Evasion of apoptosis by myofibroblasts: a hallmark of fibrotic diseases

Article metrics


Organ fibrosis is a lethal outcome of autoimmune rheumatic diseases such as systemic sclerosis. Myofibroblasts are scar-forming cells that are ultimately responsible for the excessive synthesis, deposition and remodelling of extracellular matrix proteins in fibrosis. Advances have been made in our understanding of the mechanisms that keep myofibroblasts in an activated state and control myofibroblast functions. However, the mechanisms that help myofibroblasts to persist in fibrotic tissues remain poorly understood. Myofibroblasts evade apoptosis by activating molecular mechanisms in response to pro-survival biomechanical and growth factor signals from the fibrotic microenvironment, which can ultimately lead to the acquisition of a senescent phenotype. Growing evidence suggests that myofibroblasts and senescent myofibroblasts, rather than being resistant to apoptosis, are actually primed for apoptosis owing to concomitant activation of cell death signalling pathways; these cells are poised to apoptose when survival pathways are inhibited. This knowledge of apoptotic priming has paved the way for new therapies that trigger apoptosis in myofibroblasts by blocking pro-survival mechanisms, target senescent myofibroblast for apoptosis or promote the reprogramming of myofibroblasts into scar-resolving cells. These novel strategies are not only poised to prevent progressive tissue scarring, but also have the potential to reverse established fibrosis and to regenerate chronically injured tissues.

Key points

  • Organ fibrosis is a lethal outcome of autoimmune rheumatic diseases such as systemic sclerosis (SSc).

  • Myofibroblasts are scar-forming cells that are responsible for the excessive synthesis, deposition and remodelling of extracellular matrix proteins in SSc.

  • Persistent myofibroblast activity leads to progressive tissue fibrosis and distortion of the normal tissue architecture, resulting in organ failure and, ultimately, in death.

  • The termination of myofibroblast activity is suppressed in fibrotic disease by biomechanical and biochemical cues, which assist myofibroblast escape from apoptosis, thereby halting their elimination.

  • Evasion of apoptosis results in persistent myofibroblast activation and/or the differentiation of myofibroblasts into a pro-fibrotic or pro-inflammatory senescent phenotype, thereby preventing fibrosis resolution.

  • Targeting myofibroblast apoptosis and reprogramming these cells to become scar-resolving cells are emerging as novel therapeutic strategies to reverse established fibrosis.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Origin, functions and fate of myofibroblasts during tissue repair and fibrosis.
Fig. 2: Intrinsic and extrinsic apoptosis pathways.
Fig. 3: Mitochondrial priming of myofibroblasts.
Fig. 4: Molecular control of myofibroblast activation and survival.


  1. 1.

    Ho, Y. Y., Lagares, D., Tager, A. M. & Kapoor, M. Fibrosis – a lethal component of systemic sclerosis. Nat. Rev. Rheumatol. 10, 390–402 (2014).

  2. 2.

    Smolen, J. S. et al. Rheumatoid arthritis. Nat. Rev. Dis. Primers 4, 18001 (2018).

  3. 3.

    Bongartz, T. et al. Incidence and mortality of interstitial lung disease in rheumatoid arthritis: a population-based study. Arthritis. Rheum. 62, 1583–1591 (2010).

  4. 4.

    Allanore, Y. et al. Systemic sclerosis. Nat. Rev. Dis. Primers 1, 15002 (2015).

  5. 5.

    Trojanowska, M. & Varga, J. in Scleroderma (eds Varga, J., Wigley, F., Allanore, Y. & Kuwana, M.) 261–280 (Springer, 2017).

  6. 6.

    Steen, V. D. & Medsger, T. A. Changes in causes of death in systemic sclerosis, 1972-2002. Ann. Rheum. Dis. 66, 940–944 (2007).

  7. 7.

    Wells, A. U. & Denton, C. P. Interstitial lung disease in connective tissue disease – mechanisms and management. Nat. Rev. Rheumatol. 10, 728–739 (2014).

  8. 8.

    Distler, O. et al. Nintedanib for systemic sclerosis-associated interstitial lung disease. N. Engl. J. Med. 380, 2518–2528 (2019).

  9. 9.

    US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT01933334 (2016).

  10. 10.

    US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT03068234 (2017).

  11. 11.

    US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT03856853 (2019).

  12. 12.

    US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT03221257 (2019).

  13. 13.

    King, T. E. Jr. et al. A phase 3 trial of pirfenidone in patients with idiopathic pulmonary fibrosis. N. Engl. J. Med. 370, 2083–2092 (2014).

  14. 14.

    Kumar, A., Kapnadak, S. G., Girgis, R. E. & Raghu, G. Lung transplantation in idiopathic pulmonary fibrosis. Expert. Rev. Respir. Med. 12, 375–385 (2018).

  15. 15.

    Tomasek, J. J., Gabbiani, G., Hinz, B., Chaponnier, C. & Brown, R. A. Myofibroblasts and mechano-regulation of connective tissue remodelling. Nat. Rev. Mol. Cell Biol. 3, 349–363 (2002).

  16. 16.

    van Caam, A., Vonk, M., van den Hoogen, F., van Lent, P. & van der Kraan, P. Unraveling SSc pathophysiology; the myofibroblast. Front. Immunol. 9, 2452 (2018).

  17. 17.

    Hinz, B. et al. The myofibroblast: one function, multiple origins. Am. J. Pathol. 170, 1807–1816 (2007).

  18. 18.

    Marangoni, R. G. et al. Myofibroblasts in murine cutaneous fibrosis originate from adiponectin-positive intradermal progenitors. Arthritis Rheumatol. 67, 1062–1073 (2015).

  19. 19.

    Rajkumar, V. S. et al. Shared expression of phenotypic markers in systemic sclerosis indicates a convergence of pericytes and fibroblasts to a myofibroblast lineage in fibrosis. Arthritis Res. Ther. 7, R1113–R1123 (2005).

  20. 20.

    Philippeos, C. et al. Spatial and single-cell transcriptional profiling identifies functionally distinct human dermal fibroblast subpopulations. J. Invest. Dermatol. 138, 811–825 (2018).

  21. 21.

    Jiang, D. et al. Two succeeding fibroblastic lineages drive dermal development and the transition from regeneration to scarring. Nat. Cell Biol. 20, 422–431 (2018).

  22. 22.

    Harper, R. A. & Grove, G. Human skin fibroblasts derived from papillary and reticular dermis: differences in growth potential in vitro. Science 204, 526–527 (1979).

  23. 23.

    Sorrell, J. M. & Caplan, A. I. Fibroblast heterogeneity: more than skin deep. J. Cell Sci. 117, 667–675 (2004).

  24. 24.

    Humphrey, J. D., Dufresne, E. R. & Schwartz, M. A. Mechanotransduction and extracellular matrix homeostasis. Nat. Rev. Mol. Cell Biol. 15, 802–812 (2014).

  25. 25.

    Tallquist, M. D. & Molkentin, J. D. Redefining the identity of cardiac fibroblasts. Nat. Rev. Cardiol. 14, 484–491 (2017).

  26. 26.

    Hinz, B. & Suki, B. Does breathing amplify fibrosis? Am. J. Respir. Crit. Care Med. 194, 9–11 (2016).

  27. 27.

    Lambert, C. A., Colige, A. C., Munaut, C., Lapiere, C. M. & Nusgens, B. V. Distinct pathways in the over-expression of matrix metalloproteinases in human fibroblasts by relaxation of mechanical tension. Matrix Biol. 20, 397–408 (2001).

  28. 28.

    Leung, D. Y., Glagov, S. & Mathews, M. B. Cyclic stretching stimulates synthesis of matrix components by arterial smooth muscle cells in vitro. Science 191, 475–477 (1976).

  29. 29.

    Bonnans, C., Chou, J. & Werb, Z. Remodelling the extracellular matrix in development and disease. Nat. Rev. Mol. Cell Biol. 15, 786–801 (2014).

  30. 30.

    Hinz, B. Myofibroblasts. Exp. Eye Res. 142, 56–70 (2016).

  31. 31.

    Pakshir, P. & Hinz, B. The big five in fibrosis: macrophages, myofibroblasts, matrix, mechanics, and miscommunication. Matrix Biol. 68, 91–93 (2018).

  32. 32.

    Gabbiani, G., Ryan, G. B. & Majno, G. Presence of modified fibroblasts in granulation tissue and their possible role in wound contraction. Experientia 27, 549–550 (1971).

  33. 33.

    Talele, N. P., Fradette, J., Davies, J. E., Kapus, A. & Hinz, B. Expression of α-smooth muscle actin determines the fate of mesenchymal stromal cells. Stem Cell Rep. 4, 1016–1030 (2015).

  34. 34.

    Farbehi, N. et al. Single-cell expression profiling reveals dynamic flux of cardiac stromal, vascular and immune cells in health and injury. eLife 8, e43882 (2019).

  35. 35.

    Guerrero-Juarez, C. F. et al. Single-cell analysis reveals fibroblast heterogeneity and myeloid-derived adipocyte progenitors in murine skin wounds. Nat. Commun. 10, 650 (2019).

  36. 36.

    Xie, T. et al. Single-cell deconvolution of fibroblast heterogeneity in mouse pulmonary fibrosis. Cell Rep. 22, 3625–3640 (2018).

  37. 37.

    Tabib, T., Morse, C., Wang, T., Chen, W. & Lafyatis, R. SFRP2/DPP4 and FMO1/LSP1 define major fibroblast populations in human skin. J. Invest. Dermatol. 138, 802–810 (2018).

  38. 38.

    Peyser, R. et al. Defining the activated fibroblast population in lung fibrosis using single cell sequencing. Am. J. Respir. Cell Mol. Biol. 61, 74–85 (2019).

  39. 39.

    Bartoschek, M. et al. Spatially and functionally distinct subclasses of breast cancer-associated fibroblasts revealed by single cell RNA sequencing. Nat. Commun. 9, 5150 (2018).

  40. 40.

    Lambrechts, D. et al. Phenotype moulding of stromal cells in the lung tumour microenvironment. Nat. Med. 24, 1277–1289 (2018).

  41. 41.

    Murray, P. J. et al. Macrophage activation and polarization: nomenclature and experimental guidelines. Immunity 41, 14–20 (2014).

  42. 42.

    Park, J. et al. The Tcf21 lineage constitutes the lung lipofibroblast population. Am. J. Physiol. Lung Cell Mol. Physiol. 316, L872–L885 (2019).

  43. 43.

    Li, R. et al. Pdgfra marks a cellular lineage with distinct contributions to myofibroblasts in lung maturation and injury response. eLife 7, e36865 (2018).

  44. 44.

    Zepp, J. A. et al. Distinct mesenchymal lineages and niches promote epithelial self-renewal and myofibrogenesis in the lung. Cell 170, 1134–1148 e1110 (2017).

  45. 45.

    Falke, L. L., Gholizadeh, S., Goldschmeding, R., Kok, R. J. & Nguyen, T. Q. Diverse origins of the myofibroblast–implications for kidney fibrosis. Nat. Rev. Nephrol. 11, 233–244 (2015).

  46. 46.

    Affo, S., Yu, L. X. & Schwabe, R. F. The role of cancer-associated fibroblasts and fibrosis in liver cancer. Annu. Rev. Pathol. 12, 153–186 (2017).

  47. 47.

    Schneider, R. K. et al. Gli1+ mesenchymal stromal cells are a key driver of bone marrow fibrosis and an important cellular therapeutic target. Cell Stem Cell 20, 785–800 e788 (2017).

  48. 48.

    Di Carlo, S. E. & Peduto, L. The perivascular origin of pathological fibroblasts. J. Clin. Invest. 128, 54–63 (2018).

  49. 49.

    Lynch, M. D. & Watt, F. M. Fibroblast heterogeneity: implications for human disease. J. Clin. Invest. 128, 26–35 (2018).

  50. 50.

    Liu, S., Herault, Y., Pavlovic, G. & Leask, A. Skin progenitor cells contribute to bleomycin-induced skin fibrosis. Arthritis Rheumatol. 66, 707–713 (2014).

  51. 51.

    Driskell, R. R. et al. Distinct fibroblast lineages determine dermal architecture in skin development and repair. Nature 504, 277–281 (2013).

  52. 52.

    Rinkevich, Y. et al. Skin fibrosis. Identification and isolation of a dermal lineage with intrinsic fibrogenic potential. Science 348, aaa2151 (2015).

  53. 53.

    Croft, A. P. et al. Distinct fibroblast subsets drive inflammation and damage in arthritis. Nature 570, 246–251 (2019).

  54. 54.

    Fu, X. et al. Specialized fibroblast differentiated states underlie scar formation in the infarcted mouse heart. J. Clin. Invest. 128, 2127–2143 (2018).

  55. 55.

    Rognoni, E. et al. Fibroblast state switching orchestrates dermal maturation and wound healing. Mol. Syst. Biol. 14, e8174 (2018).

  56. 56.

    El Agha, E. et al. Two-way conversion between lipogenic and myogenic fibroblastic phenotypes marks the progression and resolution of lung fibrosis. Cell Stem Cell 20, 261–273 e263 (2017).

  57. 57.

    Sanchez-Iranzo, H. et al. Transient fibrosis resolves via fibroblast inactivation in the regenerating zebrafish heart. Proc. Natl Acad. Sci. USA 115, 4188–4193 (2018).

  58. 58.

    Jun, J. I. & Lau, L. F. The matricellular protein CCN1 induces fibroblast senescence and restricts fibrosis in cutaneous wound healing. Nat. Cell Biol. 12, 676–685 (2010).

  59. 59.

    Demaria, M. et al. An essential role for senescent cells in optimal wound healing through secretion of PDGF-AA. Dev. Cell 31, 722–733 (2014).

  60. 60.

    Kisseleva, T. et al. Myofibroblasts revert to an inactive phenotype during regression of liver fibrosis. Proc. Natl Acad. Sci. USA 109, 9448–9453 (2012).

  61. 61.

    Schuppan, D., Surabattula, R. & Wang, X. Y. Determinants of fibrosis progression and regression in NASH. J. Hepatol. 68, 238–250 (2018).

  62. 62.

    Jun, J. I. & Lau, L. F. Resolution of organ fibrosis. J. Clin. Invest. 128, 97–107 (2018).

  63. 63.

    Glasser, S. W. et al. Mechanisms of lung fibrosis resolution. Am. J. Pathol. 186, 1066–1077 (2016).

  64. 64.

    Youle, R. J. & Strasser, A. The BCL-2 protein family: opposing activities that mediate cell death. Nat. Rev. Mol. Cell Biol. 9, 47–59 (2008).

  65. 65.

    Czabotar, P. E., Lessene, G., Strasser, A. & Adams, J. M. Control of apoptosis by the BCL-2 protein family: implications for physiology and therapy. Nat. Rev. Mol. Cell Biol. 15, 49–63 (2014).

  66. 66.

    Elmore, S. Apoptosis: a review of programmed cell death. Toxicol. Pathol. 35, 495–516 (2007).

  67. 67.

    Nagata, S. Apoptosis and clearance of apoptotic cells. Annu. Rev. Immunol. 36, 489–517 (2018).

  68. 68.

    Elliott, M. R. & Ravichandran, K. S. Clearance of apoptotic cells: implications in health and disease. J. Cell Biol. 189, 1059–1070 (2010).

  69. 69.

    Jorgensen, I., Rayamajhi, M. & Miao, E. A. Programmed cell death as a defence against infection. Nat. Rev. Immunol. 17, 151–164 (2017).

  70. 70.

    Saraste, A. & Pulkki, K. Morphologic and biochemical hallmarks of apoptosis. Cardiovasc. Res. 45, 528–537 (2000).

  71. 71.

    Taylor, R. C., Cullen, S. P. & Martin, S. J. Apoptosis: controlled demolition at the cellular level. Nat. Rev. Mol. Cell Biol. 9, 231–241 (2008).

  72. 72.

    Morioka, S., Maueroder, C. & Ravichandran, K. S. Living on the edge: efferocytosis at the interface of homeostasis and pathology. Immunity 50, 1149–1162 (2019).

  73. 73.

    Singh, R., Letai, A. & Sarosiek, K. Regulation of apoptosis in health and disease: the balancing act of BCL-2 family proteins. Nat. Rev. Mol. Cell Biol. 20, 175–193 (2019).

  74. 74.

    Kantari, C. & Walczak, H. Caspase-8 and Bid: caught in the act between death receptors and mitochondria. Biochim. Biophys. Acta 1813, 558–563 (2011).

  75. 75.

    Darby, I., Skalli, O. & Gabbiani, G. Alpha-smooth muscle actin is transiently expressed by myofibroblasts during experimental wound healing. Lab. Invest. 63, 21–29 (1990).

  76. 76.

    Desmouliere, A., Redard, M., Darby, I. & Gabbiani, G. Apoptosis mediates the decrease in cellularity during the transition between granulation tissue and scar. Am. J. Pathol. 146, 56–66 (1995).

  77. 77.

    Zhang, H. Y. & Phan, S. H. Inhibition of myofibroblast apoptosis by transforming growth factor β1. Am. J. Respir. Cell Mol. Biol. 21, 658–665 (1999).

  78. 78.

    Bostrom, H. et al. PDGF-A signalling is a critical event in lung alveolar myofibroblast development and alveogenesis. Cell 85, 863–873 (1996).

  79. 79.

    Ishiguro, S. et al. Basic fibroblast growth factor induces down-regulation of alpha-smooth muscle actin and reduction of myofibroblast areas in open skin wounds. Wound Repair Regen. 17, 617–625 (2009).

  80. 80.

    Ramos, C. et al. Acidic fibroblast growth factor decreases alpha-smooth muscle actin expression and induces apoptosis in human normal lung fibroblasts. Am. J. Physiol. Lung Cell Mol. Physiol. 291, L871–L879 (2006).

  81. 81.

    Mizuno, S., Matsumoto, K., Li, M. Y. & Nakamura, T. HGF reduces advancing lung fibrosis in mice: a potential role for MMP-dependent myofibroblast apoptosis. FASEB J. 19, 580–582 (2005).

  82. 82.

    Saile, B., Knittel, T., Matthes, N., Schott, P. & Ramadori, G. CD95/CD95L-mediated apoptosis of the hepatic stellate cell. A mechanism terminating uncontrolled hepatic stellate cell proliferation during hepatic tissue repair. Am. J. Pathol. 151, 1265–1272 (1997).

  83. 83.

    Iredale, J. P. et al. Mechanisms of spontaneous resolution of rat liver fibrosis. Hepatic stellate cell apoptosis and reduced hepatic expression of metalloproteinase inhibitors. J. Clin. Invest. 102, 538–549 (1998).

  84. 84.

    Thannickal, V. J. & Horowitz, J. C. Evolving concepts of apoptosis in idiopathic pulmonary fibrosis. Proc. Am. Thorac. Soc. 3, 350–356 (2006).

  85. 85.

    Fattman, C. L. Apoptosis in pulmonary fibrosis: too much or not enough? Antioxid. Redox Signal. 10, 379–385 (2008).

  86. 86.

    Lagares, D. et al. Targeted apoptosis of myofibroblasts with the BH3 mimetic ABT-263 reverses established fibrosis. Sci. Transl Med. 9, eaal3765 (2017).

  87. 87.

    Kuehl, T. & Lagares, D. BH3 mimetics as anti-fibrotic therapy: unleashing the mitochondrial pathway of apoptosis in myofibroblasts. Matrix Biol. 68-69, 94–105 (2018).

  88. 88.

    Del Gaizo Moore, V. et al. Chronic lymphocytic leukemia requires BCL2 to sequester prodeath BIM, explaining sensitivity to BCL2 antagonist ABT-737. J. Clin. Invest. 117, 112–121 (2007).

  89. 89.

    Deng, J. et al. BH3 profiling identifies three distinct classes of apoptotic blocks to predict response to ABT-737 and conventional chemotherapeutic agents. Cancer Cell 12, 171–185 (2007).

  90. 90.

    Ryan, J. A., Brunelle, J. K. & Letai, A. Heightened mitochondrial priming is the basis for apoptotic hypersensitivity of CD4+ CD8+ thymocytes. Proc. Natl Acad. Sci. USA 107, 12895–12900 (2010).

  91. 91.

    Certo, M. et al. Mitochondria primed by death signals determine cellular addiction to antiapoptotic BCL-2 family members. Cancer Cell 9, 351–365 (2006).

  92. 92.

    Ryan, J. A., Brunelle, J. K. & Letai, A. Heightened mitochondrial priming is the basis for apoptotic hypersensitivity of CD4+ CD8+ thymocytes. Proc. Natl Acad. Sci. USA 107, 12895–12900 (2010).

  93. 93.

    Chonghaile, T. N. et al. Pretreatment mitochondrial priming correlates with clinical response to cytotoxic chemotherapy. Science 334, 1129–1133 (2011).

  94. 94.

    Volkmann, E. R. & Varga, J. Emerging targets of disease-modifying therapy for systemic sclerosis. Nat. Rev. Rheumatol. 15, 208–224 (2019).

  95. 95.

    Balestrini, J. L., Chaudhry, S., Sarrazy, V., Koehler, A. & Hinz, B. The mechanical memory of lung myofibroblasts. Integr. Biol. 4, 410–421 (2012).

  96. 96.

    Horowitz, J. C. & Thannickal, V. J. Mechanisms for the resolution of organ fibrosis. Physiology 34, 43–55 (2019).

  97. 97.

    Verrecchia, F. & Mauviel, A. Transforming growth factor-beta and fibrosis. World J. Gastroenterol. 13, 3056–3062 (2007).

  98. 98.

    Serini, G. et al. The fibronectin domain ED-A is crucial for myofibroblastic phenotype induction by transforming growth factor-beta1. J. Cell Biol. 142, 873–881 (1998).

  99. 99.

    Leask, A. & Abraham, D. J. The role of connective tissue growth factor, a multifunctional matricellular protein, in fibroblast biology. Biochem. Cell Biol. 81, 355–363 (2003).

  100. 100.

    Lagares, D. et al. ADAM10-mediated ephrin-B2 shedding promotes myofibroblast activation and organ fibrosis. Nat. Med. 23, 1405–1415 (2017).

  101. 101.

    Wu, B., Rockel, J. S., Lagares, D. & Kapoor, M. Ephrins and Eph receptor signalling in tissue repair and fibrosis. Curr. Rheumatol. Rep. 21, 23 (2019).

  102. 102.

    Santos, A. & Lagares, D. Matrix stiffness: the conductor of organ fibrosis. Curr. Rheumatol. Rep. 20, 2 (2018).

  103. 103.

    Hinz, B., McCulloch, C. A. & Coelho, N. M. Mechanical regulation of myofibroblast phenoconversion and collagen contraction. Exp. Cell Res. 379, 119–128 (2019).

  104. 104.

    Parker, M. W. et al. Fibrotic extracellular matrix activates a profibrotic positive feedback loop. J. Clin. Invest. 124, 1622–1635 (2014).

  105. 105.

    Liu, F. et al. Feedback amplification of fibrosis through matrix stiffening and COX-2 suppression. J. Cell Biol. 190, 693–706 (2010).

  106. 106.

    Hinz, B. Tissue stiffness, latent TGF-beta1 activation, and mechanical signal transduction: implications for the pathogenesis and treatment of fibrosis. Curr. Rheumatol. Rep. 11, 120–126 (2009).

  107. 107.

    Tschumperlin, D. J., Ligresti, G., Hilscher, M. B. & Shah, V. H. Mechanosensing and fibrosis. J. Clin. Invest. 128, 74–84 (2018).

  108. 108.

    Herrera, J., Henke, C. A. & Bitterman, P. B. Extracellular matrix as a driver of progressive fibrosis. J. Clin. Invest. 128, 45–53 (2018).

  109. 109.

    Burgess, J. K., Mauad, T., Tjin, G., Karlsson, J. C. & Westergren-Thorsson, G. The extracellular matrix – the under-recognized element in lung disease? J. Pathol. 240, 397–409 (2016).

  110. 110.

    Lampi, M. C. & Reinhart-King, C. A. Targeting extracellular matrix stiffness to attenuate disease: from molecular mechanisms to clinical trials. Sci. Transl Med. 10, eaao0475 (2018).

  111. 111.

    Hinz, B. Formation and function of the myofibroblast during tissue repair. J. Invest. Dermatol. 127, 526–537 (2007).

  112. 112.

    Klingberg, F. et al. Prestress in the extracellular matrix sensitizes latent TGF-beta1 for activation. J. Cell Biol. 207, 283–297 (2014).

  113. 113.

    Wipff, P. J., Rifkin, D. B., Meister, J. J. & Hinz, B. Myofibroblast contraction activates latent TGF-beta1 from the extracellular matrix. J. Cell Biol. 179, 1311–1323 (2007).

  114. 114.

    Reed, N. I. et al. The alphavbeta1 integrin plays a critical in vivo role in tissue fibrosis. Sci. Transl Med. 7, 288ra279 (2015).

  115. 115.

    Henderson, N. C. et al. Targeting of alphav integrin identifies a core molecular pathway that regulates fibrosis in several organs. Nat. Med. 19, 1617–1624 (2013).

  116. 116.

    Zhao, X. H. et al. Force activates smooth muscle alpha-actin promoter activity through the Rho signalling pathway. J. Cell Sci. 120, 1801–1809 (2007).

  117. 117.

    Speight, P., Kofler, M., Szaszi, K. & Kapus, A. Context-dependent switch in chemo/mechanotransduction via multilevel crosstalk among cytoskeleton-regulated MRTF and TAZ and TGFbeta-regulated Smad3. Nat. Commun. 7, 11642 (2016).

  118. 118.

    Varney, S. D. et al. Hic-5 is required for myofibroblast differentiation by regulating mechanically dependent MRTF-A nuclear accumulation. J. Cell Sci. 129, 774–787 (2016).

  119. 119.

    Calvo, F. et al. Mechanotransduction and YAP-dependent matrix remodelling is required for the generation and maintenance of cancer-associated fibroblasts. Nat. Cell Biol. 15, 637–646 (2013).

  120. 120.

    Speight, P., Nakano, H., Kelley, T. J., Hinz, B. & Kapus, A. Differential topical susceptibility to TGFbeta in intact and injured regions of the epithelium: key role in myofibroblast transition. Mol. Biol. Cell 24, 3326–3336 (2013).

  121. 121.

    Piersma, B. et al. YAP1 is a driver of myofibroblast differentiation in normal and diseased fibroblasts. Am. J. Pathol. 185, 3326–3337 (2015).

  122. 122.

    Liu, F. et al. Mechanosignalling through YAP and TAZ drives fibroblast activation and fibrosis. Am. J. Physiol. Lung Cell Mol. Physiol. 308, L344–L357 (2015).

  123. 123.

    Piersma, B. et al. YAP1 is a driver of myofibroblast differentiation in normal and diseased fibroblasts. Am. J. Pathol. 185, 3326–3337 (2015).

  124. 124.

    Szeto, S. G. et al. YAP/TAZ are mechanoregulators of TGF-beta-Smad signalling and renal fibrogenesis. J. Am. Soc. Nephrol. 27, 3117–3128 (2016).

  125. 125.

    Chen, H. et al. Mechanosensing by the alpha6-integrin confers an invasive fibroblast phenotype and mediates lung fibrosis. Nat. Commun. 7, 12564 (2016).

  126. 126.

    Zhou, Y. et al. Inhibition of mechanosensitive signalling in myofibroblasts ameliorates experimental pulmonary fibrosis. J. Clin. Invest. 123, 1096–1108 (2013).

  127. 127.

    Nardone, G. et al. YAP regulates cell mechanics by controlling focal adhesion assembly. Nat. Commun. 8, 15321 (2017).

  128. 128.

    Sabra, H. et al. Beta1 integrin-dependent Rac/group I PAK signaling mediates YAP activation of Yes-associated protein 1 (YAP1) via NF2/merlin. J. Biol. Chem. 292, 19179–19197 (2017).

  129. 129.

    Martin, K. et al. PAK proteins and YAP-1 signalling downstream of integrin beta-1 in myofibroblasts promote liver fibrosis. Nat. Commun. 7, 12502 (2016).

  130. 130.

    Grinnell, F., Zhu, M., Carlson, M. A. & Abrams, J. M. Release of mechanical tension triggers apoptosis of human fibroblasts in a model of regressing granulation tissue. Exp. Cell. Res. 248, 608–619 (1999).

  131. 131.

    Niland, S. et al. Contraction-dependent apoptosis of normal dermal fibroblasts. J. Invest. Dermatol. 116, 686–692 (2001).

  132. 132.

    Carlson, M. A., Longaker, M. T. & Thompson, J. S. Wound splinting regulates granulation tissue survival. J. Surg. Res. 110, 304–309 (2003).

  133. 133.

    Hinz, B., Mastrangelo, D., Iselin, C. E., Chaponnier, C. & Gabbiani, G. Mechanical tension controls granulation tissue contractile activity and myofibroblast differentiation. Am. J. Pathol. 159, 1009–1020 (2001).

  134. 134.

    Li, C. X. et al. MicroRNA-21 preserves the fibrotic mechanical memory of mesenchymal stem cells. Nat. Mater. 16, 379–389 (2017).

  135. 135.

    Lagares, D. et al. Inhibition of focal adhesion kinase prevents experimental lung fibrosis and myofibroblast formation. Arthritis. Rheum. 64, 1653–1664 (2012).

  136. 136.

    Ajayi, I. O. et al. X-linked inhibitor of apoptosis regulates lung fibroblast resistance to Fas-mediated apoptosis. Am. J. Respir. Cell Mol. Biol. 49, 86–95 (2013).

  137. 137.

    Horowitz, J. C. et al. Survivin expression induced by endothelin-1 promotes myofibroblast resistance to apoptosis. Int. J. Biochem. Cell Biol. 44, 158–169 (2012).

  138. 138.

    Ashley, S. L. et al. Targeting inhibitor of apoptosis proteins protects from bleomycin-induced lung fibrosis. Am. J. Respir. Cell Mol. Biol. 54, 482–492 (2016).

  139. 139.

    Jafarinejad-Farsangi, S. et al. MicroRNA-29a induces apoptosis via increasing the Bax:Bcl-2 ratio in dermal fibroblasts of patients with systemic sclerosis. Autoimmunity 48, 369–378 (2015).

  140. 140.

    Cavarretta, E. & Condorelli, G. miR-21 and cardiac fibrosis: another brick in the wall? Eur. Heart J. 36, 2139–2141 (2015).

  141. 141.

    Huang, Y., He, Y. & Li, J. MicroRNA-21: a central regulator of fibrotic diseases via various targets. Curr. Pharm. Des. 21, 2236–2242 (2015).

  142. 142.

    Wang, T. et al. miR-21 regulates skin wound healing by targeting multiple aspects of the healing process. Am. J. Pathol. 181, 1911–1920 (2012).

  143. 143.

    Chen, Z., Dai, T., Chen, X., Tan, L. & Shi, C. Activation and regulation of the granulation tissue derived cells with stemness-related properties. Stem Cell Res. Ther. 6, 85 (2015).

  144. 144.

    Thum, T. & Lorenzen, J. M. Cardiac fibrosis revisited by microRNA therapeutics. Circulation 126, 800–802 (2012).

  145. 145.

    Chau, B. N. et al. MicroRNA-21 promotes fibrosis of the kidney by silencing metabolic pathways. Sci. Transl Med. 4, 121ra118 (2012).

  146. 146.

    Jun, J. B. et al. Scleroderma fibroblasts demonstrate enhanced activation of Akt (protein kinase B) in situ. J. Invest. Dermatol. 124, 298–303 (2005).

  147. 147.

    Lagares, D., Busnadiego, O., Garcia-Fernandez, R. A., Lamas, S. & Rodriguez-Pascual, F. Adenoviral gene transfer of endothelin-1 in the lung induces pulmonary fibrosis through the activation of focal adhesion kinase. Am. J. Respir. Cell Mol. Biol. 47, 834–842 (2012).

  148. 148.

    Lagares, D. et al. Endothelin 1 contributes to the effect of transforming growth factor beta1 on wound repair and skin fibrosis. Arthritis. Rheum. 62, 878–889 (2010).

  149. 149.

    Kulasekaran, P. et al. Endothelin-1 and transforming growth factor-beta1 independently induce fibroblast resistance to apoptosis via AKT activation. Am. J. Respir. Cell Mol. Biol. 41, 484–493 (2009).

  150. 150.

    Kulkarni, A. A. et al. PPAR-gamma ligands repress TGFbeta-induced myofibroblast differentiation by targeting the PI3K/Akt pathway: implications for therapy of fibrosis. PLOS ONE 6, e15909 (2011).

  151. 151.

    Xia, H., Nho, R. S., Kahm, J., Kleidon, J. & Henke, C. A. Focal adhesion kinase is upstream of phosphatidylinositol 3-kinase/Akt in regulating fibroblast survival in response to contraction of type I collagen matrices via a beta 1 integrin viability signalling pathway. J. Biol. Chem. 279, 33024–33034 (2004).

  152. 152.

    Horowitz, J. C. et al. Combinatorial activation of FAK and AKT by transforming growth factor-beta1 confers an anoikis-resistant phenotype to myofibroblasts. Cell Signal. 19, 761–771 (2007).

  153. 153.

    Horowitz, J. C. et al. Activation of the pro-survival phosphatidylinositol 3-kinase/AKT pathway by transforming growth factor-beta1 in mesenchymal cells is mediated by p38 MAPK-dependent induction of an autocrine growth factor. J. Biol. Chem. 279, 1359–1367 (2004).

  154. 154.

    Jelaska, A. & Korn, J. H. Role of apoptosis and transforming growth factor beta1 in fibroblast selection and activation in systemic sclerosis. Arthritis. Rheum. 43, 2230–2239 (2000).

  155. 155.

    Zhang, L., Zhou, F. & ten Dijke, P. Signalling interplay between transforming growth factor-beta receptor and PI3K/AKT pathways in cancer. Trends. Biochem. Sci. 38, 612–620 (2013).

  156. 156.

    Karimizadeh, E. et al. c-Abl silencing reduced the inhibitory effects of TGF-beta1 on apoptosis in systemic sclerosis dermal fibroblasts. Mol. Cell Biochem. 405, 169–176 (2015).

  157. 157.

    Rizvi, S. et al. Platelet-derived growth factor primes cancer-associated fibroblasts for apoptosis. J. Biol. Chem. 289, 22835–22849 (2014).

  158. 158.

    Moncsek, A. et al. Targeting senescent cholangiocytes and activated fibroblasts with B cell lymphoma-extra large inhibitors ameliorates fibrosis in multidrug resistance 2 gene knockout (Mdr2-/-) mice. Hepatology 67, 247–259 (2018).

  159. 159.

    Dodi, A. E. et al. Regulation of fibroblast Fas expression by soluble and mechanical pro-fibrotic stimuli. Respir. Res. 19, 91 (2018).

  160. 160.

    Santiago, B., Galindo, M., Rivero, M. & Pablos, J. L. Decreased susceptibility to fas-induced apoptosis of systemic sclerosis dermal fibroblasts. Arthritis. Rheum. 44, 1667–1676 (2001).

  161. 161.

    Tanaka, T. et al. Resistance to Fas-mediated apoptosis in human lung fibroblast. Eur. Respir. J. 20, 359–368 (2002).

  162. 162.

    Buhling, F. et al. Altered expression of membrane-bound and soluble CD95/Fas contributes to the resistance of fibrotic lung fibroblasts to FasL induced apoptosis. Respir. Res. 6, 37 (2005).

  163. 163.

    Lin, T. et al. Role of acidic sphingomyelinase in Fas/CD95-mediated cell death. J. Biol. Chem. 275, 8657–8663 (2000).

  164. 164.

    Samuel, G. H., Lenna, S., Bujor, A. M., Lafyatis, R. & Trojanowska, M. Acid sphingomyelinase deficiency contributes to resistance of scleroderma fibroblasts to Fas-mediated apoptosis. J. Dermatol. Sci. 67, 166–172 (2012).

  165. 165.

    Im, J., Kim, K., Hergert, P. & Nho, R. S. Idiopathic pulmonary fibrosis fibroblasts become resistant to Fas ligand-dependent apoptosis via the alteration of decoy receptor 3. J. Pathol. 240, 25–37 (2016).

  166. 166.

    Huang, S. K. et al. Prostaglandin E(2) induces fibroblast apoptosis by modulating multiple survival pathways. FASEB J. 23, 4317–4326 (2009).

  167. 167.

    Maher, T. M. et al. Diminished prostaglandin E2 contributes to the apoptosis paradox in idiopathic pulmonary fibrosis. Am. J. Respir. Crit Care Med. 182, 73–82 (2010).

  168. 168.

    Bernard, K. et al. Metabolic reprogramming is required for myofibroblast contractility and differentiation. J. Biol. Chem. 290, 25427–25438 (2015).

  169. 169.

    Santinon, G., Pocaterra, A. & Dupont, S. Control of YAP/TAZ activity by metabolic and nutrient-sensing pathways. Trends Cell Biol. 26, 289–299 (2016).

  170. 170.

    Rangarajan, S. et al. Metformin reverses established lung fibrosis in a bleomycin model. Nat. Med. 24, 1121–1127 (2018).

  171. 171.

    Mora, A. L., Rojas, M., Pardo, A. & Selman, M. Emerging therapies for idiopathic pulmonary fibrosis, a progressive age-related disease. Nat. Rev. Drug Discov. 16, 755–772 (2017).

  172. 172.

    Alvarez, D. et al. IPF lung fibroblasts have a senescent phenotype. Am. J. Physiol. Lung Cell Mol. Physiol. 313, L1164–L1173 (2017).

  173. 173.

    Cui, H. et al. miR-34a inhibits lung fibrosis by inducing lung fibroblast senescence. Am J Respir. Cell Mol. Biol. 56, 168–178 (2017).

  174. 174.

    Hayflick, L. The limited in vitro lifetime of human diploid cell strains. Exp. Cell Res. 37, 614–636 (1965).

  175. 175.

    Munoz-Espin, D. & Serrano, M. Cellular senescence: from physiology to pathology. Nat. Rev. Mol. Cell Biol. 15, 482–496 (2014).

  176. 176.

    He, S. & Sharpless, N. E. Senescence in health and disease. Cell 169, 1000–1011 (2017).

  177. 177.

    Bird, T. G. et al. TGFbeta inhibition restores a regenerative response in acute liver injury by suppressing paracrine senescence. Sci. Transl Med. 10, eaan1230 (2018).

  178. 178.

    Coppe, J. P., Desprez, P. Y., Krtolica, A. & Campisi, J. The senescence-associated secretory phenotype: the dark side of tumour suppression. Annu. Rev. Pathol. 5, 99–118 (2010).

  179. 179.

    Chien, Y. et al. Control of the senescence-associated secretory phenotype by NF-kappaB promotes senescence and enhances chemosensitivity. Genes Dev. 25, 2125–2136 (2011).

  180. 180.

    Mavrogonatou, E., Pratsinis, H., Papadopoulou, A., Karamanos, N. K. & Kletsas, D. Extracellular matrix alterations in senescent cells and their significance in tissue homeostasis. Matrix Biol. 75-76, 27–42 (2019).

  181. 181.

    Hiebert, P. et al. Nrf2-mediated fibroblast reprogramming drives cellular senescence by targeting the matrisome. Dev. Cell 46, 145–161 e110 (2018).

  182. 182.

    Krizhanovsky, V. et al. Senescence of activated stellate cells limits liver fibrosis. Cell 134, 657–667 (2008).

  183. 183.

    Kim, K. H., Chen, C. C., Monzon, R. I. & Lau, L. F. Matricellular protein CCN1 promotes regression of liver fibrosis through induction of cellular senescence in hepatic myofibroblasts. Mol. Cell Biol. 33, 2078–2090 (2013).

  184. 184.

    Jun, J.-I. & Lau, L. F. The matricellular protein CCN1 induces fibroblast senescence and restricts fibrosis in cutaneous wound healing. Nat. Cell Biol. 12, 676–685 (2010).

  185. 185.

    Hecker, L. et al. Reversal of persistent fibrosis in ageing by targeting Nox4-Nrf2 redox imbalance. Sci. Transl Med. 6, 231ra247 (2014).

  186. 186.

    Schafer, M. J. et al. Cellular senescence mediates fibrotic pulmonary disease. Nat. Commun. 8, 14532 (2017).

  187. 187.

    Schuliga, M. et al. Mitochondrial dysfunction contributes to the senescent phenotype of IPF lung fibroblasts. J. Cell Mol. Med. 22, 5847–5861 (2018).

  188. 188.

    Li, Y. et al. Hyaluronan synthase 2 regulates fibroblast senescence in pulmonary fibrosis. Matrix Biol. 55, 35–48 (2016).

  189. 189.

    Mora, A. L., Rojas, M., Pardo, A. & Selman, M. Emerging therapies for idiopathic pulmonary fibrosis, a progressive age-related disease. Nat. Rev. Drug Discov. 16, 755–772 (2017).

  190. 190.

    Barnes, P. J., Baker, J. & Donnelly, L. E. Cellular senescence as a mechanism and target in chronic lung diseases. Am. J. Respir. Crit. Care Med. 200, 556–564 (2019).

  191. 191.

    Herbig, U., Jobling, W. A., Chen, B. P., Chen, D. J. & Sedivy, J. M. Telomere shortening triggers senescence of human cells through a pathway involving ATM, p53, and p21(CIP1), but not p16(INK4a). Mol. Cell 14, 501–513 (2004).

  192. 192.

    Liu, T. et al. Telomerase regulation of myofibroblast differentiation. Am. J. Respir. Cell Mol. Biol. 34, 625–633 (2006).

  193. 193.

    Liu, T., Nozaki, Y. & Phan, S. H. Regulation of telomerase activity in rat lung fibroblasts. Am. J. Respir. Cell Mol. Biol. 26, 534–540 (2002).

  194. 194.

    Razdan, N., Vasilopoulos, T. & Herbig, U. Telomere dysfunction promotes transdifferentiation of human fibroblasts into myofibroblasts. Ageing Cell 17, e12838 (2018).

  195. 195.

    Liu, T. et al. Telomerase activity is required for bleomycin-induced pulmonary fibrosis in mice. J. Clin. Invest. 117, 3800–3809 (2007).

  196. 196.

    Kurundkar, A. R. et al. The matricellular protein CCN1 enhances TGF-beta1/SMAD3-dependent profibrotic signalling in fibroblasts and contributes to fibrogenic responses to lung injury. FASEB J. 30, 2135–2150 (2016).

  197. 197.

    Braun, H. et al. Cellular senescence limits regenerative capacity and allograft survival. J. Am. Soc. Nephrol. 23, 1467–1473 (2012).

  198. 198.

    Mailleux, A. A. & Crestani, B. Licence to kill senescent cells in idiopathic pulmonary fibrosis? Eur. Respir. J. 50, 1701360 (2017).

  199. 199.

    Lehmann, M. et al. Senolytic drugs target alveolar epithelial cell function and attenuate experimental lung fibrosis ex vivo. Eur. Respir. J. 50, 1602367 (2017).

  200. 200.

    Sand, J. M. et al. Accelerated extracellular matrix turnover during exacerbations of COPD. Respir. Res. 16, 69 (2015).

  201. 201.

    Rockey, D. C., Bell, P. D. & Hill, J. A. Fibrosis–a common pathway to organ injury and failure. N. Engl. J. Med. 372, 1138–1149 (2015).

  202. 202.

    Drew, L. Tipping the balance. Nature 564, S74–S75 (2018).

  203. 203.

    Ellis, E. L. & Mann, D. A. Clinical evidence for the regression of liver fibrosis. J. Hepatol. 56, 1171–1180 (2012).

  204. 204.

    Iredale, J. P. et al. Mechanisms of spontaneous resolution of rat liver fibrosis. Hepatic stellate cell apoptosis and reduced hepatic expression of metalloproteinase inhibitors. J. Clin. Invest. 102, 538–549 (1998).

  205. 205.

    van der Meer, A. J. & Berenguer, M. Reversion of disease manifestations after HCV eradication. J. Hepatol. 65, S95–S108 (2016).

  206. 206.

    Lee, Y. A. & Friedman, S. L. Reversal, maintenance or progression: what happens to the liver after a virologic cure of hepatitis C? Antivir. Res. 107, 23–30 (2014).

  207. 207.

    Iredale, J. P. Models of liver fibrosis: exploring the dynamic nature of inflammation and repair in a solid organ. J. Clin. Invest. 117, 539–548 (2007).

  208. 208.

    Friedman, S. L. Fibrogenic cell reversion underlies fibrosis regression in liver. Proc. Natl Acad. Sci. USA 109, 9230–9231 (2012).

  209. 209.

    Moore, B. B. et al. Animal models of fibrotic lung disease. Am. J. Respir. Cell Mol. Biol. 49, 167–179 (2013).

  210. 210.

    Marshall, R., Bellingan, G. & Laurent, G. The acute respiratory distress syndrome: fibrosis in the fast lane. Thorax 53, 815–817 (1998).

  211. 211.

    Burnham, E. L., Janssen, W. J., Riches, D. W., Moss, M. & Downey, G. P. The fibroproliferative response in acute respiratory distress syndrome: mechanisms and clinical significance. Eur. Respir. J. 43, 276–285 (2014).

  212. 212.

    Szarka, R. J., Wang, N., Gordon, L., Nation, P. N. & Smith, R. H. A murine model of pulmonary damage induced by lipopolysaccharide via intranasal instillation. J. Immunol. Methods 202, 49–57 (1997).

  213. 213.

    Thannickal, V. J., Toews, G. B., White, E. S., Lynch, J. P. 3rd & Martinez, F. J. Mechanisms of pulmonary fibrosis. Annu. Rev. Med. 55, 395–417 (2004).

  214. 214.

    Zamora, A. C. et al. Use of mycophenolate mofetil to treat scleroderma-associated interstitial lung disease. Respir. Med. 102, 150–155 (2008).

  215. 215.

    Gerbino, A. J., Goss, C. H. & Molitor, J. A. Effect of mycophenolate mofetil on pulmonary function in scleroderma-associated interstitial lung disease. Chest 133, 455–460 (2008).

  216. 216.

    Dobrota, R. et al. Prediction of improvement in skin fibrosis in diffuse cutaneous systemic sclerosis: a EUSTAR analysis. Ann. Rheum. Dis. 75, 1743–1748 (2016).

  217. 217.

    Merkel, P. A. et al. Patterns and predictors of change in outcome measures in clinical trials in scleroderma: an individual patient meta-analysis of 629 subjects with diffuse cutaneous systemic sclerosis. Arthritis Rheum. 64, 3420–3429 (2012).

  218. 218.

    Beyer, C., Schett, G., Distler, O. & Distler, J. H. Animal models of systemic sclerosis: prospects and limitations. Arthritis Rheum. 62, 2831–2844 (2010).

  219. 219.

    Lu, P., Takai, K., Weaver, V. M. & Werb, Z. Extracellular matrix degradation and remodeling in development and disease. Cold Spring Harb. Perspect. Biol. 3, a005058 (2011).

  220. 220.

    Egeblad, M. & Werb, Z. New functions for the matrix metalloproteinases in cancer progression. Nat. Rev. Cancer 2, 161–174 (2002).

  221. 221.

    Visse, R. & Nagase, H. Matrix metalloproteinases and tissue inhibitors of metalloproteinases: structure, function, and biochemistry. Circ. Res. 92, 827–839 (2003).

  222. 222.

    Fonovic, M. & Turk, B. Cysteine cathepsins and extracellular matrix degradation. Biochim. Biophys. Acta 1840, 2560–2570 (2014).

  223. 223.

    McKleroy, W., Lee, T. H. & Atabai, K. Always cleave up your mess: targeting collagen degradation to treat tissue fibrosis. Am. J. Physiol. Lung Cell Mol. Physiol. 304, L709–L721 (2013).

  224. 224.

    Madsen, D. H. et al. Extracellular collagenases and the endocytic receptor, urokinase plasminogen activator receptor-associated protein/Endo180, cooperate in fibroblast-mediated collagen degradation. J. Biol. Chem. 282, 27037–27045 (2007).

  225. 225.

    Wienke, D., MacFadyen, J. R. & Isacke, C. M. Identification and characterization of the endocytic transmembrane glycoprotein Endo180 as a novel collagen receptor. Mol. Biol. Cell 14, 3592–3604 (2003).

  226. 226.

    East, L. et al. A targeted deletion in the endocytic receptor gene Endo180 results in a defect in collagen uptake. EMBO Rep. 4, 710–716 (2003).

  227. 227.

    Engelholm, L. H. et al. uPARAP/Endo180 is essential for cellular uptake of collagen and promotes fibroblast collagen adhesion. J. Cell Biol. 160, 1009–1015 (2003).

  228. 228.

    Segal, G. et al. Involvement of actin filaments and integrins in the binding step in collagen phagocytosis by human fibroblasts. J. Cell Sci. 114, 119–129 (2001).

  229. 229.

    Arora, P. D., Manolson, M. F., Downey, G. P., Sodek, J. & McCulloch, C. A. A novel model system for characterization of phagosomal maturation, acidification, and intracellular collagen degradation in fibroblasts. J. Biol. Chem. 275, 35432–35441 (2000).

  230. 230.

    Lee, W., Sodek, J. & McCulloch, C. A. Role of integrins in regulation of collagen phagocytosis by human fibroblasts. J. Cell Physiol. 168, 695–704 (1996).

  231. 231.

    Zigrino, P. et al. Fibroblast-derived MMP-14 regulates collagen homeostasis in adult skin. J. Invest. Dermatol. 136, 1575–1583 (2016).

  232. 232.

    Buhling, F. et al. Pivotal role of cathepsin K in lung fibrosis. Am. J. Pathol. 164, 2203–2216 (2004).

  233. 233.

    Hou, W. S. et al. Cathepsin K is a critical protease in synovial fibroblast-mediated collagen degradation. Am. J. Pathol. 159, 2167–2177 (2001).

  234. 234.

    Wohlfahrt, T. et al. PU.1 controls fibroblast polarization and tissue fibrosis. Nature 566, 344–349 (2019).

  235. 235.

    Atabai, K. et al. Mfge8 diminishes the severity of tissue fibrosis in mice by binding and targeting collagen for uptake by macrophages. J. Clin. Invest. 119, 3713–3722 (2009).

  236. 236.

    Madsen, D. H. et al. M2-like macrophages are responsible for collagen degradation through a mannose receptor-mediated pathway. J. Cell Biol. 202, 951–966 (2013).

  237. 237.

    Borza, C. M. & Pozzi, A. Discoidin domain receptors in disease. Matrix Biol. 34, 185–192 (2014).

  238. 238.

    Yoon, Y. S. et al. PPARγ activation following apoptotic cell instillation promotes resolution of lung inflammation and fibrosis via regulation of efferocytosis and proresolving cytokines. Mucosal Immunol. 8, 1031–1046 (2015).

  239. 239.

    Popov, Y. et al. Macrophage-mediated phagocytosis of apoptotic cholangiocytes contributes to reversal of experimental biliary fibrosis. Am. J. Physiol. Gastrointest. Liver Physiol. 298, G323–G334 (2010).

  240. 240.

    Redente, E. F. et al. Tumour necrosis factor-α accelerates the resolution of established pulmonary fibrosis in mice by targeting profibrotic lung macrophages. Am. J. Respir. Cell Mol. Biol. 50, 825–837 (2014).

  241. 241.

    Imamura, M., Ogawa, T., Sasaguri, Y., Chayama, K. & Ueno, H. Suppression of macrophage infiltration inhibits activation of hepatic stellate cells and liver fibrogenesis in rats. Gastroenterology 128, 138–146 (2005).

  242. 242.

    Mitchell, C. et al. Dual role of CCR2 in the constitution and the resolution of liver fibrosis in mice. Am. J. Pathol. 174, 1766–1775 (2009).

  243. 243.

    Glassner, A. et al. NK cells from HCV-infected patients effectively induce apoptosis of activated primary human hepatic stellate cells in a TRAIL-, FasL- and NKG2D-dependent manner. Lab. Invest. 92, 967–977 (2012).

  244. 244.

    Radaeva, S. et al. Natural killer cells ameliorate liver fibrosis by killing activated stellate cells in NKG2D-dependent and tumour necrosis factor-related apoptosis-inducing ligand-dependent manners. Gastroenterology 130, 435–452 (2006).

  245. 245.

    Shook, B. A. et al. Myofibroblast proliferation and heterogeneity are supported by macrophages during skin repair. Science 362, eaar2971 (2018).

  246. 246.

    Lodyga, M. et al. Cadherin-11-mediated adhesion of macrophages to myofibroblasts establishes a profibrotic niche of active TGF-beta. Sci. Signal. 12, eaao3469 (2019).

  247. 247.

    Pakshir, P. et al. Dynamic fibroblast contractions attract remote macrophages in fibrillar collagen matrix. Nat. Commun. 10, 1850 (2019).

  248. 248.

    Wynn, T. A. & Ramalingam, T. R. Mechanisms of fibrosis: therapeutic translation for fibrotic disease. Nat. Med. 18, 1028–1040 (2012).

  249. 249.

    Van De Water, L., Varney, S. & Tomasek, J. J. Mechanoregulation of the myofibroblast in wound contraction, scarring, and fibrosis: opportunities for new therapeutic intervention. Adv. Wound Care 2, 122–141 (2013).

  250. 250.

    Herum, K. M., Lunde, I. G., McCulloch, A. D. & Christensen, G. The soft- and hard-heartedness of cardiac fibroblasts: mechanotransduction signalling pathways in fibrosis of the heart. J. Clin. Med. 6, 53 (2017).

  251. 251.

    Follonier Castella, L., Gabbiani, G., McCulloch, C. A. & Hinz, B. Regulation of myofibroblast activities: calcium pulls some strings behind the scene. Exp. Cell Res. 316, 2390–2401 (2010).

  252. 252.

    Htwe, S. S. et al. Role of ROCK isoforms in regulation of stiffness induced myofibroblast differentiation in lung fibrosis. Am J Respir Cell Mol Biol 56, 772–783 (2017).

  253. 253.

    Shiwen, X. et al. A role of myocardin related transcription factor-A (MRTF-A) in scleroderma related fibrosis. PLOS ONE 10, e0126015 (2015).

  254. 254.

    Velasquez, L. S. et al. Activation of MRTF-A-dependent gene expression with a small molecule promotes myofibroblast differentiation and wound healing. Proc. Natl Acad. Sci. USA 110, 16850–16855 (2013).

  255. 255.

    Crider, B. J., Risinger, G. M. Jr., Haaksma, C. J., Howard, E. W. & Tomasek, J. J. Myocardin-related transcription factors A and B are key regulators of TGF-β1-induced fibroblast to myofibroblast differentiation. J. Invest. Dermatol. 131, 2378–2385 (2011).

  256. 256.

    Hinz, B., Gabbiani, G. & Chaponnier, C. The NH2-terminal peptide of alpha-smooth muscle actin inhibits force generation by the myofibroblast in vitro and in vivo. J. Cell Biol. 157, 657–663 (2002).

  257. 257.

    Schnittert, J., Bansal, R., Storm, G. & Prakash, J. Integrins in wound healing, fibrosis and tumour stroma: high potential targets for therapeutics and drug delivery. Adv. Drug Deliv. Rev. 129, 37–53 (2018).

  258. 258.

    Schulz, J. N. et al. New developments on skin fibrosis - Essential signals emanating from the extracellular matrix for the control of myofibroblasts. Matrix Biol. 68-69, 522–532 (2018).

  259. 259.

    Murray, I. R. et al. Alphav integrins on mesenchymal cells regulate skeletal and cardiac muscle fibrosis. Nat. Commun. 8, 1118 (2017).

  260. 260.

    Hinz, B. It has to be the αv: myofibroblast integrins activate latent TGF-β1. Nat. Med. 19, 1567–1568 (2013).

  261. 261.

    Johnson, L. A. et al. Novel Rho/MRTF/SRF inhibitors block matrix-stiffness and TGF-β-induced fibrogenesis in human colonic myofibroblasts. Inflamm. Bowel Dis. 20, 154–165 (2014).

  262. 262.

    Sisson, T. H. et al. Inhibition of myocardin-related transcription factor/serum response factor signalling decreases lung fibrosis and promotes mesenchymal cell apoptosis. Am. J. Pathol. 185, 969–986 (2015).

  263. 263.

    Penke, L. R., Huang, S. K., White, E. S. & Peters-Golden, M. Prostaglandin E2 inhibits α-smooth muscle actin transcription during myofibroblast differentiation via distinct mechanisms of modulation of serum response factor and myocardin-related transcription factor-A. J. Biol. Chem. 289, 17151–17162 (2014).

  264. 264.

    Toyama, T. et al. Therapeutic targeting of TAZ and YAP by dimethyl fumarate in systemic sclerosis fibrosis. J. Invest. Dermatol. 138, 78–88 (2017).

  265. 265.

    Kinoshita, K. et al. Antifibrotic effects of focal adhesion kinase inhibitor in bleomycin-induced pulmonary fibrosis in mice. Am. J. Respir. Cell Mol. Biol. 49, 536–543 (2013).

  266. 266.

    Jiang, H. et al. Targeting focal adhesion kinase renders pancreatic cancers responsive to checkpoint immunotherapy. Nat. Med. 22, 851–860 (2016).

  267. 267.

    Wong, V. W. et al. Focal adhesion kinase links mechanical force to skin fibrosis via inflammatory signalling. Nat. Med. 18, 148–152 (2011).

  268. 268.

    Zhao, X. K. et al. Focal adhesion kinase regulates hepatic stellate cell activation and liver fibrosis. Sci. Rep. 7, 4032 (2017).

  269. 269.

    Zhang, J. et al. Targeted inhibition of focal adhesion kinase attenuates cardiac fibrosis and preserves heart function in adverse cardiac remodeling. Sci. Rep. 7, 43146 (2017).

  270. 270.

    Bond, J. E. et al. Wound contraction is attenuated by fasudil inhibition of Rho-associated kinase. Plast. Reconstr. Surg. 128, 438e–450e (2011).

  271. 271.

    Huang, X. et al. Relaxin regulates myofibroblast contractility and protects against lung fibrosis. Am. J. Pathol. 179, 2751–2765 (2011).

  272. 272.

    Van Delft, M. F. et al. The BH3 mimetic ABT-737 targets selective Bcl-2 proteins and efficiently induces apoptosis via Bak/Bax if Mcl-1 is neutralized. Cancer Cell 10, 389–399 (2006).

  273. 273.

    Tse, C. et al. ABT-263: a potent and orally bioavailable Bcl-2 family inhibitor. Cancer Res. 68, 3421–3428 (2008).

  274. 274.

    Yosef, R. et al. Directed elimination of senescent cells by inhibition of BCL-W and BCL-XL. Nat. Commun. 7, 11190 (2016).

  275. 275.

    Pan, J. et al. Inhibition of Bcl-2/xl with ABT-263 selectively kills senescent type II pneumocytes and reverses persistent pulmonary fibrosis induced by ionizing radiation in mice. Int. J. Radiat. Oncol. Biol. Phys. 99, 353–361 (2017).

  276. 276.

    Moncsek, A. et al. Targeting senescent cholangiocytes and activated fibroblasts with Bcl-xL inhibitors ameliorates fibrosis in Mdr2-/- mice. Hepatology 67, 247–259 (2017).

  277. 277.

    Liu, J. C. et al. High mitochondrial priming sensitizes hESCs to DNA-damage-induced apoptosis. Cell Stem Cell 13, 483–491 (2013).

  278. 278.

    Chang, J. et al. Clearance of senescent cells by ABT263 rejuvenates aged haematopoietic stem cells in mice. Nat. Med. 22, 78–83 (2016).

  279. 279.

    Gutierrez-Martinez, P. et al. Diminished apoptotic priming and ATM signalling confer a survival advantage onto aged haematopoietic stem cells in response to DNA damage. Nat. Cell Biol. 20, 413–421 (2018).

  280. 280.

    Souers, A. J. et al. ABT-199, a potent and selective BCL-2 inhibitor, achieves antitumour activity while sparing platelets. Nat. Med. 19, 202–208 (2013).

  281. 281.

    Mullard, A. 2016 FDA drug approvals. Nat. Rev. Drug Discov. 16, 73–76 (2017).

  282. 282.

    Mullard, A. Pioneering apoptosis-targeted cancer drug poised for FDA approval. Nat. Rev. Drug Discov. 15, 147–149 (2016).

  283. 283.

    Vancheri, C. et al. Different expression of TNF-α receptors and prostaglandin E(2) production in normal and fibrotic lung fibroblasts: potential implications for the evolution of the inflammatory process. Am. J. Respir. Cell Mol. Biol. 22, 628–634 (2000).

  284. 284.

    Frankel, S. K. et al. TNF-α sensitizes normal and fibrotic human lung fibroblasts to Fas-induced apoptosis. Am. J. Respir. Cell Mol. Biol. 34, 293–304 (2006).

  285. 285.

    Park, J. S. et al. Targeting of dermal myofibroblasts through death receptor 5 arrests fibrosis in mouse models of scleroderma. Nat. Commun. 10, 1128 (2019).

  286. 286.

    Oh, Y. et al. Systemic PEGylated TRAIL treatment ameliorates liver cirrhosis in rats by eliminating activated hepatic stellate cells. Hepatology 64, 209–223 (2016).

  287. 287.

    Ovadya, Y. & Krizhanovsky, V. Strategies targeting cellular senescence. J. Clin. Invest. 128, 1247–1254 (2018).

  288. 288.

    Lopez-Otin, C., Blasco, M. A., Partridge, L., Serrano, M. & Kroemer, G. The hallmarks of ageing. Cell 153, 1194–1217 (2013).

  289. 289.

    Zhu, Y. et al. The Achilles’ heel of senescent cells: from transcriptome to senolytic drugs. Ageing Cell 14, 644–658 (2015).

  290. 290.

    Sellares, J. & Rojas, M. Quercetin in idiopathic pulmonary fibrosis: another brick in the senolytic wall. Am. J. Respir. Cell Mol. Biol. 60, 3–4 (2018).

  291. 291.

    Hohmann, M. S., Habiel, D. M., Coelho, A. L., Verri, W. A. Jr. & Hogaboam, C. M. Quercetin enhances ligand-induced apoptosis in senescent IPF fibroblasts and reduces lung fibrosis in vivo. Am. J. Respir. Cell Mol. Biol. 60, 28–40 (2018).

  292. 292.

    Das, J. et al. 2-Aminothiazole as a novel kinase inhibitor template. Structure–activity relationship studies towards the discovery of N-(2-chloro-6-methylphenyl)-2-[[6-[4-(2-hydroxyethyl)-1- piperazinyl)]-2-methyl-4-pyrimidinyl]amino)]-1,3-thiazole-5-carboxamide (dasatinib, BMS-354825) as a potent pan-Src kinase inhibitor. J. Med. Chem. 49, 6819–6832 (2006).

  293. 293.

    Li, J. et al. A chemical and phosphoproteomic characterization of dasatinib action in lung cancer. Nat. Chem. Biol. 6, 291–299 (2010).

  294. 294.

    Han, L., Schuringa, J. J., Mulder, A. & Vellenga, E. Dasatinib impairs long-term expansion of leukemic progenitors in a subset of acute myeloid leukemia cases. Ann. Haematol. 89, 861–871 (2010).

  295. 295.

    Russo, G. L. et al. Quercetin: a pleiotropic kinase inhibitor against cancer. Cancer Treat. Res. 159, 185–205 (2014).

  296. 296.

    Williams, R. J., Spencer, J. P. & Rice-Evans, C. Flavonoids: antioxidants or signalling molecules? Free Radic. Biol. Med. 36, 838–849 (2004).

  297. 297.

    Zhu, Y. et al. Identification of a novel senolytic agent, navitoclax, targeting the Bcl-2 family of anti-apoptotic factors. Ageing Cell 15, 428–435 (2016).

  298. 298.

    Justice, J. N. et al. Senolytics in idiopathic pulmonary fibrosis: results from a first-in-human, open-label, pilot study. EBioMedicine 40, 554–563 (2019).

  299. 299.

    Darby, I. A., Laverdet, B., Bonte, F. & Desmouliere, A. Fibroblasts and myofibroblasts in wound healing. Clin. Cosmet. Investig. Dermatol. 7, 301–311 (2014).

  300. 300.

    Gascard, P. & Tlsty, T. D. Carcinoma-associated fibroblasts: orchestrating the composition of malignancy. Genes Dev. 30, 1002–1019 (2016).

  301. 301.

    Akamatsu, T. et al. Direct isolation of myofibroblasts and fibroblasts from bleomycin-injured lungs reveals their functional similarities and differences. Fibrogenesis Tissue Repair 6, 15 (2013).

  302. 302.

    Hinz, B., Celetta, G., Tomasek, J. J., Gabbiani, G. & Chaponnier, C. Alpha-smooth muscle actin expression upregulates fibroblast contractile activity. Mol. Biol. Cell 12, 2730–2741 (2001).

  303. 303.

    US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02745145 (2019).

  304. 304.

    Song, K. H., Cho, S. J. & Song, J. Y. Alphavbeta1 integrin as a novel therapeutic target for tissue fibrosis. Ann. Transl. Med. 4, 411 (2016).

  305. 305.

    Patsenker, E. et al. Pharmacological inhibition of integrin alphav beta3 aggravates experimental liver fibrosis and suppresses hepatic angiogenesis. Hepatology 50, 1501–1511 (2009).

  306. 306.

    Horan, G. S. et al. Partial inhibition of integrin alpha(v)beta6 prevents pulmonary fibrosis without exacerbating inflammation. Am. J. Respir. Crit. Care Med. 177, 56–65 (2008).

  307. 307.

    Wang, B. et al. Role of alphavbeta6 integrin in acute biliary fibrosis. Hepatology 46, 1404–1412 (2007).

  308. 308.

    Peng, Z. W. et al. Integrin alphavbeta6 critically regulates hepatic progenitor cell function and promotes ductular reaction, fibrosis, and tumorigenesis. Hepatology 63, 217–232 (2016).

  309. 309.

    Puthawala, K. et al. Inhibition of integrin alpha(v)beta6, an activator of latent transforming growth factor-beta, prevents radiation-induced lung fibrosis. Am. J. Respir. Crit. Care Med. 177, 82–90 (2008).

  310. 310.

    Hahm, K. et al. Alphav beta6 integrin regulates renal fibrosis and inflammation in Alport mouse. Am. J. Pathol. 170, 110–125 (2007).

  311. 311.

    US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT01371305 (2018).

  312. 312.

    Fan, G. P. et al. Pharmacological inhibition of focal adhesion kinase attenuates cardiac fibrosis in mice cardiac fibroblast and post-myocardial-infarction models. Cell Physiol. Biochem. 37, 515–526 (2015).

  313. 313.

    Zhao, X. K. et al. Focal adhesion kinase regulates fibroblast migration via integrin beta-1 and plays a central role in fibrosis. Sci. Rep. 6, 19276 (2016).

  314. 314.

    US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02758587 (2018).

  315. 315.

    Qi, X. J. et al. Fasudil, an inhibitor of Rho-associated coiled-coil kinase, attenuates hyperoxia-induced pulmonary fibrosis in neonatal rats. Int. J. Clin. Exp. Pathol. 8, 12140–12150 (2015).

  316. 316.

    Jiang, C. et al. Fasudil, a Rho-kinase inhibitor, attenuates bleomycin-induced pulmonary fibrosis in mice. Int. J. Mol. Sci. 13, 8293–8307 (2012).

  317. 317.

    Bei, Y. et al. RhoA/Rho-kinase activation promotes lung fibrosis in an animal model of systemic sclerosis. Exp. Lung Res. 42, 44–55 (2016).

  318. 318.

    Baba, I., Egi, Y., Utsumi, H., Kakimoto, T. & Suzuki, K. Inhibitory effects of fasudil on renal interstitial fibrosis induced by unilateral ureteral obstruction. Mol. Med. Rep. 12, 8010–8020 (2015).

  319. 319.

    Nagatoya, K. et al. Y-27632 prevents tubulointerstitial fibrosis in mouse kidneys with unilateral ureteral obstruction. Kidney Int. 61, 1684–1695 (2002).

  320. 320.

    US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT00704665 (2008).

  321. 321.

    US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02688647 (2019).

  322. 322.

    Sakai, N. et al. LPA1-induced cytoskeleton reorganization drives fibrosis through CTGF-dependent fibroblast proliferation. FASEB J. 27, 1830–1846 (2013).

  323. 323.

    Haak, A. J. et al. Targeting the myofibroblast genetic switch: inhibitors of myocardin-related transcription factor/serum response factor-regulated gene transcription prevent fibrosis in a murine model of skin injury. J. Pharmacol. Exp. Ther. 349, 480–486 (2014).

  324. 324.

    Liang, M. et al. Yap/Taz deletion in Gli+ cell-derived myofibroblasts attenuates fibrosis. J. Am. Soc. Nephrol. 28, 3278–3290 (2017).

  325. 325.

    US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02981082 (2019).

  326. 326.

    US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02874989 (2019).

  327. 327.

    US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT03865927 (2019).

Download references


The research of B.H. is supported by the Canadian Institutes of Health Research (Foundation Grant 375597). D.L. gratefully acknowledges funding support from the NIH (grant R01 HL147059–01), the Start-up Package from Massachusetts General Hospital, the Scleroderma Foundation New Investigator Grant, the Scleroderma Research Foundation Investigator-Initiated Research Grant, the American Thoracic Society Foundation/Pulmonary Fibrosis Foundation Research Grant and Sponsored Research Grants from Boehringer Ingelheim, Indalo Therapeutics and Unity Biotechnology.

Author information

The authors contributed equally to all aspects of this article.

Correspondence to David Lagares.

Ethics declarations

Competing interests

D.L. declares that he has received research funding from Boehringer Ingelheim, Indalo Therapeutics and Unity Biotechnology. D.L. also has a financial interest in Mediar Therpeutics, which is developing treatments for organ fibrosis. D.L.’s interests were reviewed and are managed by MGH and Partners HealthCare in accordance with their conflict of interest policies. B.H. declares no competing interests.

Additional information

Peer review information

Nature Reviews Rheumatology thanks V. Thannickal and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.


Stress fibres

Contractile bundles composed of actomyosin filaments.

t-Distributed stochastic neighbour embedding

A technique for visualizing high-dimensional datasets, often displayed in the form of clusters.

Membrane blebbing

Protrusions of the cell membrane that occur during apoptosis.


Condensation of the nuclear chromatin during apoptosis.


A multi-protein complex that mediates the initiation of apoptosis.

Granulation tissue

New connective tissue that forms during wound healing.

Molecular rheostat

A system that maintains and controls critical biological processes such as cell death and survival.

CArG boxes

Repeating [CC(A/T)6GG] DNA sequences present within gene promoters.


The collection of molecules secreted by cells into the extracellular space.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hinz, B., Lagares, D. Evasion of apoptosis by myofibroblasts: a hallmark of fibrotic diseases. Nat Rev Rheumatol (2019) doi:10.1038/s41584-019-0324-5

Download citation