Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

PAD enzymes in rheumatoid arthritis: pathogenic effectors and autoimmune targets

Abstract

Peptidylarginine deiminases (PADs) have an important role in the pathogenesis of rheumatoid arthritis (RA) owing to their ability to generate citrullinated proteins — the hallmark autoantigens of RA. Of the five PAD enzyme isoforms, PAD2 and PAD4 are the most strongly implicated in RA at both genetic and cellular levels, and PAD inhibitors have shown therapeutic efficacy in mouse models of inflammatory arthritis. PAD2 and PAD4 are additionally targeted by autoantibodies in distinct clinical subsets of patients with RA, suggesting anti-PAD antibodies as possible biomarkers for RA diagnosis and prognosis. This Review weighs the evidence that supports a pathogenic role for PAD enzymes in RA as both promoters and targets of the autoimmune response, as well as discussing the mechanistic and therapeutic implications of these findings in the wider context of RA pathogenesis. Understanding the origin and consequences of dysregulated PAD enzyme activity and immune responses against PAD enzymes will be important to fully comprehend the pathogenic mechanisms involved in this disease and for the development of novel strategies to treat and prevent RA.

Key points

  • Peptidylarginine deiminase (PAD) enzymes catalyse the deimination of arginine residues, generating the citrullinated protein targets of anti-citrullinated protein antibodies (ACPAs).

  • PAD2 and PAD4 are the most strongly implicated PAD enzymes in rheumatoid arthritis (RA) pathogenesis on the basis of genetic, histological and animal studies.

  • Anti-PAD4 antibodies are associated with severe joint damage, and anti-PAD2 antibodies are associated with less severe joint and lung disease in patients with RA.

  • A subset of patients with RA who have the most severe joint and lung disease have anti-PAD4 antibodies that cross-react with PAD3 and can activate PAD4 enzyme function.

  • ACPAs and anti-PAD4 antibodies can both develop preclinically, but development of ACPAs typically precedes that of anti-PAD4 antibodies.

  • Dysregulated PAD enzyme activity and the development of citrullination-associated autoantibodies can promote three important features of RA: citrullination, pro-inflammatory cytokine production and bone destruction.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Rheumatoid arthritis-associated single nucleotide polymorphisms in PADI4 and PADI2.
Fig. 2: Evolution of anti-PAD antibodies and epitope spreading in rheumatoid arthritis.
Fig. 3: Citrullination-associated immune response mechanisms in rheumatoid arthritis.

Similar content being viewed by others

References

  1. Rogers, G. E., Harding, H. W. J. & Llewellyn-Smith, I. J. The origin of citrulline-containing proteins in the hair follicle and the chemical nature of trichohyalin, an intracellular precursor. Biochim. Biophys. Acta 495, 159–175 (1977).

    Article  CAS  PubMed  Google Scholar 

  2. Fujisaki, M. & Sugawara, K. Properties of peptidylarginine deiminase from the epidermis of newborn rats. J. Biochem. 89, 257–263 (1981).

    Article  CAS  PubMed  Google Scholar 

  3. Nakashima, K., Hagiwara, T. & Yamada, M. Nuclear localization of peptidylarginine deiminase V and histone deimination in granulocytes. J. Biol. Chem. 277, 49562–49568 (2002).

    Article  CAS  PubMed  Google Scholar 

  4. Vossenaar, E. R., Zendman, A. J. W., Venrooij, W. J. van & Pruijn, G. J. M. PAD, a growing family of citrullinating enzymes: genes, features and involvement in disease. Bioessays 25, 1106–1118 (2003).

    Article  CAS  PubMed  Google Scholar 

  5. Lee, C.-Y. et al. Mining the human tissue proteome for protein citrullination. Mol. Cell. Proteom. 17, 1378–1391 (2018).

    Article  CAS  Google Scholar 

  6. Amin, B. & Voelter, W. in Progress in the Chemistry of Organic Natural Products 106 (eds Kinghorn, A. D., Falk, H., Gibbons, S. & Kobayashi, J.) 203–240 (Springer International Publishing, 2017).

  7. Suzuki, A. et al. Functional haplotypes of PADI4, encoding citrullinating enzyme peptidylarginine deiminase 4, are associated with rheumatoid arthritis. Nat. Genet. 34, 395–402 (2003).

    Article  CAS  PubMed  Google Scholar 

  8. Vossenaar, E. R. et al. Expression and activity of citrullinating peptidylarginine deiminase enzymes in monocytes and macrophages. Ann. Rheum. Dis. 63, 373–381 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Freudenberg, J. et al. Genome-wide association study of rheumatoid arthritis in Koreans: population-specific loci as well as overlap with European susceptibility loci. Arthritis Rheum. 63, 884–893 (2011).

    Article  CAS  PubMed  Google Scholar 

  10. Suzuki, A. et al. Decreased severity of experimental autoimmune arthritis in peptidylarginine deiminase type 4 knockout mice. BMC Musculoskelet. Disord. 17, 205 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Bawadekar, M. et al. Peptidylarginine deiminase 2 is required for tumor necrosis factor alpha-induced citrullination and arthritis, but not neutrophil extracellular trap formation. J. Autoimmun. 80, 1–9 (2017).

