Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Immune-mediated necrotizing myopathy: clinical features and pathogenesis

Abstract

Immune-mediated necrotizing myopathy (IMNM) is a group of inflammatory myopathies that was distinguished from polymyositis in 2004. Most IMNMs are associated with anti-signal recognition particle (anti-SRP) or anti-3-hydroxy-3-methylglutaryl-coA reductase (anti-HMGCR) myositis-specific autoantibodies, although ~20% of patients with IMNM remain seronegative. These associations have led to three subclasses of IMNM: anti-SRP-positive IMNM, anti-HMGCR-positive IMNM and seronegative IMNM. IMNMs are frequently rapidly progressive and severe, displaying high serum creatine kinase levels, and failure to treat IMNMs effectively may lead to severe muscle impairment. In patients with seronegative IMNM, disease can be concomitant with cancer. Research into IMNM pathogenesis has shown that anti-SRP and anti-HMGCR autoantibodies cause weakness and myofibre necrosis in mice, suggesting that, as well as being diagnostic biomarkers of IMNM, they may play a key role in disease pathogenesis. Therapeutically, treatments such as rituximab or intravenous immunoglobulins can now be discussed for IMNM, and targeted therapies, such as anticomplement therapeutics, may be a future option for patients with refractory disease.

Key points

  • Anti-3-hydroxy-3-methylglutaryl-coA reductase (anti-HMGCR) and anti-signal recognition particle (anti-SRP) myositis-specific autoantibodies are crucial for defining immune-mediated necrotizing myopathy (IMNM) when muscle biopsy is absent but required for diagnosis.

  • IMNM can be considered a muscle-specific autoimmune disease; patients with anti-SRP-positive IMNM are at an increased risk of myocarditis and patients with seronegative IMNM are at a major risk of associated malignancy.

  • Among treatable idiopathic inflammatory myopathies, IMNM is the most severe in terms of muscle-related morbidities such as muscle atrophy, muscle fat replacement and/or disability, and is of long duration.

  • Anti-HMGCR and anti-SRP myositis-specific autoantibodies seem to play a key role in the pathophysiology of IMNM; autoantibody-induced muscle damage is complement dependent.

  • A combination of corticosteroids, immunosuppressants and intravenous immunoglobulins is frequently required to control disease activity.

  • No specific randomized clinical trial is available to define the best treatment strategy for keeping patients with IMNM in remission.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Proposed mechanisms of seropositive IMNM pathogenesis.
Fig. 2: Treatment recommendations for IMNM.

Similar content being viewed by others

References

  1. Dobloug, C. et al. Prevalence and clinical characteristics of adult polymyositis and dermatomyositis; data from a large and unselected Norwegian cohort. Ann. Rheum. Dis. 74, 1551–1556 (2015).

    PubMed  Google Scholar 

  2. Bohan, A. & Peter, J. B. Polymyositis and dermatomyositis (first of two parts). N. Engl. J. Med. 292, 344–347 (1975).

    CAS  PubMed  Google Scholar 

  3. Griggs, R. C. et al. Inclusion body myositis and myopathies. Ann. Neurol. 38, 705–713 (1995).

    CAS  PubMed  Google Scholar 

  4. Reeves, W. H., Nigam, S. K. & Blobel, G. Human autoantibodies reactive with the signal-recognition particle. Proc. Natl Acad. Sci. USA 83, 9507–9511 (1986).

    CAS  PubMed  Google Scholar 

  5. Hoogendijk, J. E. et al. 119th ENMC international workshop: trial design in adult idiopathic inflammatory myopathies, with the exception of inclusion body myositis, 10–12 October 2003, Naarden, The Netherlands. Neuromuscul. Disord. 14, 337–345 (2004).

    PubMed  Google Scholar 

  6. Miller, T., Al-Lozi, M. T., Lopate, G. & Pestronk, A. Myopathy with antibodies to the signal recognition particle: clinical and pathological features. J. Neurol. Neurosurg. Psychiatry 73, 420–428 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Mammen, A. L. et al. Autoantibodies against 3-hydroxy-3-methylglutaryl-coenzyme A reductase in patients with statin-associated autoimmune myopathy. Arthritis Rheum. 63, 713–721 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Smith, B. Skeletal muscle necrosis associated with cainoma. J. Pathol. 97, 207–210 (1969).

    CAS  PubMed  Google Scholar 

  9. Urich, H. & Wilkinson, M. Necrosis of muscle with carcinoma: myositis or myopathy? J. Neurol. Neurosurg. Psychiatry 33, 398–407 (1970).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Kole, R. et al. Alu RNA-protein complexes formed in vitro react with a novel lupus autoantibody. J. Biol. Chem. 260, 11781–11786 (1985).

    CAS  PubMed  Google Scholar 

  11. Targoff, I. N., Johnson, A. E. & Miller, F. W. Antibody to signal recognition particle in polymyositis. Arthritis Rheum. 33, 1361–1370 (1990).

    CAS  PubMed  Google Scholar 

  12. Christopher-Stine, L. et al. A novel autoantibody recognizing 200-kd and 100-kd proteins is associated with an immune-mediated necrotizing myopathy. Arthritis Rheum. 62, 2757–2766 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Allenbach, Y. et al. Anti-HMGCR autoantibodies in European patients with autoimmune necrotizing myopathies: inconstant exposure to statin. Medicine 93, 150–157 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Drouot, L. et al. Exploring necrotizing autoimmune myopathies with a novel immunoassay for anti-3-hydroxy-3-methyl-glutaryl-CoA reductase autoantibodies. Arthritis Res. Ther. 16, R39 (2014).

    PubMed  PubMed Central  Google Scholar 

  15. Mariampillai, K. et al. Development of a new classification system for idiopathic inflammatory myopathies based on clinical manifestations and myositis-specific autoantibodies. JAMA Neurol. 75, 1528–1537 (2018).

    PubMed  PubMed Central  Google Scholar 

  16. Pinal-Fernandez, I. et al. Machine learning algorithms reveal unique gene expression profiles in muscle biopsies from patients with different types of myositis. Ann. Rheum. Dis. 79, 1234–1242 (2020).

    CAS  PubMed  Google Scholar 

  17. Allenbach, Y., Mammen, A. L., Benveniste, O., Stenzel, W. & Immune-Mediated Necrotizing Myopathies Working Group. 224th ENMC International Workshop: clinico-sero-pathological classification of immune-mediated necrotizing myopathies Zandvoort, The Netherlands, 14–16 October 2016. Neuromuscul. Disord. 28, 87–99 (2018).

    PubMed  Google Scholar 

  18. Lundberg, I. E. et al. 2017 European League Against Rheumatism/American College of Rheumatology classification criteria for adult and juvenile idiopathic inflammatory myopathies and their major subgroups. Arthritis Rheumatol. 76, 1955–1964 (2017).

    Google Scholar 

  19. Allenbach, Y. et al. Necrosis in anti-SRP+ and anti-HMGCR+ myopathies: role of autoantibodies and complement. Neurology 90, e507–e517 (2018).

    CAS  PubMed  Google Scholar 

  20. Allenbach, Y. & Benveniste, O. Acquired necrotizing myopathies. Curr. Opin. Neurol. 26, 554–560 (2013).

    CAS  PubMed  Google Scholar 

  21. Walter, P. & Blobel, G. Purification of a membrane-associated protein complex required for protein translocation across the endoplasmic reticulum. Proc. Natl Acad. Sci. USA 77, 7112–7116 (1980).

    CAS  PubMed  Google Scholar 

  22. Walter, P. & Blobel, G. Signal recognition particle contains a 7S RNA essential for protein translocation across the endoplasmic reticulum. Nature 299, 691–698 (1982).

    CAS  PubMed  Google Scholar 

  23. Zwieb, C. & Bhuiyan, S. Archaea signal recognition particle shows the way. Archaea 2010, 485051 (2010).

    PubMed  PubMed Central  Google Scholar 

  24. Römisch, K., Miller, F. W., Dobberstein, B. & High, S. Human autoantibodies against the 54 kDa protein of the signal recognition particle block function at multiple stages. Arthritis Res. Ther. 8, R39 (2006).

    PubMed  PubMed Central  Google Scholar 

  25. Benveniste, O. et al. Correlation of anti-signal recognition particle autoantibody levels with creatine kinase activity in patients with necrotizing myopathy. Arthritis Rheum. 63, 1961–1971 (2011).

    CAS  PubMed  Google Scholar 

  26. Carapito, R. et al. Mutations in signal recognition particle SRP54 cause syndromic neutropenia with Shwachman-Diamond-like features. J. Clin. Invest. 127, 4090–4103 (2017).

    PubMed  PubMed Central  Google Scholar 

  27. Goldstein, J. L. & Brown, M. S. Regulation of the mevalonate pathway. Nature 343, 425–430 (1990).

    CAS  PubMed  Google Scholar 

  28. Liscum, L. et al. Domain structure of 3-hydroxy-3-methylglutaryl coenzyme A reductase, a glycoprotein of the endoplasmic reticulum. J. Biol. Chem. 260, 522–530 (1985).

    CAS  PubMed  Google Scholar 

  29. Nagashima, S. et al. Liver-specific deletion of 3-hydroxy-3-methylglutaryl coenzyme A reductase causes hepatic steatosis and death. Arterioscler. Thromb. Vasc. Biol. 32, 1824–1831 (2012).

    CAS  PubMed  Google Scholar 

  30. Osaki, Y. et al. Skeletal muscle-specific HMG-CoA reductase knockout mice exhibit rhabdomyolysis: a model for statin-induced myopathy. Biochem. Biophys. Res. Commun. 466, 536–540 (2015).

    CAS  PubMed  Google Scholar 

  31. Ference, B. A. et al. Variation in PCSK9 and HMGCR and risk of cardiovascular disease and diabetes. N. Engl. J. Med. 375, 2144–2153 (2016).

    CAS  PubMed  Google Scholar 

  32. Parker, B. A. et al. Effect of statins on skeletal muscle function. Circulation 127, 96–103 (2013).

    CAS  PubMed  Google Scholar 

  33. Mammen, A. L. et al. Rarity of anti-3-hydroxy-3-methylglutaryl-coenzyme A reductase antibodies in statin users, including those with self-limited musculoskeletal side effects. Arthritis Care Res. 64, 269–272 (2012).

    CAS  Google Scholar 

  34. Shovman, O. et al. Anti-HMGCR antibodies demonstrate high diagnostic value in the diagnosis of immune-mediated necrotizing myopathy following statin exposure. Immunol. Res. 65, 276–281 (2017).

    CAS  PubMed  Google Scholar 

  35. Meyer, A. et al. Incidence and prevalence of inflammatory myopathies: a systematic review. Rheumatology 54, 50–63 (2015).

    CAS  PubMed  Google Scholar 

  36. Rönnelid, J. et al. Use of a commercial line blot assay as a screening test for autoantibodies in inflammatory myopathies. Autoimmun. Rev. 9, 58–61 (2009).

    PubMed  Google Scholar 

  37. Watanabe, Y. et al. Clinical features and prognosis in anti-SRP and anti-HMGCR necrotising myopathy. J. Neurol. Neurosurg. Psychiatry 87, 1038–1044 (2016).

    PubMed  Google Scholar 

  38. Pinal-Fernandez, I. et al. Longitudinal course of disease in a large cohort of myositis patients with autoantibodies recognizing the signal recognition particle. Arthritis Care Res. 69, 263–270 (2017).

    CAS  Google Scholar 

  39. Kishi, T. et al. Association of anti-3-hydroxy-3-methylglutaryl-coenzyme A reductase autoantibodies with DRB1*07:01 and severe myositis in juvenile myositis patients. Arthritis Care Res. 69, 1088–1094 (2017).

    CAS  Google Scholar 

  40. Ueki, M. et al. Myositis-specific autoantibodies in Japanese patients with juvenile idiopathic inflammatory myopathies. Mod. Rheumatol. 29, 351–356 (2019).

    CAS  PubMed  Google Scholar 

  41. Suzuki, S. et al. Inflammatory myopathy with anti-signal recognition particle antibodies: case series of 100 patients. Orphanet J. Rare Dis. 10, 61 (2015).

    PubMed  PubMed Central  Google Scholar 

  42. Hengstman, G. J. D. et al. Anti-signal recognition particle autoantibodies: marker of a necrotising myopathy. Ann. Rheum. Dis. 65, 1635–1638 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Rothwell, S. et al. Focused HLA analysis in Caucasians with myositis identifies significant associations with autoantibody subgroups. Ann. Rheum. Dis. 78, 996–1002 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Ohnuki, Y. et al. HLA-DRB1 alleles in immune-mediated necrotizing myopathy. Neurology 87, 1954–1955 (2016).

    PubMed  Google Scholar 

  45. Kang, E. H. et al. Novel susceptibility alleles in HLA region for myositis and myositis specific autoantibodies in Korean patients. Semin. Arthritis Rheum. 49, 283–287 (2019).

    CAS  PubMed  Google Scholar 

  46. Liang, W.-C. et al. Pediatric necrotizing myopathy associated with anti-3-hydroxy-3-methylglutaryl-coenzyme A reductase antibodies. Rheumatology 56, 287–293 (2017).

    PubMed  Google Scholar 

  47. Ge, Y., Lu, X., Peng, Q., Shu, X. & Wang, G. Clinical characteristics of anti-3-hydroxy-3-methylglutaryl coenzyme A reductase antibodies in Chinese patients with idiopathic inflammatory myopathies. PLoS One 10, e0141616 (2015).

    PubMed  PubMed Central  Google Scholar 

  48. Limaye, V. et al. Clinical and genetic associations of autoantibodies to 3-hydroxy-3-methyl-glutaryl-coenzyme a reductase in patients with immune-mediated myositis and necrotizing myopathy. Muscle Nerve 52, 196–203 (2015).

    CAS  PubMed  Google Scholar 

  49. Mammen, A. L. et al. Increased frequency of DRB1*11:01 in anti-hydroxymethylglutaryl-coenzyme A reductase-associated autoimmune myopathy. Arthritis Care Res. 64, 1233–1237 (2012).

    CAS  Google Scholar 

  50. Allenbach, Y. et al. High risk of cancer in autoimmune necrotizing myopathies: usefulness of myositis specific antibody. Brain J. Neurol. 139, 2131–2135 (2016).

    Google Scholar 

  51. Kadoya, M. et al. Cancer association as a risk factor for anti-HMGCR antibody-positive myopathy. Neurol. Neuroimmunol. Neuroinflamm. 3, e290 (2016).

    PubMed  PubMed Central  Google Scholar 

  52. Tiniakou, E. et al. More severe disease and slower recovery in younger patients with anti-3-hydroxy-3-methylglutaryl-coenzyme A reductase-associated autoimmune myopathy. Rheumatology 56, 787–794 (2017).

    CAS  PubMed  Google Scholar 

  53. Levin, M. I., Mozaffar, T., Al-Lozi, M. T. & Pestronk, A. Paraneoplastic necrotizing myopathy: clinical and pathological features. Neurology 50, 764–767 (1998).

    CAS  PubMed  Google Scholar 

  54. Vu, H. J., Pham, D., Makary, R., Nguyen, T. & Shuja, S. Paraneoplastic necrotizing myopathy presenting as severe muscle weakness in a patient with small-cell lung cancer: successful response to chemoradiation therapy. Clin. Adv. Hematol. Oncol. 9, 557–566 (2011).

    PubMed  Google Scholar 

  55. Lim, J. et al. Seronegative patients form a distinctive subgroup of immune-mediated necrotizing myopathy. Neurol. Neuroimmunol. Neuroinflamm. 6, e513 (2019).

    PubMed  Google Scholar 

  56. Kassardjian, C. D., Lennon, V. A., Alfugham, N. B., Mahler, M. & Milone, M. Clinical features and treatment outcomes of necrotizing autoimmune myopathy. JAMA Neurol. 72, 996–1003 (2015).

    PubMed  Google Scholar 

  57. Paik, J. J. et al. Spectrum of muscle histopathologic findings in forty-two scleroderma patients with weakness. Arthritis Care Res. 67, 1416–1425 (2015).

    Google Scholar 

  58. Benveniste, O., Stenzel, W. & Allenbach, Y. Advances in serological diagnostics of inflammatory myopathies. Curr. Opin. Neurol. 29, 662–673 (2016).

    CAS  PubMed  Google Scholar 

  59. Wesner, N. et al. Anti-RNP antibodies delineate a subgroup of myositis: a systematic retrospective study on 46 patients. Autoimmun. Rev. 19, 102465 (2020).

    CAS  PubMed  Google Scholar 

  60. Casal-Dominguez, M. et al. Muscular and extramuscular features of myositis patients with anti-U1-RNP autoantibodies. Neurology 92, e1416–e1426 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Mohassel, P. et al. Anti-HMGCR myopathy may resemble limb-girdle muscular dystrophy. Neurol. Neuroimmunol. Neuroinflamm. 6, e523 (2019).

    PubMed  Google Scholar 

  62. Kao, A. H., Lacomis, D., Lucas, M., Fertig, N. & Oddis, C. V. Anti-signal recognition particle autoantibody in patients with and patients without idiopathic inflammatory myopathy. Arthritis Rheum. 50, 209–215 (2004).

    CAS  PubMed  Google Scholar 

  63. Takeguchi-Kikuchi, S. et al. Anti-signal recognition particle antibody-positive necrotizing myopathy with secondary cardiomyopathy: the first myocardial biopsy- and multimodal imaging-proven case. Intern. Med. 58, 3189–3194 (2019).

    PubMed  PubMed Central  Google Scholar 

  64. Thiébaut, M. et al. Antisignal recognition particle antibodies-related cardiomyopathy. Circulation 127, e434–e436 (2013).

    PubMed  Google Scholar 

  65. Pitlick, M. & Ernste, F. Anti-HMGCR myopathy presenting with acute systolic heart failure. BMJ Case Rep. 12, e230213 (2019).

    PubMed  Google Scholar 

  66. Rigolet, M. et al. Distinct interferon signatures stratify inflammatory and dysimmune myopathies. RMD Open 5, e000811 (2019).

    PubMed  PubMed Central  Google Scholar 

  67. Uruha, A. et al. Diagnostic potential of sarcoplasmic myxovirus resistance protein A expression in subsets of dermatomyositis. Neuropathol. Appl. Neurobiol. 45, 513–522 (2019).

    CAS  PubMed  Google Scholar 

  68. Knauss, S. et al. PD1 pathway in immune-mediated myopathies: pathogenesis of dysfunctional T cells revisited. Neurol. Neuroimmunol. Neuroinflamm. 6, e558 (2019).

    PubMed  PubMed Central  Google Scholar 

  69. Preuße, C. et al. Immune-mediated necrotizing myopathy is characterized by a specific Th1-M1 polarized immune profile. Am. J. Pathol. 181, 2161–2171 (2012).

    PubMed  Google Scholar 

  70. Yin, X. et al. CD4+ cells, macrophages, MHC-I and C5b-9 involve the pathogenesis of dysferlinopathy. Int. J. Clin. Exp. Pathol. 8, 3069–3075 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Fischer, N. et al. Sequestosome-1 (p62) expression reveals chaperone-assisted selective autophagy in immune-mediated necrotizing myopathies. Brain Pathol. 30, 261–271 (2019).

    PubMed  Google Scholar 

  72. Girolamo, F. et al. Autophagy markers LC3 and p62 accumulate in immune-mediated necrotizing myopathy. Muscle Nerve 60, 315–327 (2019).

    CAS  PubMed  Google Scholar 

  73. Schröder, N. W. J. et al. Pipestem capillaries in necrotizing myopathy revisited. Neuromuscul. Disord. 23, 66–74 (2013).

    PubMed  Google Scholar 

  74. Landon-Cardinal, O. et al. Severe axial and pelvifemoral muscle damage in immune-mediated necrotizing myopathy evaluated by whole-body MRI. Semin. Arthritis Rheum. https://doi.org/10.1016/j.semarthrit.2020.02.009 (2020).

    Article  PubMed  Google Scholar 

  75. Pimenta, E., Wolley, M. & Stowasser, M. Adverse cardiovascular outcomes of corticosteroid excess. Endocrinology 153, 5137–5142 (2012).

    CAS  PubMed  Google Scholar 

  76. Marie, I. et al. Hematological malignancy associated with polymyositis and dermatomyositis. Autoimmun. Rev. 11, 615–620 (2012).

    CAS  PubMed  Google Scholar 

  77. Antiochos, B. B. et al. Malignancy is associated with dermatomyositis but not polymyositis in Northern New England, USA. J. Rheumatol. 36, 2704–2710 (2009).

    PubMed  Google Scholar 

  78. Yang, H. et al. Identification of multiple cancer-associated myositis-specific autoantibodies in idiopathic inflammatory myopathies: a large longitudinal cohort study. Arthritis Res. Ther. 19, 259 (2017).

    PubMed  PubMed Central  Google Scholar 

  79. Arouche-Delaperche, L. et al. Pathogenic role of anti-signal recognition protein and anti-3-Hydroxy-3-methylglutaryl-CoA reductase antibodies in necrotizing myopathies: myofiber atrophy and impairment of muscle regeneration in necrotizing autoimmune myopathies. Ann. Neurol. 81, 538–548 (2017).

    CAS  PubMed  Google Scholar 

  80. Pinal-Fernandez, I. et al. Myositis autoantigen expression correlates with muscle regeneration but not autoantibody specificity. Arthritis Rheumatol. 71, 1371–1376 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Jacquemin, V., Butler-Browne, G. S., Furling, D. & Mouly, V. IL-13 mediates the recruitment of reserve cells for fusion during IGF-1-induced hypertrophy of human myotubes. J. Cell Sci. 120, 670–681 (2007).

    CAS  PubMed  Google Scholar 

  82. Horsley, V., Jansen, K. M., Mills, S. T. & Pavlath, G. K. IL-4 acts as a myoblast recruitment factor during mammalian muscle growth. Cell 113, 483–494 (2003).

    CAS  PubMed  Google Scholar 

  83. Trapani, L. et al. 3-hydroxy 3-methylglutaryl coenzyme A reductase inhibition impairs muscle regeneration. J. Cell. Biochem. 113, 2057–2063 (2012).

    CAS  PubMed  Google Scholar 

  84. Bergua, C. et al. In vivo pathogenicity of IgG from patients with anti-SRP or anti-HMGCR autoantibodies in immune-mediated necrotising myopathy. Ann. Rheum. Dis. 78, 131–139 (2019).

    CAS  PubMed  Google Scholar 

  85. Albazli, K., Kaminski, H. J. & Howard, J. F. Complement inhibitor therapy for Myasthenia Gravis. Front. Immunol. 11, 917 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT04025632 (2020).

  87. PubChem. Zilucoplan. PubChem https://pubchem.ncbi.nlm.nih.gov/compound/133083018 (2018).

  88. Meyer, A. et al. Statin-induced anti-HMGCR myopathy: successful therapeutic strategies for corticosteroid-free remission in 55 patients. Arthritis Res. Ther. 22, 5 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Grable-Esposito, P. et al. Immune-mediated necrotizing myopathy associated with statins. Muscle Nerve 41, 185–190 (2010).

    CAS  PubMed  Google Scholar 

  90. Ramanathan, S. et al. Clinical course and treatment of anti-HMGCR antibody-associated necrotizing autoimmune myopathy. Neurol. Neuroimmunol. Neuroinflamm. 2, e96 (2015).

    PubMed  PubMed Central  Google Scholar 

  91. Valiyil, R., Casciola-Rosen, L., Hong, G., Mammen, A. & Christopher-Stine, L. Rituximab therapy for myopathy associated with anti-signal recognition particle antibodies: a case series. Arthritis Care Res. 62, 1328–1334 (2010).

    CAS  Google Scholar 

  92. Landon-Cardinal, O. et al. Rituximab in the treatment of refractory anti-HMGCR immune-mediated necrotizing myopathy. J. Rheumatol. 46, 623–627 (2019).

    CAS  PubMed  Google Scholar 

  93. Tansley, S. L. et al. Anti-HMGCR autoantibodies in juvenile idiopathic inflammatory myopathies identify a rare but clinically important subset of patients. J. Rheumatol. 44, 488–492 (2017).

    PubMed  Google Scholar 

  94. Binns, E. L. et al. Effective induction therapy for anti-SRP associated myositis in childhood: a small case series and review of the literature. Pediatr. Rheumatol. 15, 77 (2017).

    CAS  Google Scholar 

  95. Kusumoto, T. et al. Development of necrotizing myopathy following interstitial lung disease with anti-signal recognition particle antibody. Intern. Med. 57, 2045–2049 (2018).

    PubMed  PubMed Central  Google Scholar 

  96. Giudizi, M. G. et al. Anti-HMGCR antibody-associated necrotizing myopathy: diagnosis and treatment illustrated using a case report. Scand. J. Rheumatol. 45, 427–429 (2016).

    CAS  PubMed  Google Scholar 

  97. Mammen, A. L. & Tiniakou, E. Intravenous immune globulin for statin-triggered autoimmune myopathy. N. Engl. J. Med. 373, 1680–1682 (2015).

    PubMed  PubMed Central  Google Scholar 

  98. Tiniakou, E., Rivera, E., Mammen, A. L. & Christopher-Stine, L. Use of proprotein convertase Subtilisin/Kexin Type 9 inhibitors in statin-associated immune-mediated necrotizing myopathy: a case series. Arthritis Rheumatol. 71, 1723–1726 (2019).

    CAS  PubMed  Google Scholar 

  99. Alemo Munters, L., Alexanderson, H., Crofford, L. J. & Lundberg, I. E. New insights into the benefits of exercise for muscle health in patients with idiopathic inflammatory myositis. Curr. Rheumatol. Rep. 16, 429 (2014).

    PubMed  Google Scholar 

  100. Van Thillo, A., Vulsteke, J.-B., Van Assche, D., Verschueren, P. & De Langhe, E. Physical therapy in adult inflammatory myopathy patients: a systematic review. Clin. Rheumatol. 38, 2039–2051 (2019).

    PubMed  Google Scholar 

  101. Surmachevska, N. & Tiwari, V. Corticosteroid Induced Myopathy (StatPearls Publishing, 2020).

  102. Kostine, M. et al. EULAR points to consider for the diagnosis and management of rheumatic immune-related adverse events due to cancer immunotherapy with checkpoint inhibitors. Ann. Rheum. Dis. https://doi.org/10.1136/annrheumdis-2020-217139 (2020).

    Article  PubMed  Google Scholar 

  103. Pinal-Fernandez, I. et al. Thigh muscle MRI in immune-mediated necrotising myopathy: extensive oedema, early muscle damage and role of anti-SRP autoantibodies as a marker of severity. Ann. Rheum. Dis. 76, 681–687 (2017).

    PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank the Association Française contre les Myopathies (AFM) for its support. The authors are grateful to N. Sabourin-Gibbs, Rouen University Hospital, for her help in editing the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

All of the authors researched data for the article, wrote the article, made a substantial contribution to discussion of content and reviewed or edited the manuscript before submission.

Corresponding author

Correspondence to Olivier Benveniste.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Rheumatology thanks I. Nishino and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Sarcolemma

The thin membrane enclosing a striated muscle fibre.

Exocrine pancreatic insufficiency

A condition characterized by deficiency of the exocrine pancreatic enzymes, resulting in the inability to digest food properly or maldigestion.

Scapular winging

Occurs when a shoulder blade sticks out rather than resting flat against the back of the chest wall.

Muscle fascicles

A bundle of muscle fibres surrounded by perimysium (connective tissue demarcating a fascicle of skeletal muscle fibres).

Endomysium

The sheath of delicate reticular fibrils that surrounds each muscle fibre.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Allenbach, Y., Benveniste, O., Stenzel, W. et al. Immune-mediated necrotizing myopathy: clinical features and pathogenesis. Nat Rev Rheumatol 16, 689–701 (2020). https://doi.org/10.1038/s41584-020-00515-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41584-020-00515-9

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing