Palindromic rheumatism as part of the rheumatoid arthritis continuum


Palindromic rheumatism is a distinctive syndrome that has a long-recognized association with rheumatoid arthritis (RA). Palindromic rheumatism is characterized by intermittent flares of pain, erythema and swelling in and around the joints, which are typically severe and unpredictable. The observation that most patients with palindromic rheumatism have RA-related autoantibodies and that many eventually develop RA has led to palindromic rheumatism often being viewed as a relapsing–remitting variant of RA. However, the clinical and imaging phenotypes of palindromic rheumatism suggest important distinctions from RA and imply underlying mechanistic differences between the two conditions. Furthermore, the pattern of inflammation seen in palindromic rheumatism has interesting parallels with that seen in other groups of symptomatic individuals at risk of developing RA. In this Review, we explore the concept of palindromic rheumatism as part of the RA continuum and propose an updated disease paradigm for this unique syndrome.

Key points

  • Palindromic rheumatism has a distinct clinical and imaging phenotype and cannot simply be considered as a relapsing–remitting form of rheumatoid arthritis (RA).

  • Palindromic rheumatism has an immunogenetic link with RA but shares clinical features, genetic associations and therapeutic responses with systemic autoinflammatory diseases and crystal-induced arthritis.

  • Palindromic rheumatism can be considered as an overlap syndrome, with both autoimmune and autoinflammatory characteristics.

  • Palindromic rheumatism shares disease targets with other groups of at-risk individuals and could be a genetically determined manifestation of the prodromal phase of RA.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Different patterns of inflammation in RA and palindromic rheumatism.
Fig. 2: Palindromic rheumatism and the RA disease continuum.
Fig. 3: A model of progression from extra-capsular to intra-articular disease in RA.


  1. 1.

    Guerne, P. A. & Weisman, M. H. Palindromic rheumatism: part of or apart from the spectrum of rheumatoid arthritis. Am. J. Med. 93, 451–460 (1992).

  2. 2.

    Hench, P. & Rosenberg, E. F. Palindromic rheumatism. A ‘new’ oft recurring disease of joints (arthritis, periarthritis, para-arthritis) apparently producing no articular residues. Report of thirty-four cases; its relation to angio-neural arthrosis’, ‘allergic rheumatism’ and rheumatoid arthritis. Arch. Int. Med. 73, 293–321 (1944).

  3. 3.

    Mankia, K. & Emery, P. What can palindromic rheumatism tell us? Best Pract. Res. Clin. Rheumatol. 31, 90–98 (2017).

  4. 4.

    Russell, A. S., Devani, A. & Maksymowych, W. P. The role of anti-cyclic citrullinated peptide antibodies in predicting progression of palindromic rheumatism to rheumatoid arthritis. J. Rheumatol. 33, 1240–1242 (2006).

  5. 5.

    Tamai, M. et al. Contribution of anti-CCP antibodies, proximal interphalangeal joint involvement, HLA-DRB1 shared epitope, and PADI4 as risk factors for the development of rheumatoid arthritis in palindromic rheumatism. Scand J. Rheumatol. 39, 287–291 (2010).

  6. 6.

    Ansell, B. M. & Bywaters, E. G. Palindromic rheumatism. Ann. Rheum. Dis. 18, 330 (1959).

  7. 7.

    Koskinen, E., Hannonen, P. & Sokka, T. Palindromic rheumatism: longterm outcomes of 60 patients diagnosed in 1967-84. J. Rheumatol. 36, 1873–1875 (2009).

  8. 8.

    Gonzalez-Lopez, L. et al. Prognostic factors for the development of rheumatoid arthritis and other connective tissue diseases in patients with palindromic rheumatism. J. Rheumatol. 26, 540–545 (1999).

  9. 9.

    Mattingly, S. Palindromic rheumatism. Ann. Rheum. Dis. 25, 307–317 (1966).

  10. 10.

    Wajed, M. A., Brown, D. L. & Currey, H. L. Palindromic rheumatism. Clinical and serum complement study. Ann. Rheum. Dis. 36, 56–61 (1977).

  11. 11.

    Hannonen, P., Mottonen, T. & Oka, M. Palindromic rheumatism. A clinical survey of sixty patients. Scand. J. Rheumatol. 16, 413–420 (1987).

  12. 12.

    Salvador, G. et al. Prevalence and clinical significance of anti-cyclic citrullinated peptide and antikeratin antibodies in palindromic rheumatism. An abortive form of rheumatoid arthritis? Rheumatology 42, 972–975 (2003).

  13. 13.

    Emad, Y. et al. In palindromic rheumatism, hand joint involvement and positive anti-CCP antibodies predict RA development after 1 year of follow-up. Clin. Rheumatol. 33, 791–797 (2014).

  14. 14.

    Khabbazi, A. et al. A multicenter study of clinical and laboratory findings of palindromic rheumatism in Iran. Int. J. Rheum. Dis. 15, 427–430 (2012).

  15. 15.

    Mankia K., et al. Identification of a distinct imaging phenotype may improve the management of palindromic rheumatism. Ann. Rheum. Dis. 2018.

  16. 16.

    Chen, H. H. et al. Association of ultrasonographic findings of synovitis with anti-cyclic citrullinated peptide antibodies and rheumatoid factor in patients with palindromic rheumatism during active episodes. J. Ultrasound Med. 28, 1193–1199 (2009).

  17. 17.

    Fisher, L. R. et al. HLA antigens in palindromic rheumatism and palindromic onset rheumatoid arthritis. Br. J. Rheumatol. 25, 345–348 (1986).

  18. 18.

    Gran, J. T., Husby, G. & Thorsby, E. HLA antigens in palindromic rheumatism, nonerosive rheumatoid arthritis and classical rheumatoid arthritis. J. Rheumatol. 11, 136–140 (1984).

  19. 19.

    Barbieri, P., Ciompi, M. L., Menicucci, A. & Pasero, G. HLA antigens in palindromic rheumatism. An Italian study. Clin. Rheumatol. 7, 470–473 (1988).

  20. 20.

    Bregeon, C. et al. [Palindromic rheumatism. Immunological survey and study of development in 43 cases]. Rev. Rhum. Mal. Osteoartic. 53, 441–449 (1986).

  21. 21.

    Maksymowych, W. P. et al. HLA and cytokine gene polymorphisms in relation to occurrence of palindromic rheumatism and its progression to rheumatoid arthritis. J. Rheumatol. 29, 2319–2326 (2002).

  22. 22.

    Gregersen, P. K., Silver, J. & Winchester, R. J. The shared epitope hypothesis. An approach to understanding the molecular genetics of susceptibility to rheumatoid arthritis. Arthritis Rheum. 30, 1205–1213 (1987).

  23. 23.

    Navalho, M. et al. Bilateral evaluation of the hand and wrist in untreated early inflammatory arthritis: a comparative study of ultrasonography and magnetic resonance imaging. J. Rheumatol. 40, 1282–1292 (2013).

  24. 24.

    Cañete, J. D. et al. An unexpectedly high frequency of MEFV mutations in patients with anti-citrullinated protein antibody-negative palindromic rheumatism. Arthritis Rheum. 56, 2784–2788 (2007).

  25. 25.

    Cañete, J. D. et al. Association of intermittent hydrarthrosis with MEFV gene mutations. Arthritis Rheum. 54, 2334–2335 (2006).

  26. 26.

    Mattingly, S. Intermittent hydrarthrosis. Br. Med. J. 1, 139–143 (1957).

  27. 27.

    Kim, S. K., Lee, H. S., Lee, K. W., Bae, S. C. & Jun, J. B. Palindromic rheumatism: different genetic background implies a distinct disease entity. Ann. Rheum. Dis. 65, 1539–1540 (2006).

  28. 28.

    Chen, H. C. D. et al. Predicting the progression of palindromic rheumatism to rheumatoid arthritis: the role of ultrasonography and anti-cyclic citrullinated peptide antibodies. J. Med. Ultrasound 18 17–26 (2010).

  29. 29.

    Bugatti, S. et al. Ultrasonographic and MRI characterisation of the palindromic phase of rheumatoid arthritis. Ann. Rheum. Dis. 71, 625–626 (2012).

  30. 30.

    Cabrera-Villalba, S. et al. Is there subclinical synovitis in patients with palindromic rheumatism in the intercritical period? A clinical and ultrasonographic study according to anticitrullinated protein antibody status. J. Rheumatol. 41, 1650–1655 (2014).

  31. 31.

    Mankia K., D’Agostino M. A., Emery P. Response to: ‘Ultrasound findings in palindromic rheumatism’ by Sanmarti et al. Ann. Rheum. Dis. (2018).

  32. 32.

    Golding, D. N. Sulphasalazine for palindromic rheumatism. Br. J. Rheumatol. 27, 79 (1988).

  33. 33.

    Youssef, W., Yan, A. & Russell, A. S. Palindromic rheumatism: a response to chloroquine. J. Rheumatol. 18, 35–37 (1991).

  34. 34.

    Gonzalez-Lopez, L., Gamez-Nava, J. I., Jhangri, G., Russell, A. S. & Suarez-Almazor, M. E. Decreased progression to rheumatoid arthritis or other connective tissue diseases in patients with palindromic rheumatism treated with antimalarials. J. Rheumatol. 27, 41–46 (2000).

  35. 35.

    Rempenault C. et al. Clinical and structural efficacy of hydroxychloroquine in rheumatoid arthritis: a systematic review. Arthritis Care Res. (2019).

  36. 36.

    Rothschild, B. & Yakubov, L. E. Evidence for an effect of hydroxychloroquine in chronic pyrophosphate deposition disease. J. Clin. Rheumatol. 2, 170 (1996).

  37. 37.

    Schwartzberg, M. Prophylactic colchicine therapy in palindromic rheumatism. J. Rheumatol. 9, 341–343 (1982).

  38. 38.

    Zemer, D., Livneh, A., Danon, Y. L., Pras, M. & Sohar, E. Long-term colchicine treatment in children with familial Mediterranean fever. Arthritis Rheum. 34, 973–977 (1991).

  39. 39.

    Ozen, S. et al. EULAR recommendations for the management of familial Mediterranean fever. Ann. Rheum. Dis. 75, 644–651 (2016).

  40. 40.

    Savic, S. et al. Autoimmune-autoinflammatory rheumatoid arthritis overlaps: a rare but potentially important subgroup of diseases. RMD Open 3, e000550 (2017).

  41. 41.

    van Echteld I., Wechalekar M. D., Schlesinger N., Buchbinder R., Aletaha D. Colchicine for acute gout. Cochrane Database Syst. Rev. 8, CD006190 (2014).

  42. 42.

    Andres, M. & Pascual, E. Anakinra for a refractory case of intermittent hydrarthrosis with a TRAPS-related gene mutation. Ann. Rheum. Dis. 72, 155 (2013).

  43. 43.

    van der Hilst, J., Moutschen, M., Messiaen, P. E., Lauwerys, B. R. & Vanderschueren, S. Efficacy of anti-IL-1 treatment in familial Mediterranean fever: a systematic review of the literature. Biologics 10, 75–80 (2016).

  44. 44.

    Ben-Zvi, I. et al. Anakinra for colchicine-resistant familial mediterranean fever: a randomized, double-blind, placebo-controlled trial. Arthritis Rheumatol. 69, 854–862 (2017).

  45. 45.

    Harrison, S. R. et al. Anakinra as a diagnostic challenge and treatment option for systemic autoinflammatory disorders of undefined etiology. JCI Insight 1, e86336 (2016).

  46. 46.

    Naumann, L. et al. IL1-receptor antagonist anakinra provides long-lasting efficacy in the treatment of refractory adult-onset Still’s disease. Ann. Rheum. Dis. 69, 466–467 (2010).

  47. 47.

    Tran, A. P. & Edelman, J. Interleukin-1 inhibition by anakinra in refractory chronic tophaceous gout. Int. J. Rheum. Dis. 14, e33–e37 (2011).

  48. 48.

    Gerlag, D. M. et al. EULAR recommendations for terminology and research in individuals at risk of rheumatoid arthritis: report from the Study Group for Risk Factors for Rheumatoid Arthritis. Ann. Rheum. Dis. 71, 638–641 (2012).

  49. 49.

    Mankia, K. & Emery, P. Preclinical rheumatoid arthritis: progress toward prevention. Arthritis Rheumatol. 68, 779–788 (2016).

  50. 50.

    Stack, R. J. et al. Symptom complexes in patients with seropositive arthralgia and in patients newly diagnosed with rheumatoid arthritis: a qualitative exploration of symptom development. Rheumatology 53, 1646–1653 (2014).

  51. 51.

    Nam, J. L., Hunt, L., Hensor, E. M. & Emery, P. Enriching case selection for imminent RA: the use of anti-CCP antibodies in individuals with new non-specific musculoskeletal symptoms — a cohort study. Ann. Rheu. Dis. 75, 1452–1456 (2016).

  52. 52.

    Bos, W. H. et al. Arthritis development in patients with arthralgia is strongly associated with anti-citrullinated protein antibody status: a prospective cohort study. Ann. Rheum. Dis. 69, 490–494 (2010).

  53. 53.

    van Steenbergen, H. W. & van der Helm-van Mil, A. H. Clinical expertise and its accuracy in differentiating arthralgia patients at risk for rheumatoid arthritis from other patients presenting with joint symptoms. Rheumatology 55, 1140–1141 (2016).

  54. 54.

    van Steenbergen, H. W., Mangnus, L., Reijnierse, M., Huizinga, T. W. & van der Helm-van Mil, A. H. Clinical factors, anticitrullinated peptide antibodies and MRI-detected subclinical inflammation in relation to progression from clinically suspect arthralgia to arthritis. Ann. Rheum. Dis. 75, 1824–1830 (2016).

  55. 55.

    Hunt, L. et al. OP0042 In ACPA positive at-risk individuals, which MRI and US findings best predict development of clinical synovitis? Ann. Rheum. Dis. 77 (Suppl 2), 72–73 (2018).

  56. 56.

    Kleyer, A. et al. High prevalence of tenosynovial inflammation before onset of rheumatoid arthritis and its link to progression to RA-A combined MRI/CT study. Semin. Arthritis Rheum. 46, 143–150 (2016).

  57. 57.

    Mankia, K. et al. MRI inflammation of the hand interosseous tendons occurs in anti-CCP-positive at-risk individuals and may precede the development of clinical synovitis. Ann. Rheum. Dis. 78, 781–786 (2019).

  58. 58.

    Schett, G. & Firestein, G. S. Mr Outside and Mr Inside: classic and alternative views on the pathogenesis of rheumatoid arthritis. Ann. Rheum. Dis. 69, 787–789 (2010).

  59. 59.

    Duer, A., Ostergaard, M., Horslev-Petersen, K. & Vallo, J. Magnetic resonance imaging and bone scintigraphy in the differential diagnosis of unclassified arthritis. Ann. Rheum. Dis. 67, 48–51 (2008).

  60. 60.

    Kleyer, A. et al. Bone loss before the clinical onset of rheumatoid arthritis in subjects with anticitrullinated protein antibodies. Ann. Rheum. Dis. 73, 854–860 (2014).

  61. 61.

    Nam, J. L. et al. Ultrasound findings predict progression to inflammatory arthritis in anti-CCP antibody-positive patients without clinical synovitis. Ann. Rheum. Dis. 75, 2060–2067 (2016).

  62. 62.

    Freeston, J. E. et al. A diagnostic algorithm for persistence of very early inflammatory arthritis: the utility of power Doppler ultrasound when added to conventional assessment tools. Ann. Rheum. Dis. 69, 417–419 (2010).

  63. 63.

    Mosor E. et al. I would never take preventive medication! Perspectives and information needs of people who underwent predictive tests for rheumatoid arthritis. Arthritis Care Res. (2019).

  64. 64.

    So, A., De Smedt, T., Revaz, S. & Tschopp, J. A pilot study of IL-1 inhibition by anakinra in acute gout. Arthritis Res. Ther. 9, R28 (2007).

  65. 65.

    Zufferey, P. et al. Efficacy of anakinra in acute hydroxyapatite calcification-induced joint pain: a retrospective study of 23 cases. Joint Bone Spine 86, 83–88 (2019).

  66. 66.

    Schlesinger, N. et al. Canakinumab reduces the risk of acute gouty arthritis flares during initiation of allopurinol treatment: results of a double-blind, randomised study. Ann. Rheum. Dis. 70, 1264–1271 (2011).

  67. 67.

    Schlesinger, N. et al. Canakinumab for acute gouty arthritis in patients with limited treatment options: results from two randomised, multicentre, active-controlled, double-blind trials and their initial extensions. Ann. Rheum Dis. 71, 1839–1848 (2012).

  68. 68.

    Clark, W., Jobanputra, P., Barton, P. & Burls, A. The clinical and cost-effectiveness of anakinra for the treatment of rheumatoid arthritis in adults: a systematic review and economic analysis. Health Technol. Assess. 8, 1–105, iii-iv, ix-x (2004).

  69. 69.

    Scott, I. C. et al. A randomised trial evaluating anakinra in early active rheumatoid arthritis. Clin. Exp. Rheumatol. 34, 88–93 (2016).

  70. 70.

    Pasero, G. & Barbieri, P. Palindromic rheumatism: you just have to think about it! Clin. Exp. Rheumatol. 4, 197–199 (1986).

  71. 71.

    Sanmarti, R. et al. Palindromic rheumatism with positive anticitrullinated peptide/protein antibodies is not synonymous with rheumatoid arthritis. A longterm followup study. J. Rheumatol. 39, 1929–1933 (2012).

Download references

Author information

K.M. researched data for the article. Both authors made a substantial contribution to discussion of the content, writing the article and the review and/or editing of the manuscript before submission.

Correspondence to Paul Emery.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Rheumatology thanks W. Maksymowych, R. Sanmarti and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.


Rheumatoid factor

An antibody against the Fc portion of IgG, which is associated with rheumatoid arthritis.

Shared epitope

(SE). A preserved peptide sequence found on HLA antigens, which is the strongest genetic risk factor for rheumatoid arthritis.


Inflammation of the tissues immediately surrounding the joints.


Inflammation of tissues outside and separate from the joints.


Inflammation of synovial tendon sheaths, which can cause pain, swelling and stiffness associated with the tendons.


Inflammation of the bone, which is a frequent finding in the joints in rheumatoid arthritis.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Mankia, K., Emery, P. Palindromic rheumatism as part of the rheumatoid arthritis continuum. Nat Rev Rheumatol 15, 687–695 (2019) doi:10.1038/s41584-019-0308-5

Download citation