    Article  CAS  Google Scholar 

  12. Asaga, H., Nakashima, K., Senshu, T., Ishigami, A. & Yamada, M. Immunocytochemical localization of peptidylarginine deiminase in human eosinophils and neutrophils. J. Leukoc. Biol. 70, 46–51 (2001).

    CAS  PubMed  Google Scholar 

  13. Wang, Y. et al. Histone hypercitrullination mediates chromatin decondensation and neutrophil extracellular trap formation. J. Cell Biol. 184, 205–213 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Li, P. et al. PAD4 is essential for antibacterial innate immunity mediated by neutrophil extracellular traps. J. Exp. Med. 207, 1853–1862 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Brinkmann, V. et al. Neutrophil extracellular traps kill bacteria. Science 303, 1532–1535 (2004).

    Article  CAS  PubMed  Google Scholar 

  16. Zhou, Y. et al. Spontaneous secretion of the citrullination enzyme PAD2 and cell surface exposure of PAD4 by neutrophils. Front. Immunol. 8, 1200 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Christophorou, M. A. et al. Citrullination regulates pluripotency and histone H1 binding to chromatin. Nature 506, 104 (2014).

    Article  CAS  Google Scholar 

  18. Sun, B. et al. Citrullination of NF-κB p65 promotes its nuclear localization and TLR-induced expression of IL-1β and TNFα. Sci. Immunol. 2, eaal3062 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Li, P. et al. Regulation of p53 target gene expression by peptidylarginine deiminase 4. Mol. Cell. Biol. 28, 4745–4758 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Guo, Q. & Fast, W. Citrullination of inhibitor of growth 4 (ING4) by peptidylarginine deminase 4 (PAD4) disrupts the interaction between ING4 and p53. J. Biol. Chem. 286, 17069–17078 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Zhang, X. et al. Peptidylarginine deiminase 2-catalyzed histone H3 arginine 26 citrullination facilitates estrogen receptor target gene activation. Proc. Natl Acad. Sci. USA 109, 13331–13336 (2012).

    Article  CAS  PubMed  Google Scholar 

  22. Schellekens, G. A., de Jong, B. A., van den Hoogen, F. H., van de Putte, L. B. & van Venrooij, W. J. Citrulline is an essential constituent of antigenic determinants recognized by rheumatoid arthritis-specific autoantibodies. J. Clin. Invest. 101, 273–281 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Aletaha, D. et al. 2010 Rheumatoid arthritis classification criteria: an American College of Rheumatology/European League Against Rheumatism collaborative initiative. Arthritis Rheum. 62, 2569–2581 (2010).

    Article  PubMed  Google Scholar 

  24. Rantapää-Dahlqvist, S. et al. Antibodies against cyclic citrullinated peptide and IgA rheumatoid factor predict the development of rheumatoid arthritis. Arthritis Rheum. 48, 2741–2749 (2003).

    Article  PubMed  CAS  Google Scholar 

  25. Sokolove, J. et al. Autoantibody epitope spreading in the pre-clinical phase predicts progression to rheumatoid arthritis. PLoS One 7, e35296 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. van der Helm-van Mil, A. H. M., Verpoort, K. N., Breedveld, F. C., Toes, R. E. M. & Huizinga, T. W. J. Antibodies to citrullinated proteins and differences in clinical progression of rheumatoid arthritis. Arthritis Res. Ther. 7, R958 (2005).

    Google Scholar 

  27. Machold, K. P. et al. Very recent onset rheumatoid arthritis: clinical and serological patient characteristics associated with radiographic progression over the first years of disease. Rheumatology 46, 342–349 (2007).

    Article  CAS  PubMed  Google Scholar 

  28. Chang, X., Zhao, Y., Sun, S., Zhang, Y. & Zhu, Y. The expression of PADI4 in synovium of rheumatoid arthritis. Rheumatol. Int. 29, 1411–1416 (2009).

    Article  CAS  PubMed  Google Scholar 

  29. Kinloch, A. et al. Synovial fluid is a site of citrullination of autoantigens in inflammatory arthritis. Arthritis Rheum. 58, 2287–2295 (2008).

    Article  CAS  PubMed  Google Scholar 

  30. Cornélis, F. et al. New susceptibility locus for rheumatoid arthritis suggested by a genome-wide linkage study. Proc. Natl Acad. Sci. USA 95, 10746–10750 (1998).

    Article  PubMed  Google Scholar 

  31. Shiozawa, S. et al. Identification of the gene loci that predispose to rheumatoid arthritis. Int. Immunol. 10, 1891–1895 (1998).

    Article  CAS  PubMed  Google Scholar 

  32. Willis, V. C. et al. N-α-Benzoyl-N5-(2-Chloro-1-Iminoethyl)-l-Ornithine amide, a protein arginine deiminase inhibitor, reduces the severity of murine collagen-induced arthritis. J. Immunol. 186, 4396–4404 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Willis, V. C. et al. Protein arginine deiminase 4 inhibition is sufficient for the amelioration of collagen-induced arthritis. Clin. Exp. Immunol. 188, 263–274 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Kawalkowska, J. et al. Abrogation of collagen-induced arthritis by a peptidyl arginine deiminase inhibitor is associated with modulation of T cell-mediated immune responses. Sci. Rep. 6, 26430 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Shelef, M. A. et al. Peptidylarginine deiminase 4 contributes to tumor necrosis factor α-induced inflammatory arthritis. Arthritis Rheumatol. 66, 1482–1491 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Seri, Y. et al. Peptidylarginine deiminase type 4 deficiency reduced arthritis severity in a glucose-6-phosphate isomerase-induced arthritis model. Sci. Rep. 5, 13041 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Fan, L. Y. et al. A functional haplotype and expression of the PADI4 gene associated with increased rheumatoid arthritis susceptibility in Chinese. Tissue Antigens 72, 469–473 (2008).

    Article  CAS  PubMed  Google Scholar 

  38. Too, C. L. et al. Polymorphisms in peptidylarginine deiminase associate with rheumatoid arthritis in diverse Asian populations: evidence from MyEIRA study and meta-analysis. Arthritis Res. Ther. 14, R250 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Hoppe, B. et al. Detailed analysis of the variability of peptidylarginine deiminase type 4 in German patients with rheumatoid arthritis: a case-control study. Arthritis Res. Ther. 8, R34 (2006).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Barton, A. et al. A functional haplotype of the PADI4 gene associated with rheumatoid arthritis in a Japanese population is not associated in a United Kingdom population. Arthritis Rheum. 50, 1117–1121 (2004).

    Article  CAS  PubMed  Google Scholar 

  41. Caponi, L. A family based study shows no association between rheumatoid arthritis and the PADI4 gene in a white French population. Ann. Rheum. Dis. 64, 587–593 (2005).

    Article  CAS  PubMed  Google Scholar 

  42. Terao, C. et al. The human AIRE gene at chromosome 21q22 is a genetic determinant for the predisposition to rheumatoid arthritis in Japanese population. Hum. Mol. Genet. 20, 2680–2685 (2011).

    Article  CAS  PubMed  Google Scholar 

  43. Okada, Y. et al. Genetics of rheumatoid arthritis contributes to biology and drug discovery. Nature 506, 376–381 (2014).

    Article  CAS  PubMed  Google Scholar 

  44. Naranbhai, V. et al. Genomic modulators of gene expression in human neutrophils. Nat. Commun. 6, 7545 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Mergaert, A. M. et al. Reduced anti-histone antibodies and increased risk of rheumatoid arthritis associated with a single nucleotide polymorphism in PADI4 in North Americans. Int. J. Mol. Sci. 20, 3093 (2019).

    Article  CAS  PubMed Central  Google Scholar 

  46. Chang, X. et al. PADI2 is significantly associated with rheumatoid arthritis. PLoS One 8, e81259 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Masson-Bessière, C. et al. The major synovial targets of the rheumatoid arthritis-specific antifilaggrin autoantibodies are deiminated forms of the alpha- and beta-chains of fibrin. J. Immunol. 166, 4177–4184 (2001).

    Article  PubMed  Google Scholar 

  48. Vossenaar, E. R. et al. Rheumatoid arthritis specific anti-Sa antibodies target citrullinated vimentin. Arthritis Res. Ther. 6, R142 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Snir, O. et al. Multiple antibody reactivities to citrullinated antigens in sera from patients with rheumatoid arthritis: association with HLA-DRB1 alleles. Ann. Rheum. Dis. 68, 736–743 (2009).

    Article  CAS  PubMed  Google Scholar 

  50. Damgaard, D. et al. Relative efficiencies of peptidylarginine deiminase 2 and 4 in generating target sites for anti-citrullinated protein antibodies in fibrinogen, alpha-enolase and histone H3. PLoS One 13, e0203214 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Sharma, M. et al. Expanding the citrullinome of synovial fibrinogen from rheumatoid arthritis patients. J. Proteom. 208, 103484 (2019).

    Article  CAS  Google Scholar 

  52. Darrah, E., Rosen, A., Giles, J. T. & Andrade, F. Peptidylarginine deiminase 2, 3 and 4 have distinct specificities against cellular substrates: novel insights into autoantigen selection in rheumatoid arthritis. Ann. Rheum. Dis. 71, 92–98 (2012).

    Article  CAS  PubMed  Google Scholar 

  53. Guo, Q., Bedford, M. T. & Fast, W. Discovery of peptidylarginine deiminase-4 substrates by protein array: antagonistic citrullination and methylation of human ribosomal protein S2. Mol. Biosyst. 7, 2286–2295 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Assohou-Luty, C. et al. The human peptidylarginine deiminases type 2 and type 4 have distinct substrate specificities. Biochim. Biophys. Acta 1844, 829–836 (2014).

    Article  CAS  PubMed  Google Scholar 

  55. Blachère, N. E. et al. High-titer rheumatoid arthritis antibodies preferentially bind fibrinogen citrullinated by peptidylarginine deiminase 4. Arthritis Rheumatol. 69, 986–995 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Bawadekar, M. et al. Tumor necrosis factor alpha, citrullination, and peptidylarginine deiminase 4 in lung and joint inflammation. Arthritis Res. Ther. 18, 173 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Damgaard, D., Senolt, L., Nielsen, M. F., Pruijn, G. J. & Nielsen, C. H. Demonstration of extracellular peptidylarginine deiminase (PAD) activity in synovial fluid of patients with rheumatoid arthritis using a novel assay for citrullination of fibrinogen. Arthritis Res. Ther. 16, 498 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Damgaard, D., Senolt, L. & Nielsen, C. H. Increased levels of peptidylarginine deiminase 2 in synovial fluid from anti-CCP-positive rheumatoid arthritis patients: association with disease activity and inflammatory markers. Rheumatology 55, 918–927 (2016).

    Article  CAS  PubMed  Google Scholar 

  59. Vossenaar, E. R. et al. Absence of citrulline-specific autoantibodies in animal models of autoimmunity. Arthritis Rheum. 50, 2370–2372 (2004).

    Article  CAS  PubMed  Google Scholar 

  60. Sun, B. et al. Reciprocal regulation of Th2 and Th17 cells by PAD2-mediated citrullination. JCI Insight 4, 129687 (2019).

    Article  PubMed  Google Scholar 

  61. Nissinen, R. et al. Peptidylarginine deiminase, the arginine to citrulline converting enzyme, is frequently recognized by sera of patients with rheumatoid arthritis, systemic lupus erythematosus and primary Sjögren syndrome. Scand. J. Rheumatol. 32, 337–342 (2003).

    Article  CAS  PubMed  Google Scholar 

  62. Vossenaar, E. R. et al. Expression of PAD enzymes and occurrence of citrulline-containing proteins in human blood and synovial fluid cells. Arthritis Res. Ther. 4, 24 (2002).

    Article  Google Scholar 

  63. Altschul, S. F. et al. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 25, 3389–3402 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Takizawa, Y. et al. Peptidylarginine deiminase 4 (PADI4) identified as a conformation-dependent autoantigen in rheumatoid arthritis. Scand. J. Rheumatol. 34, 212–215 (2005).

    Article  CAS  PubMed  Google Scholar 

  65. Halvorsen, E. H. et al. Serum IgG antibodies to peptidylarginine deiminase 4 in rheumatoid arthritis and associations with disease severity. Ann. Rheum. Dis. 67, 414–417 (2008).

    Article  CAS  PubMed  Google Scholar 

  66. Harris, M. L. et al. Association of autoimmunity to peptidyl arginine deiminase type 4 with genotype and disease severity in rheumatoid arthritis. Arthritis Rheum. 58, 1958–1967 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Kolfenbach, J. R. et al. Autoimmunity to peptidyl arginine deiminase type 4 precedes clinical onset of rheumatoid arthritis. Arthritis Rheum. 62, 2633–2639 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  68. Reyes-Castillo, Z. et al. Comparative analysis of autoantibodies targeting peptidylarginine deiminase type 4, mutated citrullinated vimentin and cyclic citrullinated peptides in rheumatoid arthritis: associations with cytokine profiles, clinical and genetic features. Clin. Exp. Immunol. 182, 119–131 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Zhao, J., Zhao, Y., He, J., Jia, R. & Li, Z. Prevalence and significance of anti-peptidylarginine deiminase 4 antibodies in rheumatoid arthritis. J. Rheumatol. 35, 969–974 (2008).

    CAS  PubMed  Google Scholar 

  70. Guderud, K. et al. Lack of association among peptidyl arginine deiminase type 4 autoantibodies, PADI4 polymorphisms, and clinical characteristics in rheumatoid arthritis. J. Rheumatol. 45, 1211–1219 (2018).

    Article  CAS  PubMed  Google Scholar 

  71. Martinez-Prat, L., Lucia, D., Ibarra, C., Mahler, M. & Dervieux, T. Antibodies targeting protein-arginine deiminase 4 (PAD4) demonstrate diagnostic value in rheumatoid arthritis. Ann. Rheumatic Dis. 78, 434–436 (2019).

    Article  Google Scholar 

  72. Rönnelid, J. et al. Anticitrullinated protein/peptide antibody multiplexing defines an extended group of ACPA-positive rheumatoid arthritis patients with distinct genetic and environmental determinants. Ann. Rheumatic Dis. 77, 203–211 (2018).

    Article  CAS  Google Scholar 

  73. Vander Cruyssen, B. et al. Diagnostic value of anti-human citrullinated fibrinogen ELISA and comparison with four other anti-citrullinated protein assays. Arthritis Res. Ther. 8, R122 (2006).

    Article  CAS  Google Scholar 

  74. Coenen, D., Verschueren, P., Westhovens, R. & Bossuyt, X. Technical and diagnostic performance of 6 assays for the measurement of citrullinated protein/peptide antibodies in the diagnosis of rheumatoid arthritis. Clin. Chem. 53, 498–504 (2007).

    Article  CAS  PubMed  Google Scholar 

  75. Fisher, B. A. et al. Smoking, the HLA-DRB1 shared epitope and ACPA fine-specificity in Koreans with rheumatoid arthritis: evidence for more than one pathogenic pathway linking smoking to disease. Ann. Rheumatic Dis. 73, 741–747 (2014).

    Article  CAS  Google Scholar 

  76. Halvorsen, E. H. et al. Serum IgG antibodies to peptidylarginine deiminase 4 predict radiographic progression in patients with rheumatoid arthritis treated with tumour necrosis factor-alpha blocking agents. Ann. Rheumatic Dis. 68, 249–252 (2009).

    Article  CAS  Google Scholar 

  77. Navarro-Millán, I. et al. Association of anti-peptidyl arginine deiminase antibodies with radiographic severity of rheumatoid arthritis in African Americans. Arthritis Res. Ther. 18, 241 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  78. Darrah, E. et al. Association of baseline peptidylarginine deiminase 4 autoantibodies with favorable response to treatment escalation in rheumatoid arthritis. Arthritis Rheumatol. 71, 696–702 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Ferucci, E. D. et al. Prevalence of anti-peptidylarginine deiminase type 4 antibodies in rheumatoid arthritis and unaffected first-degree relatives in indigenous North American populations. J. Rheumatol. 40, 1523–1528 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  80. Cappelli, L. C., Konig, M. F., Gelber, A. C., Bingham, C. O. & Darrah, E. Smoking is not linked to the development of anti-peptidylarginine deiminase 4 autoantibodies in rheumatoid arthritis. Arthritis Res. Ther. 20, 59 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  81. Darrah, E. et al. Erosive rheumatoid arthritis is associated with antibodies that activate PAD4 by increasing calcium sensitivity. Sci. Transl Med. 5, 186ra65 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  82. Terakawa, H., Takahara, H. & Sugawara, K. Three types of mouse peptidylarginine deiminase: characterization and tissue distribution. J. Biochem. 110, 661–666 (1991).

    Article  CAS  PubMed  Google Scholar 

  83. Shi, J. et al. Affinity maturation shapes the function of agonistic antibodies to peptidylarginine deiminase type 4 in rheumatoid arthritis. Ann. Rheum. Dis. 77, 141–148 (2018).

    Article  CAS  PubMed  Google Scholar 

  84. Giles, J. T. et al. Association of cross-reactive antibodies targeting peptidyl-arginine deiminase 3 and 4 with rheumatoid arthritis-associated interstitial lung disease. PLoS One 9, e98794 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  85. Darrah, E. et al. Autoantibodies to peptidylarginine deiminase 2 are associated with less severe disease in rheumatoid arthritis. Front. Immunol. 9, 2696 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  86. Roth, E. B., Stenberg, P., Book, C. & Sjöberg, K. Antibodies against transglutaminases, peptidylarginine deiminase and citrulline in rheumatoid arthritis — new pathways to epitope spreading. Clin. Exp. Rheumatol. 24, 12–18 (2006).

    CAS  PubMed  Google Scholar 

  87. Darrah, E. et al. Proteolysis by granzyme B enhances presentation of autoantigenic peptidylarginine deiminase 4 epitopes in rheumatoid arthritis. J. Proteome Res. 16, 355–365 (2017).

    Article  CAS  PubMed  Google Scholar 

  88. Holoshitz, J. The rheumatoid arthritis HLA–DRB1 shared epitope. Curr. Opin. Rheumatol. 22, 293–298 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Arend, W. P. & Firestein, G. S. Pre-rheumatoid arthritis: predisposition and transition to clinical synovitis. Nat. Rev. Rheumatol. 8, 573–586 (2012).

    Article  CAS  PubMed  Google Scholar 

  90. Umeda, N. et al. Prevalence of soluble peptidylarginine deiminase 4 (PAD4) and anti-PAD4 antibodies in autoimmune diseases. Clin. Rheumatol. 35, 1181–1188 (2016).

    Article  PubMed  Google Scholar 

  91. Gourraud, P.-A. et al. A new classification of HLA-DRB1 alleles differentiates predisposing and protective alleles for autoantibody production in rheumatoid arthritis. Arthritis Res. Ther. 9, R27 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  92. Ruyssen-Witrand, A. et al. A new classification of HLA-DRB1 alleles based on acid–base properties of the amino acids located at positions 13, 70 and 71: impact on ACPA status or structural progression, and meta-analysis on 1235 patients with rheumatoid from two cohorts (ESPOIR and EAC cohort). RMD Open 1, e000099 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  93. Stolt, P. et al. Quantification of the influence of cigarette smoking on rheumatoid arthritis: results from a population based case-control study, using incident cases. Ann. Rheum. Dis. 62, 835–841 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Klareskog, L. et al. A new model for an etiology of rheumatoid arthritis: smoking may trigger HLA-DR (shared epitope)-restricted immune reactions to autoantigens modified by citrullination. Arthritis Rheum. 54, 38–46 (2006).

    Article  CAS  PubMed  Google Scholar 

  95. Hedström, A. K., Rönnelid, J., Klareskog, L. & Alfredsson, L. Complex relationships of smoking, HLA-DRB1 genes, and serologic profiles in patients with early rheumatoid arthritis: update from a Swedish population-based case–control study. Arthritis Rheumatol. 71, 1504–1511 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  96. Polachek, A. et al. Sputum anticitrullinated protein antibodies in patients with long-standing rheumatoid arthritis. J. Clin. Rheumatol. 24, 122–126 (2018).

    Article  PubMed  Google Scholar 

  97. Willis, V. C. et al. Sputum autoantibodies in patients with established rheumatoid arthritis and subjects at risk of future clinically apparent disease. Arthritis Rheum. 65, 2545–2554 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Demoruelle, M. K. et al. Antibody responses to citrullinated and noncitrullinated antigens in the sputum of subjects with rheumatoid arthritis and subjects at risk for development of rheumatoid arthritis. Arthritis Rheumatol. 70, 516–527 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Demoruelle, M. K. et al. Anti-citrullinated protein antibodies are associated with neutrophil extracellular traps in the sputum in relatives of rheumatoid arthritis patients. Arthritis Rheumatol. 69, 1165–1175 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Holers, V. M. et al. Rheumatoid arthritis and the mucosal origins hypothesis: protection turns to destruction. Nat. Rev. Rheumatol. 14, 542–557 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  101. Potempa, J., Mydel, P. & Koziel, J. The case for periodontitis in the pathogenesis of rheumatoid arthritis. Nat. Rev. Rheumatol. 13, 606–620 (2017).

    Article  CAS  PubMed  Google Scholar 

  102. Konig, M. F. et al. Aggregatibacter actinomycetemcomitans-induced hypercitrullination links periodontal infection to autoimmunity in rheumatoid arthritis. Sci. Transl Med. 8, 369ra176 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  103. Gómez-Bañuelos, E., Mukherjee, A., Darrah, E. & Andrade, F. Rheumatoid arthritis-associated mechanisms of Porphyromonas gingivalis and Aggregatibacter actinomycetemcomitans. J. Clin. Med. 8, 1309 (2019).

    Article  PubMed Central  CAS  Google Scholar 

  104. Wegner, N. et al. Peptidylarginine deiminase from Porphyromonas gingivalis citrullinates human fibrinogen and α-enolase: implications for autoimmunity in rheumatoid arthritis. Arthritis Rheum. 62, 2662–2672 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Romero, V. et al. Immune-mediated pore-forming pathways induce cellular hypercitrullination and generate citrullinated autoantigens in rheumatoid arthritis. Sci. Transl Med. 5, 209ra150 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  106. Konig, M. F. & Andrade, F. A critical reappraisal of neutrophil extracellular traps and NETosis mimics based on differential requirements for protein citrullination. Front. Immunol. 7, 461 (2016).

    PubMed  PubMed Central  Google Scholar 

  107. Spengler, J. et al. Release of active peptidyl arginine deiminases by neutrophils can explain production of extracellular citrullinated autoantigens in rheumatoid arthritis synovial fluid. Arthritis Rheumatol. 67, 3135–3145 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Naik, P., Shi, J., Andrade, F. & Darrah, E. Antibodies to PAD4 drive monocyte activation and differentiation into osteoclast-like cells [abstract]. Arthritis Rheumatol. 70 (suppl 10), 2902 (2018).

    Google Scholar 

  109. Tak, P. P. et al. The levels of soluble granzyme A and B are elevated in plasma and synovial fluid of patients with rheumatoid arthritis (RA). Clin. Exp. Immunol. 116, 366–370 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Darrah, E. & Rosen, A. Granzyme B cleavage of autoantigens in autoimmunity. Cell Death Differ. 17, 624–632 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Andrade, F. et al. Autocitrullination of human peptidyl arginine deiminase type 4 regulates protein citrullination during cell activation. Arthritis Rheum. 62, 1630–1640 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Slack, J. L., Jones, L. E. Jr., Bhatia, M. M. & Thompson, P. R. Autodeimination of protein arginine deiminase 4 alters protein–protein interactions but not activity. Biochemistry 50, 3997–4010 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Méchin, M.-C. et al. Deimination is regulated at multiple levels including auto-deimination of peptidylarginine deiminases. Cell. Mol. Life Sci. 67, 1491–1503 (2010).

    Article  PubMed  CAS  Google Scholar 

  114. Darrah, E. et al. Citrullination is not a major determinant in the recognition of peptidylarginine deiminase 2 and 4 by autoantibodies in rheumatoid arthritis. Arthritis Rheumatol. https://doi.org/10.1002/art.41276 (2020)

    Article  PubMed  Google Scholar 

  115. Auger, I., Martin, M., Balandraud, N. & Roudier, J. Rheumatoid arthritis-specific autoantibodies to peptidyl arginine deiminase type 4 inhibit citrullination of fibrinogen. Arthritis Rheum. 62, 126–131 (2010).

    Article  CAS  PubMed  Google Scholar 

  116. Dieterich, W. et al. Identification of tissue transglutaminase as the autoantigen of celiac disease. Nat. Med. 3, 797–801 (1997).

    Article  CAS  PubMed  Google Scholar 

  117. Sollid, L. M. & Jabri, B. Celiac disease and transglutaminase 2: a model for posttranslational modification of antigens and HLA association in the pathogenesis of autoimmune disorders. Curr. Opin. Immunol. 23, 732–738 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Pieper, J. et al. Memory T cells specific to citrullinated α-enolase are enriched in the rheumatic joint. J. Autoimmun. 92, 47–56 (2018).

    Article  CAS  PubMed  Google Scholar 

  119. Rims, C. et al. Citrullinated aggrecan epitopes as targets of autoreactive CD4+ T cells in patients with rheumatoid arthritis. Arthritis Rheumatol. 71, 518–528 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Arnoux, F. et al. Peptidyl arginine deiminase immunization induces anticitrullinated protein antibodies in mice with particular MHC types. Proc. Natl Acad. Sci. USA 114, E10177 (2017).

    Article  CAS  Google Scholar 

  121. Sokolove, J., Zhao, X., Chandra, P. E. & Robinson, W. H. Immune complexes containing citrullinated fibrinogen costimulate macrophages via Toll-like receptor 4 and Fcγ receptor. Arthritis Rheum. 63, 53–62 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Harre, U. et al. Induction of osteoclastogenesis and bone loss by human autoantibodies against citrullinated vimentin. J. Clin. Invest. 122, 1791–1802 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Krishnamurthy, A. et al. Citrullination controls dendritic cell transdifferentiation into osteoclasts. J. Immunol. 202, 3143–3150 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Wigerblad, G. et al. Autoantibodies to citrullinated proteins may induce joint pain independent of inflammation. Ann. Rheum. Dis. 75, 730–738 (2016).

    Article  CAS  PubMed  Google Scholar 

  125. Trouw, L. A. et al. Anti-cyclic citrullinated peptide antibodies from rheumatoid arthritis patients activate complement via both the classical and alternative pathways. Arthritis Rheum. 60, 1923–1931 (2009).

    Article  CAS  PubMed  Google Scholar 

  126. Willemze, A., Trouw, L. A., Toes, R. E. M. & Huizinga, T. W. J. The influence of ACPA status and characteristics on the course of RA. Nat. Rev. Rheumatol. 8, 144–152 (2012).

    Article  CAS  PubMed  Google Scholar 

  127. Engdahl, C. et al. Periarticular bone loss in arthritis is induced by autoantibodies against citrullinated vimentin. J. Bone Miner. Res. 32, 1681–1691 (2017).

    Article  CAS  PubMed  Google Scholar 

  128. Krishnamurthy, A. et al. Identification of a novel chemokine-dependent molecular mechanism underlying rheumatoid arthritis-associated autoantibody-mediated bone loss. Ann. Rheum. Dis. 75, 721–729 (2016).

    Article  CAS  PubMed  Google Scholar 

  129. Pollmann, S. et al. Anti-PAD4 autoantibodies in rheumatoid arthritis: levels in serum over time and impact on PAD4 activity as measured with a small synthetic substrate. Rheumatol. Int. 32, 1271–1276 (2012).

    Article  CAS  PubMed  Google Scholar 

  130. Jonsson, M. K. et al. Peptidylarginine deiminase 4 (PAD4) activity in early rheumatoid arthritis. Scand. J. Rheumatol. 49, 87–95 (2019).

    Article  PubMed  CAS  Google Scholar 

  131. Witalison, E. E., Thompson, P. R. & Hofseth, L. J. Protein arginine deiminases and associated citrullination: physiological functions and diseases associated with dysregulation. Curr. Drug. Targets 16, 700–710 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Ellebrecht, C. T. et al. Reengineering chimeric antigen receptor T cells for targeted therapy of autoimmune disease. Science 353, 179–184 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Benham, H. et al. Citrullinated peptide dendritic cell immunotherapy in HLA risk genotype-positive rheumatoid arthritis patients. Sci. Transl Med. 7, 290ra87 (2015).

    Article  PubMed  CAS  Google Scholar 

  134. Senshu, T., Kan, S., Ogawa, H., Manabe, M. & Asaga, H. Preferential deimination of keratin K1 and filaggrin during the terminal differentiation of human epidermis. Biochem. Biophys. Res. Commun. 225, 712–719 (1996).

    Article  CAS  PubMed  Google Scholar 

  135. Feng, D. et al. Citrullination preferentially proceeds in glomerular Bowman’s capsule and increases in obstructive nephropathy. Kidney Int. 68, 84–95 (2005).

    Article  CAS  PubMed  Google Scholar 

  136. Keilhoff, G. et al. Expression pattern of peptidylarginine deiminase in rat and human Schwann cells. Dev. Neurobiol. 68, 101–114 (2008).

    Article  CAS  PubMed  Google Scholar 

  137. Liu, Y. et al. Peptidylarginine deiminases 2 and 4 modulate innate and adaptive immune responses in TLR-7-dependent lupus. JCI Insight 3, e124729 (2018).

    Article  PubMed Central  Google Scholar 

  138. Wood, D. D. et al. Myelin localization of peptidylarginine deiminases 2 and 4: comparison of PAD2 and PAD4 activities. Lab. Invest. 88, 354–364 (2008).

    Article  CAS  PubMed  Google Scholar 

  139. Keyser, J. D., Schaaf, M. & Teelken, A. Peptidylarginine deiminase activity in postmortem white matter of patients with multiple sclerosis. Neurosci. Lett. 260, 74–76 (1999).

    Article  PubMed  Google Scholar 

  140. Inagaki, M., Takahara, H., Nishi, Y., Sugawara, K. & Sato, C. Ca2+-dependent deimination-induced disassembly of intermediate filaments involves specific modification of the amino-terminal head domain. J. Biol. Chem. 264, 18119–18127 (1989).

    CAS  PubMed  Google Scholar 

  141. Ishigami, A. et al. Abnormal accumulation of citrullinated proteins catalyzed by peptidylarginine deiminase in hippocampal extracts from patients with Alzheimer’s disease. J. Neurosci. Res. 80, 120–128 (2005).

    Article  CAS  PubMed  Google Scholar 

  142. Jang, B. et al. Involvement of peptidylarginine deiminase-mediated post-translational citrullination in pathogenesis of sporadic Creutzfeldt-Jakob disease. Acta Neuropathol. 119, 199–210 (2010).

    Article  CAS  PubMed  Google Scholar 

  143. Mastronardi, F. G. et al. Increased citrullination of histone H3 in multiple sclerosis brain and animal models of demyelination: a role for tumor necrosis factor-induced peptidylarginine deiminase 4 translocation. J. Neurosci. 26, 11387–11396 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Hagiwara, T., Nakashima, K., Hirano, H., Senshu, T. & Yamada, M. Deimination of arginine residues in nucleophosmin/B23 and histones in HL-60 granulocytes. Biochem. Biophys. Res. Commun. 290, 979–983 (2002).

    Article  CAS  PubMed  Google Scholar 

  145. Chang, X. et al. Increased PADI4 expression in blood and tissues of patients with malignant tumors. BMC Cancer 9, 40 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  146. Wright, P. W. et al. ePAD, an oocyte and early embryo-abundant peptidylarginine deiminase-like protein that localizes to egg cytoplasmic sheets. Dev. Biol. 256, 74–89 (2003).

    Article  CAS  Google Scholar 

  147. Raijmakers, R. et al. Methylation of arginine residues interferes with citrullination by peptidylarginine deiminases in vitro. J. Mol. Biol. 367, 1118–1129 (2007).

    Article  CAS  PubMed  Google Scholar 

  148. Esposito, G. et al. Peptidylarginine deiminase (PAD) 6 is essential for oocyte cytoskeletal sheet formation and female fertility. Mol. Cell. Endocrinol. 273, 25–31 (2007).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The work of A.M.C. and E.D. is supported by a Rheumatology Research Foundation Innovative Research Award.

Review criteria

A search for original articles was performed in PubMed using the following terms alone and in combination: “deiminase”, “rheumatoid”, “arthritis”, “antibodies” and “citrullination”. References cited in selected articles were also traced back to the primary sources.

Author information

Authors and Affiliations

Authors

Contributions

A.M.C., P.N. and E.D. researched data for the article. All authors substantially contributed to discussions of content, wrote the article and reviewed and/or edited the manuscript before submission.

Corresponding author

Correspondence to Erika Darrah.

Ethics declarations

Competing interests

E.D. and J.T.G. declare that they are authors on licensed patent no. 8,975,033 entitled “Human autoantibodies specific for PAD3 which are cross-reactive with PAD4 and their use in the diagnosis and treatment of rheumatoid arthritis and related diseases”. E.D. declares that she is an author on provisional patent no. 62/481,158 entitled “Anti-PAD2 antibody for treating and evaluating rheumatoid arthritis”. E.D. has received grants from Bristol-Myers Squibb, Celgene and Pfizer, and personal fees from Celgene that are not related to this article. A.M.C. and P.N. declare no competing interests.

Additional information

Peer review information

Nature Reviews Rheumatology thanks J. Roudier, P. Venables and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Curran, A.M., Naik, P., Giles, J.T. et al. PAD enzymes in rheumatoid arthritis: pathogenic effectors and autoimmune targets. Nat Rev Rheumatol 16, 301–315 (2020). https://doi.org/10.1038/s41584-020-0409-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41584-020-0409-1

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing