoshizawa T. et al. Role of MAPK kinase 6 in arthritis: distinct mechanism of action in inflammation and cytokine expression. J. Immunol. 183 1360–1367 (2009).

    Article  CAS  PubMed  Google Scholar 

  182. Nygaard, G. et al. Regulation and function of apoptosis signal-regulating kinase 1 in rheumatoid arthritis. Biochem. Pharmacol. 151, 282–290 (2018).

    Article  CAS  PubMed  Google Scholar 

  183. Mnich, S. J. et al. Critical role for apoptosis signal-regulating kinase 1 in the development of inflammatory K/BxN serum-induced arthritis. Int. Immunopharmacol. 10, 1170–1176 (2010).

    Article  CAS  PubMed  Google Scholar 

  184. Cha, H. S., Rosengren, S., Boyle, D. L. & Firestein, G. S. PUMA regulation and proapoptotic effects in fibroblast-like synoviocytes. Arthritis Rheum. 54, 587–592 (2006).

    Article  CAS  PubMed  Google Scholar 

  185. Hong, S. S. et al. PUMA gene delivery to synoviocytes reduces inflammation and degeneration of arthritic joints. Nat. Commun. 8, 146 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  186. Evans, C. H. et al. Gene transfer to human joints: progress toward a gene therapy of arthritis. Proc. Natl Acad. Sci. USA 102, 8698–8703 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Zhu, S. et al. The microRNA miR-23b suppresses IL-17-associated autoimmune inflammation by targeting TAB2, TAB3 and IKK-α. Nat. Med. 18, 1077–1086 (2012).

    Article  CAS  PubMed  Google Scholar 

  188. Hammaker, D. & Firestein, G. S. Epigenetics of inflammatory arthritis. Curr. Opin. Rheumatol. 30, 188–196 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Chung, Y. L., Lee, M. Y., Wang, A. J. & Yao, L. F. A therapeutic strategy uses histone deacetylase inhibitors to modulate the expression of genes involved in the pathogenesis of rheumatoid arthritis. Mol. Ther. 8, 707–717 (2003).

    Article  CAS  PubMed  Google Scholar 

  190. Joosten, L. A., Leoni, F., Meghji, S. & Mascagni, P. Inhibition of HDAC activity by ITF2357 ameliorates joint inflammation and prevents cartilage and bone destruction in experimental arthritis. Mol. Med. 17, 391–396 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Nishida, K. et al. Histone deacetylase inhibitor suppression of autoantibody-mediated arthritis in mice via regulation of p16INK4a and p21WAF1/Cip1 expression. Arthritis Rheum. 50, 3365–3376 (2004).

    Article  CAS  PubMed  Google Scholar 

  192. Li, M. et al. Therapeutic effects of NK-HDAC-1, a novel histone deacetylase inhibitor, on collagen-induced arthritis through the induction of apoptosis of fibroblast-like synoviocytes. Inflammation 36, 888–896 (2013).

    Article  CAS  PubMed  Google Scholar 

  193. Lee, J. et al. A novel histone deacetylase 6-selective inhibitor suppresses synovial inflammation and joint destruction in a collagen antibody-induced arthritis mouse model. Int. J. Rheum. Dis. 18, 514–523 (2015).

    Article  CAS  PubMed  Google Scholar 

  194. Vojinovic, J. et al. Safety and efficacy of an oral histone deacetylase inhibitor in systemic-onset juvenile idiopathic arthritis. Arthritis Rheum. 63, 1452–1458 (2011).

    Article  CAS  PubMed  Google Scholar 

  195. Angiolilli, C. et al. Control of cytokine mRNA degradation by the histone deacetylase inhibitor ITF2357 in rheumatoid arthritis fibroblast-like synoviocytes: beyond transcriptional regulation. Arthritis Res. Ther. 20, 148 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  196. Grabiec, A. M., Korchynskyi, O., Tak, P. P. & Reedquist, K. A. Histone deacetylase inhibitors suppress rheumatoid arthritis fibroblast-like synoviocyte and macrophage IL-6 production by accelerating mRNA decay. Ann. Rheum. Dis. 71, 424–431 (2012).

    Article  CAS  PubMed  Google Scholar 

  197. Loh, C. et al. TNF-induced inflammatory genes escape repression in fibroblast-like synoviocytes: transcriptomic and epigenomic analysis. Ann. Rheum. Dis. 78, 1205–1214 (2019).

    Article  CAS  PubMed  Google Scholar 

  198. Klein, K. et al. The bromodomain protein inhibitor I-BET151 suppresses expression of inflammatory genes and matrix degrading enzymes in rheumatoid arthritis synovial fibroblasts. Ann. Rheum. Dis. 75, 422–429 (2016).

    Article  CAS  PubMed  Google Scholar 

  199. Xiao, Y. et al. Bromodomain and extra-terminal domain bromodomain inhibition prevents synovial inflammation via blocking IκB kinase-dependent NF-κB activation in rheumatoid fibroblast-like synoviocytes. Rheumatology 55, 173–184 (2016).

    Article  CAS  PubMed  Google Scholar 

  200. Mele, D. A. et al. BET bromodomain inhibition suppresses TH17-mediated pathology. J. Exp. Med. 210, 2181–2190 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Tough, D. F., Tak, P. P., Tarakhovsky, A. & Prinjha, R. K. Epigenetic drug discovery: breaking through the immune barrier. Nat. Rev. Drug Discov. 15, 835–853 (2016).

    Article  CAS  PubMed  Google Scholar 

  202. Subramaniam, D., Thombre, R., Dhar, A. & Anant, S. DNA methyltransferases: a novel target for prevention and therapy. Front. Oncol. 4, 80 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  203. Najm, A. et al. Standardisation of synovial biopsy analyses in rheumatic diseases: a consensus of the EULAR Synovitis and OMERACT Synovial Tissue Biopsy Groups. Arthritis Res. Ther. 20, 265 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  204. Menche, J. et al. Integrating personalized gene expression profiles into predictive disease-associated gene pools. NPJ Syst. Biol. Appl. 3, 10 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  205. Kim, Y. B. et al. Increasing the genome-targeting scope and precision of base editing with engineered Cas9-cytidine deaminase fusions. Nat. Biotechnol. 35, 371–376 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Gaudelli, N. M. et al. Programmable base editing of A*T to G*C in genomic DNA without DNA cleavage. Nature 551, 464–471 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  207. Komor, A. C., Kim, Y. B., Packer, M. S., Zuris, J. A. & Liu, D. R. Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage. Nature 533, 420–424 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  208. Villiger, L. et al. Treatment of metabolic liver disease by in vivo genome base editing in adult mice. Nat. Med. 24, 1519–1525 (2018).

    Article  CAS  PubMed  Google Scholar 

  209. HuBMAP Consortium. The human body at cellular resolution: the NIH human biomolecular atlas program. Nature 574, 187–192 (2019).

Download references

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to Gary S. Firestein.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Rheumatology thanks G. Kalliolias, K. Reedquist, C. Ospelt and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary terms

RNA sequencing

(RNA-seq). A technique that measures the quantity and sequences of RNA in a biological sample, using next-generation sequencing.

Transposable elements

DNA sequences that can move (transpose) to a new position in the genome, which can affect the activity of nearby genes.

Enhancer

Short sequences of regulatory DNA elements that, when bound by transcription factors, can promote transcription of a particular gene by enhancing the activity of the gene promoter through physical interactions in cis.

Whole-genome bisulfite sequencing

A technique for assessing genome-wide DNA methylation, using sodium bisulfite treatment and DNA sequencing.

Assay for transposase-accessible chromatin using sequencing

A technique that identifies areas of open chromatin in the genome that are accessible to transcription factors, using a transposase and DNA sequencing.

Chromatin immunoprecipitation sequencing

A technique that identifies the DNA binding sites in the genome for a particular protein of interest, using antibodies and DNA sequencing.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nygaard, G., Firestein, G.S. Restoring synovial homeostasis in rheumatoid arthritis by targeting fibroblast-like synoviocytes. Nat Rev Rheumatol 16, 316–333 (2020). https://doi.org/10.1038/s41584-020-0413-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41584-020-0413-5

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing