Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Applying precision medicine to unmet clinical needs in psoriatic disease

Abstract

Psoriatic disease (PsD) is a heterogeneous condition that can affect peripheral and axial joints (arthritis), entheses, skin (psoriasis) and other structures. Over the past decade, considerable advances have been made both in our understanding of the pathogenesis of PsD and in the treatment of its diverse manifestations. However, several major areas of continued unmet need in the care of patients with PsD have been identified. One of these areas is the prediction of poor outcome, notably radiographic outcome in patients with psoriatic arthritis, so that stratified medicine approaches can be taken; another is predicting response to the numerous current and emerging therapies for PsD, so that precision medicine can be applied to rapidly improve clinical outcome and reduce the risk of toxicity. In order to address these needs, novel approaches, including imaging, tissue analysis and the application of proteogenomic technologies, are proposed as methodological solutions that will assist the dissection of the critical immune-metabolic pathways in this complex disease. Learning from advances made in other inflammatory diseases, it is time to address these unmet needs in a multi-centre partnership aimed at improving short-term and long-term outcomes for patients with PsD.

Key points

  • Predicting outcome, in particular radiographic outcome, is a key unmet need in psoriatic arthritis (PsA), but although some individual markers seem promising, none has been validated in large clinical datasets.

  • Several new treatments targeting different pathways in PsA have improved outcomes, but many patients have persistent disease; a precision medicine approach to treatment choice is required.

  • Deep clinical phenotyping coupled with advances in imaging will help to better categorize patient status, an essential first step in the discovery of predictive biomarkers.

  • Molecular phenotyping of well-characterized patients and associated liquid and/or tissue biosamples is the next required step in trying to address these important areas of unmet need in PsA.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: Model of pathobiology of psoriatic disease according to disease phenotypes.
Fig. 2: Structural sequelae of psoriatic arthritis mutilans.
Fig. 3: Bone remodelling in psoriatic arthritis.
Fig. 4: Micro-CT of small joints in psoriatic arthritis.
Fig. 5: High-resolution musculoskeletal ultrasound in psoriatic arthritis.

References

  1. Jadon, D. R. et al. Axial disease in psoriatic arthritis study: defining the clinical and radiographic phenotype of psoriatic spondyloarthritis. Ann. Rheum. Dis. 76, 701–707 (2016).

    PubMed  PubMed Central  Google Scholar 

  2. Gashick M., et al. Vascular endothelial and inflammatory differences in psoriasis and psoriatic arthritis patients [abstract 2075]. Arthritis Rheumatol. 70 (Suppl. 10), (2018).

  3. Yun J. H., Winchester R., Z. Z. H., Depender C., Giles J. T. Adipose tissue inflammation in psoriatic arthritis: overexpression of a wide array of inflammatory mediators and associations with disease and treatment characteristics [abstract 1618]. Arthritis Rheumatol. 70 (Suppl. 10), (2018).

  4. Belasco, J. et al. Comparative genomic profiling of synovium versus skin lesions in psoriatic arthritis. Arthritis Rheumatol. 67, 934–944 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Ritchlin, C. T., Colbert, R. A. & Gladman, D. D. Psoriatic arthritis. N. Engl. J. Med. 376, 2095–2096 (2017).

    PubMed  Google Scholar 

  6. Jadon, D. R. & McHugh, N. J. Other seronegative spondyloarthropathies. Medicine 42, 257–261 (2014).

    Google Scholar 

  7. Kane, D. A prospective, clinical and radiological study of early psoriatic arthritis: an early synovitis clinic experience. Rheumatology 42, 1460–1468 (2003).

    CAS  PubMed  Google Scholar 

  8. McHugh, N. J. Progression of peripheral joint disease in psoriatic arthritis: a 5-yr prospective study. Rheumatology 42, 778–783 (2003).

    CAS  PubMed  Google Scholar 

  9. Jadon, D. R. et al. Psoriatic arthritis mutilans: characteristics and natural radiographic history. J. Rheumatol. 42, 1169–1176 (2015).

    PubMed  Google Scholar 

  10. Jadon, D. R. et al. Proceedings of the 2018 GRAPPA collaborative research network meeting. J. Rheumatol. 95 (Supplement), 11–19 (2019).

    CAS  Google Scholar 

  11. Jadon, D. R. et al. Proceedings of the 2017 GRAPPA collaborative research network meeting. J. Rheumatol. 94 (Supplement), 54–61 (2018).

    Google Scholar 

  12. Scher, J. U., Ogdie, A., Merola, J. F. & Ritchlin, C. Preventing psoriatic arthritis: focusing on patients with psoriasis at increased risk of transition. Nat. Rev. Rheumatol. 15, 153–166 (2019).

    PubMed  Google Scholar 

  13. FitzGerald, O., Haroon, M., Giles, J. T. & Winchester, R. Concepts of pathogenesis in psoriatic arthritis: genotype determines clinical phenotype. Arthritis Res. Ther. 17, 115 (2015).

    PubMed  PubMed Central  Google Scholar 

  14. Yin, J. et al. Shotgun metagenomics reveals an enrichment of potentially cross-reactive bacterial epitopes in ankylosing spondylitis patients, as well as the effects of TNFi therapy upon microbiome composition. Ann. Rheum. Dis. 79, 132–140 (2020).

    CAS  PubMed  Google Scholar 

  15. Henderson, L. A. et al. Next-generation sequencing reveals restriction and clonotypic expansion of TReg cells in juvenile idiopathic arthritis. Arthritis Rheumatol. 68, 1758–1768 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Curran, S. A. et al. Nucleotide sequencing of psoriatic arthritis tissue before and during methotrexate administration reveals a complex inflammatory T cell infiltrate with very few clones exhibiting features that suggest they drive the inflammatory process by recognizing autoantigens. J. Immunol. 172, 1935–1944 (2004).

    CAS  PubMed  Google Scholar 

  17. Steel, K. J. A. et al. Polyfunctional, proinflammatory, tissue-resident memory phenotype and function of synovial interleukin-17A+CD8+ T cells in psoriatic arthritis. Arthritis Rheumatol. 72, 435–447 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Stuart, P. E. et al. Genome-wide association analysis of psoriatic arthritis and cutaneous psoriasis reveals differences in their genetic architecture. Am. J. Hum. Genet. 97, 816–836 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Bowes, J. et al. Cross-phenotype association mapping of the MHC identifies genetic variants that differentiate psoriatic arthritis from psoriasis. Ann. Rheum. Dis. 76, 1774–1779 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Molto, A. & Dougados, M. Comorbidities in spondyloarthritis including psoriatic arthritis. Best Pract. Res. Clin. Rheumatol. 32, 390–400 (2018).

    PubMed  Google Scholar 

  21. Ash, Z. et al. A systematic literature review of drug therapies for the treatment of psoriatic arthritis: current evidence and meta-analysis informing the EULAR recommendations for the management of psoriatic arthritis. Ann. Rheum. Dis. 71, 319–326 (2012).

    CAS  PubMed  Google Scholar 

  22. Mease, P. J. Etanercept, a TNF antagonist for treatment for psoriatic arthritis and psoriasis. Skin Ther. Lett. 8, 1–4 (2003).

    CAS  Google Scholar 

  23. van der Heijde, D. et al. Secukinumab provides sustained low rates of radiographic progression in psoriatic arthritis: 52-week results from a phase 3 study, FUTURE 5. Rheumatology 59, 1325–1334 (2020).

    PubMed  Google Scholar 

  24. Mease, P. J. et al. Etanercept and methotrexate as monotherapy or in combination for psoriatic arthritis: primary results from a randomized, controlled phase 3 trial. Arthritis Rheumatol. 71, 1112–1124 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Chandran, V. et al. Ixekizumab treatment of biologic-naive patients with active psoriatic arthritis: 3-year results from a phase III clinical trial (SPIRIT-P1). Rheumatology https://doi.org/10.1093/rheumatology/kez684 (2020).

    Article  PubMed  Google Scholar 

  26. Feced Olmos, C. M. et al. Relationship between structural damage with loss of strength and functional disability in psoriatic arthritis patients. Clin. Biomech. 68, 169–174 (2019).

    Google Scholar 

  27. Poole, C. D., Lebmeier, M., Ara, R., Rafia, R. & Currie, C. J. Estimation of health care costs as a function of disease severity in people with psoriatic arthritis in the UK. Rheumatology 49, 1949–1956 (2010).

    PubMed  Google Scholar 

  28. Tillett, W., de-Vries, C. & McHugh, N. J. Work disability in psoriatic arthritis: a systematic review. Rheumatology 51, 275–283 (2012).

    PubMed  Google Scholar 

  29. Bruzzese, V., Marrese, C., Ridola, L. & Zullo, A. Psoriatic arthritis mutilans: case series and literature review. J. Rheumatol. 40, 1233–1236 (2013).

    PubMed  Google Scholar 

  30. Pomerantz, R. G., Mody, E., Husni, M. E. & Qureshi, A. A. Follow-up of psoriatic arthritis mutilans patients treated with anti-TNF-alpha therapy. J. Drugs Dermatol. 8, 406–412 (2009).

    PubMed  Google Scholar 

  31. Bell, L., Murphy, C. L., Wynne, B. & Cunnane, G. Acute presentation of arthritis mutilans. J. Rheumatol 38, 174–175 (2011).

    PubMed  Google Scholar 

  32. Nossent, J. C. & Gran, J. T. Epidemiological and clinical characteristics of psoriatic arthritis in northern Norway. Scand. J. Rheumatol. 38, 251–255 (2009).

    CAS  PubMed  Google Scholar 

  33. Tan, Y. M. et al. MRI bone oedema scores are higher in the arthritis mutilans form of psoriatic arthritis and correlate with high radiographic scores for joint damage. Arthritis Res. Ther. 11, R2 (2009).

    PubMed  PubMed Central  Google Scholar 

  34. Reich, K., Kruger, K., Mossner, R. & Augustin, M. Epidemiology and clinical pattern of psoriatic arthritis in Germany: a prospective interdisciplinary epidemiological study of 1511 patients with plaque-type psoriasis. Br. J. Dermatol. 160, 1040–1047 (2009).

    CAS  PubMed  Google Scholar 

  35. Marsal, S. & Armadans-Gil, L. Clinical, radiographic and HLA associations as markers for different patterns of psoriatic arthritis. Rheumatology 38, 332–337 (1999).

    CAS  PubMed  Google Scholar 

  36. Helliwell, P. S. Established psoriatic arthritis: clinical aspects. J. Rheumatol. 83 (Supplement), 21–23 (2009).

    Google Scholar 

  37. Rodriguez-Moreno, J. et al. Mutilating/resorptive arthritis: a study of 24 patients in a series of 360 patients with psoriatic arthritis. Reumatol. Clin. 9, 38–41 (2013).

    PubMed  Google Scholar 

  38. Gudbjornsson, B. et al. Psoriatic arthritis mutilans (PAM) in the Nordic countries: demographics and disease status. The Nordic PAM study. Scand. J. Rheumatol. 42, 373–378 (2013).

    CAS  PubMed  Google Scholar 

  39. Kavanaugh, A. et al. Radiographic progression inhibition with intravenous golimumab in psoriatic arthritis: week 24 results of a phase iii, randomized, double-blind, placebo-controlled trial. J. Rheumatol. 46, 595–602 (2019).

    CAS  PubMed  Google Scholar 

  40. Kavanaugh, A. et al. Ustekinumab, an anti-IL-12/23 p40 monoclonal antibody, inhibits radiographic progression in patients with active psoriatic arthritis: results of an integrated analysis of radiographic data from the phase 3, multicentre, randomised, double-blind, placebo-controlled PSUMMIT-1 and PSUMMIT-2 trials. Ann. Rheum. Dis. 73, 1000–1006 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Mease, P. J. et al. Ixekizumab, an interleukin-17A specific monoclonal antibody, for the treatment of biologic-naive patients with active psoriatic arthritis: results from the 24-week randomised, double-blind, placebo-controlled and active (adalimumab)-controlled period of the phase III trial SPIRIT-P1. Ann. Rheum. Dis. 76, 79–87 (2017).

    CAS  PubMed  Google Scholar 

  42. Mease, P. et al. Secukinumab improves active psoriatic arthritis symptoms and inhibits radiographic progression: primary results from the randomised, double-blind, phase III FUTURE 5 study. Ann. Rheum. Dis. 77, 890–897. (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. van der Heijde, D., Sharp, J., Wassenberg, S. & Gladman, D. D. Psoriatic arthritis imaging: a review of scoring methods. Ann. Rheum. Dis. 64 (suppl_2), ii61–ii64 (2005).

    PubMed  PubMed Central  Google Scholar 

  44. Haroon, M., Gallagher, P. & FitzGerald, O. Diagnostic delay of more than 6 months contributes to poor radiographic and functional outcome in psoriatic arthritis. Ann. Rheum. Dis. 74, 1045–1050 (2015).

    CAS  PubMed  Google Scholar 

  45. Tillett, W. et al. Smoking and delay to diagnosis are associated with poorer functional outcome in psoriatic arthritis. Ann. Rheum. Dis. 72, 1358–1361 (2013).

    PubMed  Google Scholar 

  46. Brockbank, J. E. Dactylitis in psoriatic arthritis: a marker for disease severity? Ann. Rheum. Dis. 64, 188–190 (2005).

    CAS  PubMed  Google Scholar 

  47. Husted, J. A., Tom, B. D., Farewell, V. T., Schentag, C. T. & Gladman, D. D. Description and prediction of physical functional disability in psoriatic arthritis: a longitudinal analysis using a Markov model approach. Arthritis Rheum. 53, 404–409 (2005).

    PubMed  Google Scholar 

  48. Bond, S. J., Farewell, V. T., Schentag, C. T. & Gladman, D. D. Predictors for radiological damage in psoriatic arthritis: results from a single centre. Ann. Rheum. Dis. 66, 370–376 (2007).

    PubMed  Google Scholar 

  49. Gladman, D. D. et al. Risk factors for radiographic progression in psoriatic arthritis: subanalysis of the randomized controlled trial ADEPT. Arthritis Res. Ther. 12, R113 (2010).

    PubMed  PubMed Central  Google Scholar 

  50. Gladman, D. D., Farewell, V. T. & Nadeau, C. Clinical indicators of progression in psoriatic arthritis: multivariate relative risk model. J. Rheumatol. 22, 675–679 (1995).

    CAS  PubMed  Google Scholar 

  51. Lindqvist, U. R. C. et al. The Swedish early psoriatic arthritis register 2-year followup: a comparison with early rheumatoid arthritis. J. Rheumatol. 35, 668–673 (2008).

    PubMed  Google Scholar 

  52. Theander, E. et al. Early psoriatic arthritis: short symptom duration, male gender and preserved physical functioning at presentation predict favourable outcome at 5-year follow-up. Results from the Swedish Early Psoriatic Arthritis Register (SwePsA). Ann. Rheum. Dis. 73, 407–413 (2014).

    PubMed  Google Scholar 

  53. Antony, A. S. et al. Psoriatic nail dystrophy is associated with erosive disease in the distal interphalangeal joints in psoriatic arthritis: a retrospective cohort study. J Rheumatol. 46, 1097–1102 (2019).

    PubMed  Google Scholar 

  54. Ho, P. et al. HLA-Cw6 and HLA-DRB1*07 together are associated with less severe joint disease in psoriatic arthritis. Ann. Rheum. Dis. 66, 807–811 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Queiro-Silva, R., Torre-Alonso, J. C., Tinturé-Eguren, T. & López-Lagunas, I. A polyarticular onset predicts erosive and deforming disease in psoriatic arthritis. Ann. Rheum. Dis. 62, 68–70 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Jadon, D. et al. Exploring ankylosing spondylitis-associated ERAP1, IL23R and IL12B gene polymorphisms in subphenotypes of psoriatic arthritis. Rheumatology 52, 261–266 (2013).

    CAS  PubMed  Google Scholar 

  57. Haroon, M., Winchester, R., Giles, J. T., Heffernan, E. & FitzGerald, O. Certain class I HLA alleles and haplotypes implicated in susceptibility play a role in determining specific features of the psoriatic arthritis phenotype. Ann. Rheum. Dis. 75, 155–162 (2016).

    CAS  PubMed  Google Scholar 

  58. Rahman, P. et al. A variant of the IL4 I50V single-nucleotide polymorphism is associated with erosive joint disease in psoriatic arthritis. Arthritis Rheumatol. 58, 2207–2208 (2008).

    Google Scholar 

  59. Balding, J. et al. Cytokine gene polymorphisms: association with psoriatic arthritis susceptibility and severity. Arthritis Rheum. 48, 1408–1413 (2003).

    CAS  PubMed  Google Scholar 

  60. Giles, J. T. et al. The occurrence of peripheral arthritis mutilans in psoriatic arthritis is associated with certain major histocompatibility class I alleles [abstract 3098]. Arthritis Rheumatol. 28 (Suppl. 10), (2016).

  61. Schett, G. Structural bone changes in spondyloarthritis: mechanisms, clinical impact and therapeutic considerations. Am. J. Med. Sci. 341, 269–271 (2011).

    PubMed  Google Scholar 

  62. Sato, K. et al. TH17 functions as an osteoclastogenic helper T cell subset that links T cell activation and bone destruction. J. Exp. Med. 203, 2673–2682 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. van der Heijde, D. et al. Brief report: secukinumab provides significant and sustained inhibition of joint structural damage in a phase III study of active psoriatic arthritis. Arthritis Rheumatol. 68, 1914–1921 (2016).

    PubMed  PubMed Central  Google Scholar 

  64. Mease, P. J. et al. Adalimumab for the treatment of patients with moderately to severely active psoriatic arthritis: results of a double-blind, randomized, placebo-controlled trial. Arthritis Rheum. 52, 3279–3289 (2005).

    CAS  PubMed  Google Scholar 

  65. Mease, P. J. et al. Etanercept treatment of psoriatic arthritis: safety, efficacy, and effect on disease progression. Arthritis Rheum. 50, 2264–2272 (2004).

    CAS  PubMed  Google Scholar 

  66. van der Heijde, D. et al. Infliximab inhibits progression of radiographic damage in patients with active psoriatic arthritis through one year of treatment: results from the induction and maintenance psoriatic arthritis clinical trial 2. Arthritis Rheum. 56, 2698–2707 (2007).

    PubMed  Google Scholar 

  67. Quinn, J. M. et al. IL-23 inhibits osteoclastogenesis indirectly through lymphocytes and is required for the maintenance of bone mass in mice. J. Immunol. 181, 5720–5729 (2008).

    CAS  PubMed  Google Scholar 

  68. Jadon, D. R. et al. Serum soluble bone turnover biomarkers in psoriatic arthritis and psoriatic spondyloarthropathy. J. Rheumatol. 42, 21–30 (2014).

    PubMed  Google Scholar 

  69. Daoussis, D. et al. Evidence that Dkk-1 is dysfunctional in ankylosing spondylitis. Arthritis Rheum. 62, 150–158 (2010).

    CAS  PubMed  Google Scholar 

  70. Klingberg, E., Nurkkala, M., Carlsten, H. & Forsblad-d’Elia, H. Biomarkers of bone metabolism in ankylosing spondylitis in relation to osteoproliferation and osteoporosis. J. Rheumatol. 41, 1349–1356 (2014).

    PubMed  Google Scholar 

  71. Wang, S. Y. et al. Circulating Dickkopf-1 is correlated with bone erosion and inflammation in rheumatoid arthritis. J. Rheumatol. 38, 821–827 (2011).

    CAS  PubMed  Google Scholar 

  72. de Andrade, K. R. et al. Evaluation of circulating levels of inflammatory and bone formation markers in axial spondyloarthritis. Int. Immunopharmacol. 21, 481–486 (2014).

    PubMed  Google Scholar 

  73. Yucong, Z. et al. Serum functional dickkopf-1 levels are inversely correlated with radiographic severity of ankylosing spondylitis. Clin. Lab. 60, 1527–1531 (2014).

    PubMed  Google Scholar 

  74. Taylan, A. et al. Biomarkers and cytokines of bone turnover: extensive evaluation in a cohort of patients with ankylosing spondylitis. BMC Musculoskelet. Disord. 13, 191 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Kwon, S. R. et al. Dickkopf-1 level is lower in patients with ankylosing spondylitis than in healthy people and is not influenced by anti-tumor necrosis factor therapy. Rheumatol. Int. 32, 2523–2527 (2012).

    CAS  PubMed  Google Scholar 

  76. Heiland, G. R. et al. High level of functional dickkopf-1 predicts protection from syndesmophyte formation in patients with ankylosing spondylitis. Ann. Rheum. Dis. 71, 572–574 (2012).

    CAS  PubMed  Google Scholar 

  77. Jadon, D. R. et al. Serum bone-turnover biomarkers are associated with the occurrence of peripheral and axial arthritis in psoriatic disease: a prospective cross-sectional comparative study. Arthritis Res. Ther. 19, 210 (2017).

    PubMed  PubMed Central  Google Scholar 

  78. Diarra, D. et al. Dickkopf-1 is a master regulator of joint remodeling. Nat. Med. 13, 156–163 (2007).

    CAS  PubMed  Google Scholar 

  79. Zhang, J. R. et al. Different modulatory effects of IL-17, IL-22, and IL-23 on osteoblast differentiation. Mediators Inflamm. 2017, 5950395 (2017).

    PubMed  PubMed Central  Google Scholar 

  80. El-Zayadi, A. A. et al. Interleukin-22 drives the proliferation, migration and osteogenic differentiation of mesenchymal stem cells: a novel cytokine that could contribute to new bone formation in spondyloarthropathies. Rheumatology 56, 488–493 (2017).

    CAS  PubMed  Google Scholar 

  81. Kamiya, S. et al. Effects of IL-23 and IL-27 on osteoblasts and osteoclasts: inhibitory effects on osteoclast differentiation. J. Bone Min. Metab. 25, 277–285 (2007).

    CAS  Google Scholar 

  82. Osta, B., Benedetti, G. & Miossec, P. Classical and paradoxical effects of TNF-α on bone homeostasis. Front. Immunol. 5, 48 (2014).

    PubMed  PubMed Central  Google Scholar 

  83. Kaneki, H. et al. Tumor necrosis factor promotes Runx2 degradation through up-regulation of Smurf1 and Smurf2 in osteoblasts. J. Biol. Chem. 281, 4326–4333 (2006).

    CAS  PubMed  Google Scholar 

  84. Hess, K., Ushmorov, A., Fiedler, J., Brenner, R. E. & Wirth, T. TNFα promotes osteogenic differentiation of human mesenchymal stem cells by triggering the NF-κB signaling pathway. Bone 45, 367–376 (2009).

    CAS  PubMed  Google Scholar 

  85. Haroon, N. et al. The impact of tumor necrosis factor α inhibitors on radiographic progression in ankylosing spondylitis. Arthritis Rheum. 65, 2645–2654 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Chandran, V. et al. Soluble biomarkers differentiate patients with psoriatic arthritis from those with psoriasis without arthritis. Rheumatology 49, 1399–1405 (2010).

    CAS  PubMed  Google Scholar 

  87. Dalbeth, N. et al. Circulating mediators of bone remodeling in psoriatic arthritis: implications for disordered osteoclastogenesis and bone erosion. Arthritis Res. Ther. 12, R164 (2010).

    PubMed  PubMed Central  Google Scholar 

  88. Grcevic, D. et al. Peripheral blood expression profiles of bone morphogenetic proteins, tumor necrosis factor-superfamily molecules, and transcription factor Runx2 could be used as markers of the form of arthritis, disease activity, and therapeutic responsiveness. J. Rheumatol. 37, 246–256 (2010).

    PubMed  Google Scholar 

  89. Smolen, J. S. et al. Treating axial spondyloarthritis and peripheral spondyloarthritis, especially psoriatic arthritis, to target: 2017 update of recommendations by an international task force. Ann. Rheum. Dis. 77, 3–17 (2018).

    PubMed  Google Scholar 

  90. Mease, P. J. & Coates, L. C. Considerations for the definition of remission criteria in psoriatic arthritis. Semin. Arthritis Rheum. 47, 786–796 (2018).

    PubMed  Google Scholar 

  91. Siebert, S., Millar, N. L. & McInnes, I. B. Why did IL-23p19 inhibition fail in AS: a tale of tissues, trials or translation? Ann. Rheum. Dis. 78, 1015–1018 (2019).

    PubMed  Google Scholar 

  92. Baeten, D. et al. Risankizumab, an IL-23 inhibitor, for ankylosing spondylitis: results of a randomised, double-blind, placebo-controlled, proof-of-concept, dose-finding phase 2 study. Ann. Rheum. Dis. 77, 1295–1302 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Coates, L. C. et al. Remission in psoriatic arthritis-where are we now? Rheumatology 57, 1321–1331 (2018).

    PubMed  Google Scholar 

  94. Ogdie, A. & Coates, L. The changing face of clinical trials in psoriatic arthritis. Curr. Rheumatol. Rep. 19, 21 (2017).

    PubMed  PubMed Central  Google Scholar 

  95. Nash, P. et al. Secukinumab versus adalimumab for psoriatic arthritis: comparative effectiveness up to 48 weeks using a matching-adjusted indirect comparison. Rheumatol. Ther. 5, 99–122 (2018).

    PubMed  PubMed Central  Google Scholar 

  96. McInnes, I. B. et al. Secukinumab versus adalimumab for treatment of active psoriatic arthritis (EXCEED): a double-blind, parallel-group, randomised, active-controlled, phase 3b trial. Lancet 395, 1496–1505 (2020).

    CAS  PubMed  Google Scholar 

  97. Mease, P. J. et al. A head-to-head comparison of the efficacy and safety of ixekizumab and adalimumab in biological-naive patients with active psoriatic arthritis: 24-week results of a randomised, open-label, blinded-assessor trial. Ann. Rheum. Dis. 79, 123–131 (2020).

    CAS  PubMed  Google Scholar 

  98. Dand, N. et al. HLA-C*06:02 genotype is a predictive biomarker of biologic treatment response in psoriasis. J. Allergy Clin. Immunol. 143, 2120–2130 (2019).

    CAS  PubMed  Google Scholar 

  99. van Vugt, L. J., van den Reek, J., Hannink, G., Coenen, M. J. H. & de Jong, E. Association of HLA-C*06:02 status with differential response to ustekinumab in patients with psoriasis: a systematic review and meta-analysis. JAMA Dermatol. 155, 708–715 (2019).

    PubMed  PubMed Central  Google Scholar 

  100. Masouri, S. et al. A pharmacogenetic study of psoriasis risk variants in a Greek population and prediction of responses to anti-TNF-alpha and anti-IL-12/23 agents. Mol. Diagn. Ther. 20, 221–225 (2016).

    CAS  PubMed  Google Scholar 

  101. Chiu, H. Y. et al. HLA polymorphism among Chinese patients with chronic plaque psoriasis: subgroup analysis. Br. J. Dermatol. 166, 288–297 (2012).

    CAS  PubMed  Google Scholar 

  102. Ryan, C. et al. Genetic markers of treatment response to tumour necrosis factor-alpha inhibitors in the treatment of psoriasis. Clin. Exp. Dermatol. 39, 519–524 (2014).

    CAS  PubMed  Google Scholar 

  103. Ovejero-Benito, M. C. et al. Polymorphisms associated with etanercept response in moderate-to-severe plaque psoriasis. Pharmacogenomics. 18, 631–638 (2017).

    CAS  PubMed  Google Scholar 

  104. Ovejero-Benito, M. C. et al. Polymorphisms associated with adalimumab and infliximab response in moderate-to-severe plaque psoriasis. Pharmacogenomics 19, 7–16 (2018).

    CAS  PubMed  Google Scholar 

  105. Prieto-Perez, R. et al. New polymorphisms associated with response to anti-TNF drugs in patients with moderate-to-severe plaque psoriasis. Pharmacogenomics J. 18, 70–75 (2018).

    CAS  PubMed  Google Scholar 

  106. Nishikawa, R. et al. Genetic prediction of the effectiveness of biologics for psoriasis treatment. J. Dermatol. 43, 1273–1277 (2016).

    CAS  PubMed  Google Scholar 

  107. Ovejero-Benito, M. C. et al. Polymorphisms associated with anti-TNF drugs response in patients with psoriasis and psoriatic arthritis. J. Eur. Acad. Dermatol. Venereol. 33, e175–e177 (2019).

    CAS  PubMed  Google Scholar 

  108. Fabris, M. et al. The -308 TNFα and the -174 IL-6 promoter polymorphisms associate with effective anti-TNFα treatment in seronegative spondyloarthritis. Pharmacogenomics J 16, 238–242 (2016).

    CAS  PubMed  Google Scholar 

  109. Murdaca, G. et al. TNF-α gene polymorphisms: association with disease susceptibility and response to anti-TNF-α treatment in psoriatic arthritis. J. Invest. Dermatol. 134, 2503–2509 (2014).

    CAS  PubMed  Google Scholar 

  110. Tan, H. et al. Early clinical response to tofacitinib treatment as a predictor of subsequent efficacy: results from two phase 3 studies of patients with moderate-to-severe plaque psoriasis. J. Dermatol. Treat. 28, 3–7 (2017).

    CAS  Google Scholar 

  111. Strober, B. E. et al. Changes in C-reactive protein in patients with moderate-to-severe psoriasis switched to adalimumab therapy after suboptimal response to etanercept, methotrexate or phototherapy. J. Eur. Acad. Dermatol. Venereol. 28, 1701–1706 (2014).

    CAS  PubMed  Google Scholar 

  112. Kanelleas, A. et al. The role of inflammatory markers in assessing disease severity and response to treatment in patients with psoriasis treated with etanercept. Clin. Exp. Dermatol. 36, 845–850 (2011).

    CAS  PubMed  Google Scholar 

  113. Scrivo, R. et al. An observational prospective study on predictors of clinical response at six months in patients with active psoriatic arthritis treated with golimumab. Clin. Exp. Rheumatol. 38, 107–114 (2020).

    PubMed  Google Scholar 

  114. Gratacos, J., Casado, E., Real, J. & Torre-Alonso, J. C. Prediction of major clinical response (ACR50) to infliximab in psoriatic arthritis refractory to methotrexate. Ann. Rheum. Dis. 66, 493–497 (2007).

    CAS  PubMed  Google Scholar 

  115. Kristensen, L. E., Gulfe, A., Saxne, T. & Geborek, P. Efficacy and tolerability of anti-tumour necrosis factor therapy in psoriatic arthritis patients: results from the South Swedish Arthritis Treatment Group register. Ann. Rheum. Dis. 67, 364–369 (2008).

    CAS  PubMed  Google Scholar 

  116. Muramatsu, S., Kubo, R., Nishida, E. & Morita, A. Serum interleukin-6 levels in response to biologic treatment in patients with psoriasis. Mod. Rheumatol. 27, 137–141 (2017).

    CAS  PubMed  Google Scholar 

  117. Pedersen, S. J. et al. Circulating levels of interleukin-6, vascular endothelial growth factor, YKL-40, matrix metalloproteinase-3, and total aggrecan in spondyloarthritis patients during 3 years of treatment with TNFα inhibitors. Clin. Rheumatol. 29, 1301–1309 (2010).

    PubMed  Google Scholar 

  118. Chandran, V. et al. Soluble biomarkers associated with response to treatment with tumor necrosis factor inhibitors in psoriatic arthritis. J. Rheumatol. 40, 866–871 (2013).

    CAS  PubMed  Google Scholar 

  119. Wagner, C. L. et al. Markers of inflammation and bone remodelling associated with improvement in clinical response measures in psoriatic arthritis patients treated with golimumab. Ann. Rheum. Dis. 72, 83–88 (2013).

    CAS  PubMed  Google Scholar 

  120. Chimenti, M. S. et al. Complement system in psoriatic arthritis: a useful marker in response prediction and monitoring of anti-TNF treatment. Clin. Exp. Rheumatol. 30, 23–30 (2012).

    CAS  PubMed  Google Scholar 

  121. Gedebjerg, A., Johansen, C., Kragballe, K. & Iversen, L. IL-20, IL-21 and p40: potential biomarkers of treatment response for ustekinumab. Acta Derm. Venereol. 93, 150–155 (2013).

    CAS  PubMed  Google Scholar 

  122. Lembo, S. et al. MCP-1 in psoriatic patients: effect of biological therapy. J. Dermatol. Treat. 25, 83–86 (2014).

    CAS  Google Scholar 

  123. Pontifex, E. K. et al. Change in CD3 positive T-cell expression in psoriatic arthritis synovium correlates with change in DAS28 and magnetic resonance imaging synovitis scores following initiation of biologic therapy–a single centre, open-label study. Arthritis Res. Ther. 13, R7 (2011).

    PubMed  PubMed Central  Google Scholar 

  124. Collins, E. S. et al. A clinically based protein discovery strategy to identify potential biomarkers of response to anti-TNF-α treatment of psoriatic arthritis. Proteom. Clin. Appl. 10, 645–662 (2016).

    CAS  Google Scholar 

  125. Ademowo, O. S. et al. Discovery and confirmation of a protein biomarker panel with potential to predict response to biological therapy in psoriatic arthritis. Ann. Rheum. Dis. 75, 234–241 (2016).

    CAS  PubMed  Google Scholar 

  126. Stober, C. et al. Prevalence and predictors of tumour necrosis factor inhibitor persistence in psoriatic arthritis. Rheumatology 57, 158–163 (2018).

    CAS  PubMed  Google Scholar 

  127. Kalden, J. R. & Schulze-Koops, H. Immunogenicity and loss of response to TNF inhibitors: implications for rheumatoid arthritis treatment. Nat. Rev. Rheumatol. 13, 707–718 (2017).

    CAS  PubMed  Google Scholar 

  128. Mease, P. J. et al. Presence of poor prognostic factors may predict response to abatacept in patients with active psoriatic arthritis: results from a post hoc analysis from a phase III study [abstract 608]. Arthritis Rheumatol. 69 (Suppl. 10), (2017).

  129. Padilla-Martinez, E. et al. Drug levels and antibodies against TNF-blockers in spondyloarthritis and rheumatoid arthritis are associated with the activity but they do not predict it. Curr. Rheumatol. Rev. 15, 329–335 (2019).

    CAS  PubMed  Google Scholar 

  130. Jani, M., Chinoy, H. & Barton, A. Outpass. Association of pharmacological biomarkers with treatment response and long-term disability in patients with psoriatic arthritis: results from the outcomes of treatment in Psoriatic Arthritis Study Syndicate. J Rheumatol. 47, 1204–1208 (2019).

    PubMed  Google Scholar 

  131. Mease, P. J. et al. Comparative effectiveness of biologic monotherapy versus combination therapy for patients with psoriatic arthritis: results from the Corrona registry. RMD Open 1, e000181 (2015).

    PubMed  PubMed Central  Google Scholar 

  132. Zhang, F. et al. Defining inflammatory cell states in rheumatoid arthritis joint synovial tissues by integrating single-cell transcriptomics and mass cytometry. Nat. Immunol. 20, 928–942 (2019).

    PubMed  PubMed Central  Google Scholar 

  133. Fonseka, C. Y. et al. Mixed-effects association of single cells identifies an expanded effector CD4+ T cell subset in rheumatoid arthritis. Sci. Transl Med. 10, eaaq0305 (2018).

    PubMed  PubMed Central  Google Scholar 

  134. Donlin, L. T. et al. Methods for high-dimensional analysis of cells dissociated from cryopreserved synovial tissue. Arthritis Res. Ther. 20, 139 (2018).

    PubMed  PubMed Central  Google Scholar 

  135. Der, E. et al. Single cell RNA sequencing to dissect the molecular heterogeneity in lupus nephritis. JCI Insight 2, e93009 (2017).

    PubMed Central  Google Scholar 

  136. Rao, D. A. et al. Pathologically expanded peripheral T helper cell subset drives B cells in rheumatoid arthritis. Nature 542, 110–114 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  137. Stephenson, W. et al. Single-cell RNA-seq of rheumatoid arthritis synovial tissue using low-cost microfluidic instrumentation. Nat. Commun. 9, 791 (2018).

    PubMed  PubMed Central  Google Scholar 

  138. Mizoguchi, F. et al. Functionally distinct disease-associated fibroblast subsets in rheumatoid arthritis. Nat. Commun. 9, 789 (2018).

    PubMed  PubMed Central  Google Scholar 

  139. Lewis, M. J. et al. Molecular portraits of early rheumatoid arthritis identify clinical and treatment response phenotypes. Cell Rep. 28, 2455–2470 e5 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  140. EU Clinical Trials Register. Stratification of Biologic Therapies for RA by Pathobiology (STRAP)-EU: A Randomised, Open-Labelled Biopsy-Driven Stratification Trial in DMARD Inadequate Responder Patients Randomised to Etanercept, Rituximab or Tocilizumab. [Internet]. https://www.clinicaltrialsregister.eu/ctr-search/search?query=Stratification+of+Biologic+Therapies+for+Rheumatoid+Arthritis+by+Pathobiology+ (2018).

  141. Miyagawa, I. et al. Precision medicine using different biological DMARDs based on characteristic phenotypes of peripheral T helper cells in psoriatic arthritis. Rheumatology 58, 336–344 (2019).

    CAS  PubMed  Google Scholar 

  142. Coates, L. C. et al. Group for Research and Assessment of Psoriasis and Psoriatic Arthritis/Outcome Measures in Rheumatology consensus-based recommendations and research agenda for use of composite measures and treatment targets in psoriatic arthritis. Arthritis Rheumatol. 70, 345–355 (2018).

    PubMed  Google Scholar 

  143. Albrecht, A. et al. The structural basis of MRI bone erosions: an assessment by microCT. Ann. Rheum. Dis. 72, 1351–1357 (2013).

    PubMed  Google Scholar 

  144. Simon, D. et al. Analysis of periarticular bone changes in patients with cutaneous psoriasis without associated psoriatic arthritis. Ann. Rheum. Dis. 75, 660–666 (2016).

    CAS  PubMed  Google Scholar 

  145. Kampylafka, E. et al. Resolution of synovitis and arrest of catabolic and anabolic bone changes in patients with psoriatic arthritis by IL-17A blockade with secukinumab: results from the prospective PSARTROS study. Arthritis Res. Ther. 20, 153 (2018).

    PubMed  PubMed Central  Google Scholar 

  146. Cambre, I. et al. Mechanical strain determines the site-specific localization of inflammation and tissue damage in arthritis. Nat. Commun. 9, 4613 (2018).

    PubMed  PubMed Central  Google Scholar 

  147. Jacques, P. et al. Proof of concept: enthesitis and new bone formation in spondyloarthritis are driven by mechanical strain and stromal cells. Ann. Rheum. Dis. 73, 437–445 (2014).

    PubMed  Google Scholar 

  148. Finzel, S. et al. A detailed comparative study of high-resolution ultrasound and micro-computed tomography for detection of arthritic bone erosions. Arthritis Rheum. 63, 1231–1236 (2011).

    PubMed  Google Scholar 

  149. Gravallese, E. M. & Schett, G. Effects of the IL-23–IL-17 pathway on bone in spondyloarthritis. Nat. Rev. Rheumatol. 14, 631–640 (2018).

    CAS  PubMed  Google Scholar 

  150. Simon, D. et al. Effect of disease-modifying anti-rheumatic drugs on bone structure and strength in psoriatic arthritis patients. Arthritis Res. Ther. 21, 162 (2019).

    PubMed  PubMed Central  Google Scholar 

  151. Fukuda, T. et al. Dual energy CT iodine map for delineating inflammation of inflammatory arthritis. Eur. Radiol. 27, 5034–5040 (2017).

    PubMed  Google Scholar 

  152. Canzoni, M. et al. Clinical and ultrasonographic predictors for achieving minimal disease activity in patients with psoriatic arthritis: the UPSTREAM (Ultrasound in psoriatic arthritis treatment) prospective observational study protocol. BMJ Open 8, e021942 (2018).

    PubMed  PubMed Central  Google Scholar 

  153. Mandl, P. & Aletaha, D. The role of ultrasound and magnetic resonance imaging for treat to target in rheumatoid arthritis and psoriatic arthritis. Rheumatology 58, 2091–2098 (2019).

    PubMed  Google Scholar 

  154. Solmaz, D. et al. Musculoskeletal ultrasound can improve referrals from dermatology to rheumatology for patients with psoriasis. Br. J. Dermatol. 182, 804–806 (2019).

    PubMed  Google Scholar 

  155. Glinatsi, D. et al. Validation of the OMERACT psoriatic arthritis magnetic resonance imaging score (PsAMRIS) for the hand and foot in a randomized placebo-controlled trial. J. Rheumatol. 42, 2473–2479 (2015).

    PubMed  Google Scholar 

  156. Takata, T. et al. 18FDG PET/CT is a powerful tool for detecting subclinical arthritis in patients with psoriatic arthritis and/or psoriasis vulgaris. J. Dermatol. Sci. 64, 144–147 (2011).

    CAS  PubMed  Google Scholar 

  157. Chaudhari, A. J. et al. High-resolution 18F-FDG PET/CT for assessing disease activity in rheumatoid and psoriatic arthritis: findings of a prospective pilot study. Br. J. Radiol. 89, 20160138 (2016).

    PubMed  PubMed Central  Google Scholar 

  158. Rose, S. et al. Psoriatic arthritis and sacroiliitis are associated with increased vascular inflammation by 18-fluorodeoxyglucose positron emission tomography computed tomography: baseline report from the Psoriasis Atherosclerosis and Cardiometabolic Disease Initiative. Arthritis Res. Ther. 16, R161 (2014).

    PubMed  PubMed Central  Google Scholar 

  159. Bridgewood, C. et al. Identification of myeloid cells in the human enthesis as the main source of local IL-23 production. Ann. Rheum. Dis 78, 929–933 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  160. Nerviani, A. et al. Histological and molecular portrait of the synovial tissue in early treatment-naïve psoriatic arthritis in comparison with rheumatoid arthritis [abstract OP0113]. Ann. Rheum. Dis. 78 (Suppl. 2), (2019).

  161. Olivier, M., Asmis, R., Hawkins, G. A., Howard, T. D. & Cox, L. A. The need for multi-omics biomarker signatures in precision medicine. Int. J. Mol. Sci. 20, 4781 (2019).

    CAS  PubMed Central  Google Scholar 

  162. Yates, J. R. III Innovation: Structural proteomics goes global. J. Proteome Res. 17, 3613 (2018).

    CAS  PubMed  Google Scholar 

  163. Marx, V. A dream of single-cell proteomics. Nat. Methods. 16, 809–812 (2019).

    CAS  PubMed  Google Scholar 

  164. Cheung, P., Khatri, P., Utz, P. J. & Kuo, A. J. Single-cell technologies — studying rheumatic diseases one cell at a time. Nat. Rev. Rheumatol. 15, 340–354 (2019).

    PubMed  PubMed Central  Google Scholar 

  165. Sharma, S. et al. Using single cell analysis for translational studies in immune mediated diseases: opportunities and challenges. Mol. Immunol. 103, 191–199 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  166. Landhuis, E. Single-cell approaches to immune profiling. Nature 557, 595–597 (2018).

    CAS  PubMed  Google Scholar 

  167. Bock, C., Farlik, M. & Sheffield, N. C. Multi-omics of single cells: strategies and applications. Trends Biotechnol. 34, 605–608 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  168. Ang, M. Y. et al. Proteogenomics: from next-generation sequencing (NGS) and mass spectrometry-based proteomics to precision medicine. Clin. Chim. Acta. 498, 38–46 (2019).

    CAS  PubMed  Google Scholar 

  169. Nesvizhskii, A. I. Proteogenomics: concepts, applications and computational strategies. Nat. Methods 11, 1114–1125 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  170. Zhu, Y. et al. Discovery of coding regions in the human genome by integrated proteogenomics analysis workflow. Nat. Commun. 9, 903 (2018).

    PubMed  PubMed Central  Google Scholar 

  171. Mertins, P. et al. Proteogenomics connects somatic mutations to signalling in breast cancer. Nature 534, 55–62 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  172. Zhang, B. et al. Proteogenomic characterization of human colon and rectal cancer. Nature 513, 382–387 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  173. Rodriguez, H. & Pennington, S. R. Revolutionizing precision oncology through collaborative proteogenomics and data sharing. Cell 173, 535–539 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  174. Blum, B. C., Mousavi, F. & Emili, A. Single-platform ‘multi-omic’ profiling: unified mass spectrometry and computational workflows for integrative proteomics-metabolomics analysis. Mol. Omics 14, 307–319 (2018).

    CAS  PubMed  Google Scholar 

  175. Kim, M. & Tagkopoulos, I. Data integration and predictive modeling methods for multi-omics datasets. Mol. Omics 14, 8–25 (2018).

    CAS  PubMed  Google Scholar 

  176. Buckley, C. D. Macrophages form a protective cellular barrier in joints. Nature 572, 590–592 (2019).

    CAS  PubMed  Google Scholar 

  177. Culemann, S. et al. Locally renewing resident synovial macrophages provide a protective barrier for the joint. Nature 572, 670–675 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  178. Croft, A. P. et al. Distinct fibroblast subsets drive inflammation and damage in arthritis. Nature 570, 246–251 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  179. Wynn, T. A. Two types of fibroblast drive arthritis. Nature 570, 169–170 (2019).

    CAS  PubMed  Google Scholar 

  180. Ciuffa, R. et al. Contribution of mass spectrometry-based proteomics to the understanding of TNF-α signaling. J. Proteome Res. 16, 14–33 (2017).

    CAS  PubMed  Google Scholar 

  181. Nash, P. et al. Ixekizumab for the treatment of patients with active psoriatic arthritis and an inadequate response to tumour necrosis factor inhibitors: results from the 24-week randomised, double-blind, placebo-controlled period of the SPIRIT-P2 phase 3 trial. Lancet 389, 2317–2327 (2017).

    CAS  PubMed  Google Scholar 

  182. Vamathevan, J. et al. Applications of machine learning in drug discovery and development. Nat. Rev. Drug Discov. 18, 463–477 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  183. Wang, F. & Preininger, A. AI in health: state of the art, challenges, and future directions. Yearb. Med. Inf. 28, 16–26. (2019).

    Google Scholar 

  184. Libbrecht, M. W. & Noble, W. S. Machine learning applications in genetics and genomics. Nat. Rev. Genet. 16, 321–332 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  185. Tasaki, S. et al. Multi-omics monitoring of drug response in rheumatoid arthritis in pursuit of molecular remission. Nat. Commun. 9, 2755 (2018).

    PubMed  PubMed Central  Google Scholar 

  186. Gossec, L. et al. EULAR points to consider for the use of big data in rheumatic and musculoskeletal diseases. Ann. Rheum. Dis. 79, 69–76 (2020).

    PubMed  Google Scholar 

  187. Heads of Medicines Agencies, European Medicines Agency. HMA-EMA Joint Big Data Taskforce Phase II report: ‘Evolving Data-Driven Regulation’ 1 (2020).

  188. Mullan, R. H. et al. Early changes in serum type II collagen biomarkers predict radiographic progression at one year in inflammatory arthritis patients after biologic therapy. Arthritis Rheum. 56, 2919–2928 (2007).

    CAS  PubMed  Google Scholar 

  189. Connolly, M. et al. Acute-phase serum amyloid A regulates tumor necrosis factor alpha and matrix turnover and predicts disease progression in patients with inflammatory arthritis before and after biologic therapy. Arthritis Rheum. 64, 1035–1045 (2012).

    CAS  PubMed  Google Scholar 

  190. Madland, T. M., Larsen, A. & Brun, J. G. S100 proteins calprotectin and S100A12 are related to radiographic changes rather than disease activity in psoriatic arthritis with low disease activity. J. Rheumatol. 34, 2089–2092 (2007).

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All of the authors contributed to researching data for the article, made substantial contributions to discussion of the content, writing the manuscript and reviewing and/or editing the manuscript before submission.

Corresponding author

Correspondence to Oliver FitzGerald.

Ethics declarations

Competing interests

S.R.P. is founder of the UCD spin-out company Atturos. O.F. declares that he has received grants and/or honoraria from a number of pharmaceutical companies, including AbbVie, Amgen, Janssen, Lilly, Novartis, Pfizer and UCB. D.R.J. declares that he has received research/educational grants and/or honoraria from a number of pharmaceutical companies including AbbVie, Biogen, Celgene, Gilead, Janssen, Lilly, Merck, Novartis, Pfizer and UCB. D.R.J. acknowledges support for research time from the Cambridge Arthritis Research Endeavour (CARE). C.S. declares that she has received honoraria from Janssen, Lilly and UCB, and has been supported by the National Institute for Health Research and the Cambridge Arthritis Research Endeavour (CARE).

Additional information

Peer review information

Nature Reviews Rheumatology thanks R. Scarpa and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Accelerating Medicines Partnership: https://www.nih.gov/research-training/accelerating-medicines-partnership-amp

Maximising Therapeutic Utility in Rheumatoid Arthritis (MATURA): http://www.matura.whri.qmul.ac.uk/

The Genotype-Tissue Expression (GTEx) project: https://gtexportal.org/home/

The Human Cell Atlas consortium: https://www.humancellatlas.org/

The Human Protein Atlas: https://www.proteinatlas.org/

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Jadon, D.R., Stober, C., Pennington, S.R. et al. Applying precision medicine to unmet clinical needs in psoriatic disease. Nat Rev Rheumatol 16, 609–627 (2020). https://doi.org/10.1038/s41584-020-00507-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41584-020-00507-9

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing