Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Cutaneous lupus erythematosus: new insights into pathogenesis and therapeutic strategies

Abstract

Cutaneous lupus erythematosus (CLE) is an autoimmune disease that can present as an isolated skin disease or as a manifestation within the spectrum of systemic lupus erythematosus. The clinical spectrum of CLE is broad, ranging from isolated discoid plaques to widespread skin lesions. Histologically, skin lesions present as interface dermatitis (inflammation of the skin mediated by anti-epidermal responses), which is orchestrated by type I and type III interferon-regulated cytokines and chemokines. Both innate and adaptive immune pathways are strongly activated in the formation of skin lesions owing to continuous re-activation of innate pathways via pattern recognition receptors (PRRs). These insights into the molecular pathogenesis of skin lesions in CLE have improved our understanding of the mechanisms underlying established therapies and have triggered the development of targeted treatment strategies that focus on immune cells (for example, B cells, T cells or plasmacytoid dendritic cells), as well as immune response pathways (for example, PRR signalling, Janus kinase (JAK)–signal transducer and activator of transcription (STAT) signalling and nuclear factor-κB signalling) and their cytokines and chemokines (for example, type I interferons, CXC-chemokine ligand 10 (CXCL10), IL-6 and IL-12).

Key points

  • Cutaneous lupus erythematosus (CLE) occurs as isolated skin disease or in the context of systemic lupus erythematosus.

  • Skin lesions in CLE are characterized by an interferon-orchestrated cytotoxic anti-epidermal immune response (known as interface dermatitis).

  • Genetic variations in immune-regulation genes (such as genes involved in the type I interferon pathway, cell death, clearance of cell debris, antigen presentation, antibody production and immune cell regulation) predispose individuals to CLE.

  • The chronic pathological cycle of CLE is fuelled by a continuous re-activation of innate immune pathways through adaptive effector mechanisms.

  • Pharmacological inhibition of both adaptive and innate immune responses can be effective in the treatment of patients with CLE.

  • New treatment strategies are being developed that mainly target type I interferon-producing cells (such as plasmacytoid dendritic cells) and their pathways (such as IFNAR or Janus kinase signalling).

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Cutaneous lupus erythematosus subtypes.
Fig. 2: Pro-inflammatory cycle within CLE lesions.
Fig. 3: Overview of pro-inflammatory pathways within CLE lesions.
Fig. 4: Model for the reactivation of innate pathways in CLE.
Fig. 5: Therapeutic targets in CLE.

Similar content being viewed by others

References

  1. Kuhn, A., Wenzel, J. & Bijl, M. Lupus erythematosus revisited. Semin. Immunopathol. 38, 97–112 (2016).

    CAS  PubMed  Google Scholar 

  2. Stannard, J. N. & Kahlenberg, J. M. Cutaneous lupus erythematosus: updates on pathogenesis and associations with systemic lupus. Curr. Opin. Rheumatol. 28, 453–459 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Hejazi, E. Z. & Werth, V. P. Cutaneous lupus erythematosus: an update on pathogenesis, diagnosis and treatment. Am. J. Clin. Dermatol. 17, 135–146 (2016).

    PubMed  Google Scholar 

  4. Kuhn, A., Rondinone, R., Doria, A. & Shoenfeld, Y. 1st international conference on cutaneous lupus erythematosus Düsseldorf, Germany, September 1–5, 2004. Autoimmun. Rev. 4, 66–78 (2005).

    PubMed  Google Scholar 

  5. Gilliam, J. N. & Sontheimer, R. D. Distinctive cutaneous subsets in the spectrum of lupus erythematosus. J. Am. Acad. Dermatol. 4, 471–475 (1981).

    CAS  PubMed  Google Scholar 

  6. Grönhagen, C. M., Fored, C. M., Granath, F. & Nyberg, F. Cutaneous lupus erythematosus and the association with systemic lupus erythematosus: a population-based cohort of 1088 patients in Sweden. Br. J. Dermatol. 164, 1335–1341 (2011).

    PubMed  Google Scholar 

  7. Biazar, C. et al. Cutaneous lupus erythematosus: first multicenter database analysis of 1002 patients from the European Society of Cutaneous Lupus Erythematosus (EUSCLE). Autoimmun. Rev. 12, 444–454 (2013).

    PubMed  Google Scholar 

  8. Jarukitsopa, S. et al. Epidemiology of systemic lupus erythematosus and cutaneous lupus erythematosus in a predominantly white population in the United States. Arthritis Care Res. 67, 817–828 (2015).

    Google Scholar 

  9. Durosaro, O., Davis, M. D. P., Reed, K. B. & Rohlinger, A. L. Incidence of cutaneous lupus erythematosus, 1965–2005: a population-based study. Arch. Dermatol. 145, 249–253 (2009).

    PubMed  PubMed Central  Google Scholar 

  10. Patel, P. & Werth, V. Cutaneous lupus erythematosus: a review. Dermatol. Clin. 20, 373–385 (2002).

    PubMed  Google Scholar 

  11. Lipsker, D. The need to revisit the nosology of cutaneous lupus erythematosus: the current terminology and morphologic classification of cutaneous LE: difficult, incomplete and not always applicable. Lupus 19, 1047–1049 (2010).

    CAS  PubMed  Google Scholar 

  12. Lin, J. H., Dutz, J. P., Sontheimer, R. D. & Werth, V. P. Pathophysiology of cutaneous lupus erythematosus. Clin. Rev. Allergy Immunol. 33, 85–106 (2007).

    CAS  PubMed  Google Scholar 

  13. Wieczorek, I. T., Propert, K. J., Okawa, J. & Werth, V. P. Systemic symptoms in the progression of cutaneous to systemic lupus erythematosus. JAMA Dermatol. 150, 291–296 (2014).

    PubMed  Google Scholar 

  14. Sticherling, M. Kutaner lupus erythematodes und Hautveränderungen beim systemischen lupus erythematodes [German]. Z. Rheumatol. 72, 429–435 (2013).

    CAS  PubMed  Google Scholar 

  15. Kuhn, A. & Landmann, A. The classification and diagnosis of cutaneous lupus erythematosus. J. Autoimmun. 48-49, 14–19 (2014).

    CAS  PubMed  Google Scholar 

  16. Uva, L. et al. Cutaneous manifestations of systemic lupus erythematosus. Autoimmune Dis. 2012, 834291 (2012).

    PubMed  PubMed Central  Google Scholar 

  17. Wenzel, J. et al. The expression pattern of interferon-inducible proteins reflects the characteristic histological distribution of infiltrating immune cells in different cutaneous lupus erythematosus subsets. Br. J. Dermatol. 157, 752–757 (2007).

    CAS  PubMed  Google Scholar 

  18. Wenzel, J. & Tuting, T. An IFN-associated cytotoxic cellular immune response against viral, self-, or tumor antigens is a common pathogenetic feature in “interface dermatitis”. J. Invest. Dermatol. 128, 2392–2402 (2008).

    CAS  PubMed  Google Scholar 

  19. Lauffer, F. et al. Type I immune response induces keratinocyte necroptosis and is associated with interface dermatitis. J. Invest. Dermatol. 38, 1785–1794 (2018).

    Google Scholar 

  20. Obermoser, G., Sontheimer, R. D. & Zelger, B. Overview of common, rare and atypical manifestations of cutaneous lupus erythematosus and histopathological correlates. Lupus 19, 1050–1070 (2010).

    CAS  PubMed  Google Scholar 

  21. Scholtissek, B. et al. Immunostimulatory endogenous nucleic acids drive the lesional inflammation in cutaneous lupus erythematosus. J. Invest. Dermatol. 137, 1484–1492 (2017).

    CAS  PubMed  Google Scholar 

  22. Sarkar, M. K. et al. Photosensitivity and type I IFN responses in cutaneous lupus are driven by epidermal-derived interferon kappa. Ann. Rheum. Dis. 77, 1653–1664 (2018).

    CAS  PubMed  Google Scholar 

  23. Zahn, S. et al. Evidence for a pathophysiological role of keratinocyte-derived type III interferon (IFNλ) in cutaneous lupus erythematosus. J. Invest. Dermatol. 131, 133–140 (2011).

    CAS  PubMed  Google Scholar 

  24. Wenzel, J., Zahn, S., Bieber, T. & Tuting, T. Type I interferon-associated cytotoxic inflammation in cutaneous lupus erythematosus. Arch. Dermatol. Res. 301, 83–86 (2009).

    CAS  PubMed  Google Scholar 

  25. Kuhn, A. et al. S2k guideline for treatment of cutaneous lupus erythematosus-guided by the European Dermatology Forum (EDF) in cooperation with the European Academy of Dermatology and Venereology (EADV). J. Eur. Acad. Dermatol. Venereol. 31, 389–404 (2017).

    CAS  PubMed  Google Scholar 

  26. Filotico, R. & Mastrandrea, V. Cutaneous lupus erythematosus: clinico-pathologic correlation. G. Ital. Dermatol. Venereol. 153, 216–229 (2018).

    PubMed  Google Scholar 

  27. Sunderkötter, C. H. et al. Nomenclature of cutaneous vasculitis: dermatologic addendum to the 2012 revised International Chapel Hill Consensus Conference nomenclature of vasculitides. Arthritis Rheumatol. 70, 171–184 (2018).

    PubMed  Google Scholar 

  28. Udompanich, S., Chanprapaph, K. & Suchonwanit, P. Hair and scalp changes in cutaneous and systemic lupus erythematosus. Am. J. Clin. Dermatol. 19, 679–694 (2018).

    PubMed  Google Scholar 

  29. Reich, A., Meurer, M., Viehweg, A. & Muller, D. J. Narrow-band UVB-induced externalization of selected nuclear antigens in keratinocytes: implications for lupus erythematosus pathogenesis. Photochem. Photobiol. 85, 1–7 (2009).

    CAS  PubMed  Google Scholar 

  30. Casciola-Rosen, L. & Rosen, A. Ultraviolet light-induced keratinocyte apoptosis: a potential mechanism for the induction of skin lesions and autoantibody production in LE. Lupus 6, 175–180 (1997).

    CAS  PubMed  Google Scholar 

  31. Zhang, Y.-P., Wu, J., Han, Y.-F., Shi, Z.-R. & Wang, L. Pathogenesis of cutaneous lupus erythema associated with and without systemic lupus erythema. Autoimmun. Rev. 16, 735–742 (2017).

    CAS  PubMed  Google Scholar 

  32. Wenzel, J. et al. Scarring skin lesions of discoid lupus erythematosus are characterized by high numbers of skin-homing cytotoxic lymphocytes associated with strong expression of the type I interferon-induced protein MxA. Br. J. Dermatol. 153, 1011–1015 (2005).

    CAS  PubMed  Google Scholar 

  33. Mak, A. & Kow, N. Y. The pathology of T cells in systemic lupus erythematosus. J. Immunol. Res. 2014, 419029 (2014).

    PubMed  PubMed Central  Google Scholar 

  34. Grassi, M., Capello, F., Bertolino, L., Seia, Z. & Pippione, M. Identification of granzyme B-expressing CD-8-positive T cells in lymphocytic inflammatory infiltrate in cutaneous lupus erythematosus and in dermatomyositis. Clin. Exp. Dermatol. 34, 910–914 (2009).

    CAS  PubMed  Google Scholar 

  35. Herrada, A. A. et al. Innate immune cells’ contribution to systemic lupus erythematosus. Front. Immunol. 10, 772 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Sestak, A. L., Fürnrohr, B. G., Harley, J. B., Merrill, J. T. & Namjou, B. The genetics of systemic lupus erythematosus and implications for targeted therapy. Ann. Rheum. Dis. 70, i37–i43 (2011).

    CAS  PubMed  Google Scholar 

  37. Peschke, K. et al. Deregulated type I IFN response in TREX1-associated familial chilblain lupus. J. Invest. Dermatol. 134, 1456–1459 (2014).

    CAS  PubMed  Google Scholar 

  38. Hersh, A. O., Arkin, L. M. & Prahalad, S. Immunogenetics of cutaneous lupus erythematosus. Curr. Opin. Pediatr. 28, 470–475 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Foering, K. et al. Characterization of clinical photosensitivity in cutaneous lupus erythematosus. J. Am. Acad. Dermatol. 69, 205–213 (2013).

    PubMed  PubMed Central  Google Scholar 

  40. Gehrke, N. et al. Oxidative damage of DNA confers resistance to cytosolic nuclease TREX1 degradation and potentiates STING-dependent immune sensing. Immunity 39, 482–495 (2013).

    CAS  PubMed  Google Scholar 

  41. Kaczmarczyk-Sekuła, K. et al. Mast cells in systemic and cutaneous lupus erythematosus. Pol. J. Pathol. 4, 397–402 (2015).

    Google Scholar 

  42. Gerl, V. et al. The intracellular 52-kd Ro/SSA autoantigen in keratinocytes is up-regulated by tumor necrosis factor α via tumor necrosis factor receptor I. Arthritis Rheum. 52, 531–538 (2005).

    CAS  PubMed  Google Scholar 

  43. Patsinakidis, N. et al. Suppression of UV-induced damage by a liposomal sunscreen: a prospective, open-label study in patients with cutaneous lupus erythematosus and healthy controls. Exp. Dermatol. 21, 958–961 (2012).

    CAS  PubMed  Google Scholar 

  44. Katayama, S. et al. Delineating the healthy human skin UV response and early induction of interferon pathway in cutaneous lupus erythematosus. J. Invest. Dermatol. https://doi.org/10.1016/j.jid.2019.02.035 (2019).

    Article  PubMed  Google Scholar 

  45. Chang, J. & Werth, V. P. Therapeutic options for cutaneous lupus erythematosus: recent advances and future prospects. Expert Rev. Clin. Immunol. 12, 1109–1121 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Piette, E. W. et al. Impact of smoking in cutaneous lupus erythematosus. Arch. Dermatol. 148, 317–322 (2012).

    PubMed  Google Scholar 

  47. White, P. C. et al. Cigarette smoke modifies neutrophil chemotaxis, neutrophil extracellular trap formation and inflammatory response-related gene expression. J. Periodont. Res. 53, 525–535 (2018).

    CAS  PubMed  Google Scholar 

  48. Vaglio, A. et al. Drug-induced lupus: traditional and new concepts. Autoimmun. Rev. 17, 912–918 (2018).

    CAS  PubMed  Google Scholar 

  49. Sandholdt, L. H., Laurinaviciene, R. & Bygum, A. Proton pump inhibitor-induced subacute cutaneous lupus erythematosus. Br. J. Dermatol. 170, 342–351 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Biermann, M. H. C. et al. The role of dead cell clearance in the etiology and pathogenesis of systemic lupus erythematosus: dendritic cells as potential targets. Expert Rev. Clin. Immunol. 10, 1151–1164 (2014).

    CAS  PubMed  Google Scholar 

  51. Shovman, O., Tamar, S., Amital, H., Watad, A. & Shoenfeld, Y. Diverse patterns of anti-TNF-α-induced lupus: case series and review of the literature. Clin. Rheumatol. 37, 563–568 (2018).

    PubMed  Google Scholar 

  52. Levine, D., Switlyk, S. A. & Gottlieb, A. Cutaneous lupus erythematosus and anti-TNF-α therapy: a case report with review of the literature. J. Drugs Dermatol. 9, 1283–1287 (2010).

    PubMed  Google Scholar 

  53. Fiorentino, D. F. The Yin and Yang of TNF-α inhibition. Arch. Dermatol. 143, 233–236 (2007).

    CAS  PubMed  Google Scholar 

  54. Arrue, I., Saiz, A., Ortiz-Romero, P. L. & Rodríguez-Peralto, J. L. Lupus-like reaction to interferon at the injection site: report of five cases. J. Cutan. Pathol. 34, 18–21 (2007).

    PubMed  Google Scholar 

  55. Curran, C. S., Gupta, S., Sanz, I. & Sharon, E. PD-1 immunobiology in systemic lupus erythematosus. J. Autoimmun. 97, 1–9 (2018).

    PubMed  Google Scholar 

  56. Sinha, A. A. & Dey-Rao, R. Genomic investigation of lupus in the skin. J. Invest. Dermatol. Symp. Proc. 18, S75–S80 (2017).

    Google Scholar 

  57. Dey-Rao, R. & Sinha, A. A. Genome-wide transcriptional profiling data from skin of chronic cutaneous lupus erythematosus (CCLE) patients. Data Brief 4, 47–49 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Zahn, S. et al. Interferon-α stimulates TRAIL expression in human keratinocytes and peripheral blood mononuclear cells: implications for the pathogenesis of cutaneous lupus erythematosus. Br. J. Dermatol. 165, 1118–1123 (2011).

    CAS  PubMed  Google Scholar 

  59. Muskardin, T. L. W. & Niewold, T. B. Type I interferon in rheumatic diseases. Nat. Rev. Rheumatol. 14, 214–228 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Yin, Q. et al. Ultraviolet B irradiation induces skin accumulation of plasmacytoid dendritic cells: a possible role for chemerin. Autoimmunity 47, 185–192 (2014).

    CAS  PubMed  Google Scholar 

  61. Liu, L., Xu, G., Dou, H. & Deng, G.-M. The features of skin inflammation induced by lupus serum. Clin. Immunol. 165, 4–11 (2016).

    CAS  PubMed  Google Scholar 

  62. Dudhgaonkar, S. et al. Selective IRAK4 inhibition attenuates disease in murine lupus models and demonstrates steroid sparing activity. J. Immunol. 198, 1308–1319 (2017).

    CAS  PubMed  Google Scholar 

  63. Mande, P. et al. Fas ligand promotes an inducible TLR-dependent model of cutaneous lupus-like inflammation. J. Clin. Invest. 128, 2966–2978 (2018).

    PubMed  PubMed Central  Google Scholar 

  64. König, N. et al. Familial chilblain lupus due to a gain-of-function mutation in STING. Ann. Rheum. Dis. 76, 468–472 (2017).

    PubMed  Google Scholar 

  65. Sabrautzki, S. et al. An ENU mutagenesis-derived mouse model with a dominant Jak1 mutation resembling phenotypes of systemic autoimmune disease. Am. J. Pathol. 183, 352–368 (2013).

    CAS  PubMed  Google Scholar 

  66. Means, T. K. et al. Human lupus autoantibody-DNA complexes activate DCs through cooperation of CD32 and TLR9. J. Clin. Invest. 115, 407–417 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Eloranta, M.-L. et al. Regulation of the interferon-α production induced by RNA-containing immune complexes in plasmacytoid dendritic cells. Arthritis Rheum. 60, 2418–2427 (2009).

    CAS  PubMed  Google Scholar 

  68. Saadeh, D., Kurban, M. & Abbas, O. Update on the role of plasmacytoid dendritic cells in inflammatory/autoimmune skin diseases. Exp. Dermatol. 25, 415–421 (2016).

    PubMed  Google Scholar 

  69. Liu, Z. & Davidson, A. Taming lupus — a new understanding of pathogenesis is leading to clinical advances. Nat. Med. 18, 871–882 (2012).

    PubMed  PubMed Central  Google Scholar 

  70. Rönnblom, L. The type I interferon system in the etiopathogenesis of autoimmune diseases. Ups. J. Med. Sci. 116, 227–237 (2011).

    PubMed  PubMed Central  Google Scholar 

  71. Kalali, B. N. et al. Double-stranded RNA induces an antiviral defense status in epidermal keratinocytes through TLR3-, PKR-, and MDA5/RIG-I-mediated differential signaling. J. Immunol. 181, 2694–2704 (2008).

    CAS  PubMed  Google Scholar 

  72. Skouboe, M. K. et al. STING agonists enable antiviral cross-talk between human cells and confer protection against genital herpes in mice. PLOS Pathog. 14, e1006976 (2018).

    PubMed  PubMed Central  Google Scholar 

  73. Stannard, J. N. et al. Lupus skin is primed for IL-6 inflammatory responses through a keratinocyte-mediated autocrine type I interferon loop. J. Invest. Dermatol. 137, 115–122 (2017).

    CAS  PubMed  Google Scholar 

  74. Liu, Y. et al. TWEAK/Fn14 activation participates in Ro52-mediated photosensitization in cutaneous lupus erythematosus. Front. Immunol. 8, 651 (2017).

    PubMed  PubMed Central  Google Scholar 

  75. Zahn, S. et al. Ultraviolet light protection by a sunscreen prevents interferon-driven skin inflammation in cutaneous lupus erythematosus. Exp. Dermatol. 23, 516–518 (2014).

    CAS  PubMed  Google Scholar 

  76. Wenzel, J. et al. Enhanced type I interferon signalling promotes Th1-biased inflammation in cutaneous lupus erythematosus. J. Pathol. 205, 435–442 (2005).

    CAS  PubMed  Google Scholar 

  77. Kuhn, A. et al. Accumulation of apoptotic cells in the epidermis of patients with cutaneous lupus erythematosus after ultraviolet irradiation. Arthritis Rheum. 54, 939–950 (2006).

    PubMed  Google Scholar 

  78. Kuechle, M. K. & Elkon, K. B. Shining light on lupus and UV. Arthritis Res. Ther. 9, 101 (2007).

    PubMed  PubMed Central  Google Scholar 

  79. Mistry, P. & Kaplan, M. J. Cell death in the pathogenesis of systemic lupus erythematosus and lupus nephritis. Clin. Immunol. 185, 59–73 (2017).

    CAS  PubMed  Google Scholar 

  80. Wang, D., Drenker, M., Eiz-Vesper, B., Werfel, T. & Wittmann, M. Evidence for a pathogenetic role of interleukin-18 in cutaneous lupus erythematosus. Arthritis Rheum. 58, 3205–3215 (2008).

    CAS  PubMed  Google Scholar 

  81. Caneparo, V., Landolfo, S., Gariglio, M. & De Andrea, M. The absent in melanoma 2-like receptor IFN-inducible protein 16 as an inflammasome regulator in systemic lupus erythematosus: the dark side of sensing microbes. Front. Immunol. 9, 1180 (2018).

    PubMed  PubMed Central  Google Scholar 

  82. Kreuter, A. et al. Expression of antimicrobial peptides in different subtypes of cutaneous lupus erythematosus. J. Am. Acad. Dermatol. 65, 125–133 (2011).

    CAS  PubMed  Google Scholar 

  83. Chamilos, G. et al. Cytosolic sensing of extracellular self-DNA transported into monocytes by the antimicrobial peptide LL37. Blood 120, 3699–3707 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Drake, L. A. et al. Guidelines of care for cutaneous lupus erythematosus. American Academy of Dermatology. J. Am. Acad. Dermatol. 34, 830–836 (1996).

    CAS  PubMed  Google Scholar 

  85. Kuhn, A., Landmann, A. & Wenzel, J. Advances in the treatment of cutaneous lupus erythematosus. Lupus 25, 830–837 (2016).

    CAS  PubMed  Google Scholar 

  86. Kuhn, A. et al. Photoprotective effects of a broad-spectrum sunscreen in ultraviolet-induced cutaneous lupus erythematosus: a randomized, vehicle-controlled, double-blind study. J. Am. Acad. Dermatol. 64, 37–48 (2011).

    CAS  PubMed  Google Scholar 

  87. Kuhn, A. et al. Efficacy of tacrolimus 0.1% ointment in cutaneous lupus erythematosus: a multicenter, randomized, double-blind, vehicle-controlled trial. J. Am. Acad. Dermatol. 65, 54–64.e2 (2011).

    CAS  PubMed  Google Scholar 

  88. Alves, P. et al. Quinacrine suppresses tumor necrosis factor-α and IFN-α in dermatomyositis and cutaneous lupus erythematosus. J. Investig. Dermatol. Symp. Proc. 18, S57–S63 (2017).

    PubMed  PubMed Central  Google Scholar 

  89. Kuznik, A. et al. Mechanism of endosomal TLR inhibition by antimalarial drugs and imidazoquinolines. J. Immunol. 186, 4794–4804 (2011).

    CAS  PubMed  Google Scholar 

  90. Yokogawa, N. et al. Effects of hydroxychloroquine in patients with cutaneous lupus erythematosus: a multicenter, double-blind, randomized, parallel-group trial. Arthritis Rheumatol. 69, 791–799 (2017).

    CAS  PubMed  Google Scholar 

  91. Zeidi, M., Kim, H. J. & Werth, V. P. Increased myeloid dendritic cells and TNF-α expression predicts poor response to hydroxychloroquine in cutaneous lupus erythematosus. J. Invest. Dermatol. 139, 324–332 (2019).

    CAS  PubMed  Google Scholar 

  92. Wenzel, J. Methotrexate in systemic lupus erythematosus. Lupus 14, 569 (2005).

    CAS  PubMed  Google Scholar 

  93. Klebes, M., Wutte, N. & Aberer, E. Dapsone as second-line treatment for cutaneous lupus erythematosus? A retrospective analysis of 34 patients and a review of the literature. Dermatology 232, 91–96 (2016).

    CAS  PubMed  Google Scholar 

  94. Shornick, J. K., Formica, N. & Parke, A. L. Isotretinoin for refractory lupus erythematosus. J. Am. Acad. Dermatol. 24, 49–52 (1991).

    CAS  PubMed  Google Scholar 

  95. Chan, E. S. L. & Cronstein, B. N. Methotrexate—how does it really work? Nat. Rev. Rheumatol. 6, 175–178 (2010).

    CAS  PubMed  Google Scholar 

  96. Thomas, S. et al. Methotrexate is a JAK/STAT pathway inhibitor. PLOS ONE 10, e0130078 (2015).

    PubMed  PubMed Central  Google Scholar 

  97. Klaeschen, A. S. & Wenzel, J. Upcoming therapeutic targets in cutaneous lupus erythematous. Expert Rev. Clin. Pharmacol. 9, 567–578 (2016).

    CAS  PubMed  Google Scholar 

  98. Felten, R. et al. The 2018 pipeline of targeted therapies under clinical development for systemic lupus erythematosus: a systematic review of trials. Autoimmun. Rev. 17, 781–790 (2018).

    PubMed  Google Scholar 

  99. Presto, J. K., Hejazi, E. Z. & Werth, V. P. Biological therapies in the treatment of cutaneous lupus erythematosus. Lupus 26, 115–118 (2017).

    PubMed  Google Scholar 

  100. Hofmann, S. C., Leandro, M. J., Morris, S. D. & Isenberg, D. A. Effects of rituximab-based B-cell depletion therapy on skin manifestations of lupus erythematosus—report of 17 cases and review of the literature. Lupus 22, 932–939 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Berghen, N., Vulsteke, J.-B., Westhovens, R., Lenaerts, J. & De Langhe, E. Rituximab in systemic autoimmune rheumatic diseases: indications and practical use. Acta Clin. Belg. 74, 272–279 (2018).

    PubMed  Google Scholar 

  102. Vital, E. M. et al. Brief report: responses to rituximab suggest B cell-independent inflammation in cutaneous systemic lupus erythematosus. Arthritis Rheumatol. 67, 1586–1591 (2015).

    CAS  PubMed  Google Scholar 

  103. Vashisht, P., Borghoff, K. & O’Dell, J. R. Hearth-Holmes, M. Belimumab for the treatment of recalcitrant cutaneous lupus. Lupus 26, 857–864 (2017).

    CAS  PubMed  Google Scholar 

  104. Iaccarino, L. et al. Effects of belimumab on flare rate and expected damage progression in patients with active systemic lupus erythematosus. Arthritis Care Res. (Hoboken) 69, 115–123 (2017).

    CAS  Google Scholar 

  105. European Medicines Agency. EU Clinical Trials Register https://www.clinicaltrialsregister.eu/ctr-search/trial/2017-003051-35/DE (2018).

  106. Wenzel, J., Landmann, A., Vorwerk, G. & Kuhn, A. High expression of B lymphocyte stimulator in lesional keratinocytes of patients with cutaneous lupus erythematosus. Exp. Dermatol. 27, 95–97 (2018).

    CAS  PubMed  Google Scholar 

  107. Merrill, J. T. et al. Efficacy and safety of atacicept in patients with systemic lupus erythematosus: results of a twenty-four-week, multicenter, randomized, double-blind, placebo-controlled, parallel-arm, phase IIb study. Arthritis Rheumatol. 70, 266–276 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Kohler, S. et al. Bortezomib in antibody-mediated autoimmune diseases (TAVAB): study protocol for a unicentric, non-randomised, non-placebo controlled trial. BMJ Open 9, e024523 (2019).

    PubMed  PubMed Central  Google Scholar 

  109. Shirley, M. Ixazomib: first global approval. Drugs 76, 405–411 (2016).

    CAS  PubMed  Google Scholar 

  110. Alexander, T. et al. Proteasome inhibition with bortezomib induces a therapeutically relevant depletion of plasma cells in SLE but does not target their precursors. Eur. J. Immunol. 48, 1573–1579 (2018).

    CAS  PubMed  Google Scholar 

  111. Aguayo-Leiva, I., Vano-Galvan, S., Carrillo-Gijon, R. & Jaén-Olasolo, P. Lupus tumidus induced by bortezomib not requiring discontinuation of the drug. J. Eur. Acad. Dermatol. Venereol. 24, 1363–1364 (2010).

    CAS  PubMed  Google Scholar 

  112. Gensous, N. et al. T follicular helper cells in autoimmune disorders. Front. Immunol. 9, 1637 (2018).

    PubMed  PubMed Central  Google Scholar 

  113. Katsuyama, T., Tsokos, G. C. & Moulton, V. R. Aberrant T cell signaling and subsets in systemic lupus erythematosus. Front. Immunol. 9, 1088 (2018).

    PubMed  PubMed Central  Google Scholar 

  114. Dehesa, L., Abuchar, A., Nuno-Gonzalez, A., Vitiello, M. & Kerdel, F. A. The use of cyclosporine in dermatology. J. Drugs Dermatol. 11, 979–987 (2012).

    CAS  PubMed  Google Scholar 

  115. Wu, Q. & Kuca, K. Metabolic pathway of cyclosporine A and its correlation with nephrotoxicity. Curr. Drug Metab. 20, 84–90 (2018).

    Google Scholar 

  116. Sin, F. E. & Isenberg, D. An evaluation of voclosporin for the treatment of lupus nephritis. Expert Opin. Pharmacother. 19, 1613–1621 (2018).

    CAS  PubMed  Google Scholar 

  117. Spee-Mayer, C. Von et al. Low-dose interleukin-2 selectively corrects regulatory T cell defects in patients with systemic lupus erythematosus. Ann. Rheum. Dis. 75, 1407–1415 (2016).

    Google Scholar 

  118. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT03312335 (2018).

  119. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02770170 (2019).

  120. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02804763 (2019).

  121. Danion, F. et al. Efficacy of abatacept in systemic lupus erythematosus: a retrospective analysis of 11 patients with refractory disease. Lupus 25, 1440–1447 (2016).

    CAS  PubMed  Google Scholar 

  122. Tarazi, M., Aiempanakit, K. & Werth, V. P. Subacute cutaneous lupus erythematosus and systemic lupus erythematosus associated with abatacept. JAAD Case Rep. 4, 698–700 (2018).

    PubMed  PubMed Central  Google Scholar 

  123. Biliouris, K. et al. A pre-clinical quantitative model predicts the pharmacokinetics/pharmacodynamics of an anti-BDCA2 monoclonal antibody in humans. J. Pharmacokinet. Pharmacodyn. 45, 817–827 (2018).

    CAS  PubMed  Google Scholar 

  124. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02847598 (2019).

  125. Furie, R. et al. BIIB059, a monoclonal antibody targeting BDCA2, shows evidence of biological activity and early clinical proof of concept in subjects with active cutaneous LE. Ann. Rheum. Dis. 76, (Suppl. 2), 857 (2017).

    Google Scholar 

  126. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT03817424 (2019).

  127. Kalunian, K. C. et al. A phase II study of the efficacy and safety of rontalizumab (rhuMAb interferon-α) in patients with systemic lupus erythematosus (ROSE). Ann. Rheum. Dis. 75, 196–202 (2016).

    PubMed  Google Scholar 

  128. Merrill, J. T. et al. Safety profile and clinical activity of sifalimumab, a fully human anti-interferon α monoclonal antibody, in systemic lupus erythematosus: a phase I, multicentre, double-blind randomised study. Ann. Rheum. Dis. 70, 1905–1913 (2011).

    CAS  PubMed  Google Scholar 

  129. Werth, V. P. et al. Brief report: pharmacodynamics, safety, and clinical efficacy of AMG 811, a human anti-interferon-γ antibody, in patients with discoid lupus erythematosus. Arthritis Rheumatol. 69, 1028–1034 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Furie, R. et al. Anifrolumab, an anti-interferon-α receptor monoclonal antibody, in moderate-to-severe systemic lupus erythematosus. Arthritis Rheumatol. 69, 376–386 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  131. Santos, F. P. S. & Verstovsek, S. Efficacy of ruxolitinib for myelofibrosis. Expert Opin. Pharmacother. 15, 1465–1473 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  132. Spoerl, S. et al. Activity of therapeutic JAK 1/2 blockade in graft-versus-host disease. Blood 123, 3832–3842 (2014).

    CAS  PubMed  Google Scholar 

  133. Hornung, T. et al. Remission of recalcitrant dermatomyositis treated with ruxolitinib. N. Engl. J. Med. 371, 2537–2538 (2014).

    PubMed  Google Scholar 

  134. Hornung, T., Wolf, D. & Wenzel, J. More on remission of recalcitrant dermatomyositis treated with ruxolitinib. N. Engl. J. Med. 372, 1273–1274 (2015).

    Google Scholar 

  135. Klaeschen, A. S., Wolf, D., Brossart, P., Bieber, T. & Wenzel, J. JAK inhibitor ruxolitinib inhibits the expression of cytokines characteristic of cutaneous lupus erythematosus. Exp. Dermatol. 26, 728–730 (2017).

    CAS  PubMed  Google Scholar 

  136. Wenzel, J. et al. JAK1/2 inhibitor ruxolitinib controls a case of chilblain lupus erythematosus. J. Invest. Dermatol. 136, 1281–1283 (2016).

    CAS  PubMed  Google Scholar 

  137. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT03159936 (2019).

  138. Wallace, D. J. et al. Baricitinib for systemic lupus erythematosus: a double-blind, randomised, placebo-controlled, phase 2 trial. Lancet 392, 222–231 (2018).

    CAS  PubMed  Google Scholar 

  139. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT03134222 (2019).

  140. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT03920267 (2019).

  141. Deng, G.-M., Liu, L., Bahjat, F. R., Pine, P. R. & Tsokos, G. C. Suppression of skin and kidney disease by inhibition of spleen tyrosine kinase in lupus-prone mice. Arthritis Rheum. 62, 2086–2092 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  142. Deng, G.-M. & Tsokos, G. C. The role of Syk in cutaneous lupus erythematosus. Exp. Dermatol. 25, 674–675 (2016).

    PubMed  Google Scholar 

  143. Braegelmann, C. et al. Spleen tyrosine kinase (SYK) is a potential target for the treatment of cutaneous lupus erythematosus patients. Exp. Dermatol. 25, 375–379 (2016).

    CAS  PubMed  Google Scholar 

  144. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02927457 (2019).

  145. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02936375 (2018).

  146. Iwata, Y. et al. p38 mitogen-activated protein kinase contributes to autoimmune renal injury in MRL-Fas lpr mice. J. Am. Soc. Nephrol. 14, 57–67 (2003).

    CAS  PubMed  Google Scholar 

  147. Jin, N. et al. The selective p38 mitogen-activated protein kinase inhibitor, SB203580, improves renal disease in MRL/lpr mouse model of systemic lupus. Int. Immunopharmacol. 11, 1319–1326 (2011).

    CAS  PubMed  Google Scholar 

  148. Kuhn, A. et al. Fumaric acid ester treatment in cutaneous lupus erythematosus (CLE): a prospective, open-label, phase II pilot study. Lupus 25, 1357–1364 (2016).

    CAS  PubMed  Google Scholar 

  149. Dey-Rao, R., Smith, J. R., Chow, S. & Sinha, A. A. Differential gene expression analysis in CCLE lesions provides new insights regarding the genetics basis of skin vs. systemic disease. Genomics 104, 144–155 (2014).

    CAS  PubMed  Google Scholar 

  150. Norman, R., Greenberg, R. G. & Jackson, J. M. Case reports of etanercept in inflammatory dermatoses. J. Am. Acad. Dermatol. 54, S139–S142 (2006).

    PubMed  Google Scholar 

  151. Drosou, A., Kirsner, R. S., Welsh, E., Sullivan, T. P. & Kerdel, F. A. Use of infliximab, an anti-tumor necrosis α antibody, for inflammatory dermatoses. J. Cutan. Med. Surg. 7, 382–386 (2003).

    PubMed  Google Scholar 

  152. Aringer, M. & Smolen, J. S. Efficacy and safety of TNF-blocker therapy in systemic lupus erythematosus. Expert Opin. Drug Saf. 7, 411–419 (2008).

    CAS  PubMed  Google Scholar 

  153. European Medicines Agency. EU Clinical Trials Register https://www.clinicaltrialsregister.eu/ctr-search/trial/2015-001602-33/GB (2015).

  154. Van Vollenhoven, R. F. et al. Efficacy and safety of ustekinumab, an IL-12 and IL-23 inhibitor, in patients with active systemic lupus erythematosus: results of a multicentre, double-blind, phase 2, randomised, controlled study. Lancet 392, 1330–1339 (2018).

    PubMed  Google Scholar 

  155. Souza, A., De Ali-Shaw, T., Strober, B. E. & Franks, A. G. Successful treatment of subacute lupus erythematosus with ustekinumab. Arch. Dermatol. 147, 896–898 (2011).

    PubMed  Google Scholar 

  156. Tierney, E., Kirthi, S., Ramsay, B. & Ahmad, K. Ustekinumab-induced subacute cutaneous lupus. JAAD Case Rep. 5, 271–273 (2019).

    PubMed  PubMed Central  Google Scholar 

  157. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT01405196 (2017).

  158. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT01702740 (2012).

  159. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02437890 (2019).

  160. Kunz, M. et al. Genome-wide association study identifies new susceptibility loci for cutaneous lupus erythematosus. Exp. Dermatol. 24, 510–515 (2015).

    CAS  PubMed  Google Scholar 

  161. Millard, T. P. et al. A candidate gene analysis of three related photosensitivity disorders: cutaneous lupus erythematosus, polymorphic light eruption and actinic prurigo. Br. J. Dermatol. 145, 229–236 (2001).

    CAS  PubMed  Google Scholar 

  162. Ruiz-Larrañaga, O. et al. Genetic association study of systemic lupus erythematosus and disease subphenotypes in European populations. Clin. Rheumatol. 35, 1161–1168 (2016).

    PubMed  Google Scholar 

  163. Järvinen, T. M. et al. Tyrosine kinase 2 and interferon regulatory factor 5 polymorphisms are associated with discoid and subacute cutaneous lupus erythematosus. Exp. Dermatol. 19, 123–131 (2010).

    PubMed  Google Scholar 

  164. Skonieczna, K. et al. Genetic similarities and differences between discoid and systemic lupus erythematosus patients within the Polish population. Postepy Dermatol. Alergol. 34, 228–232 (2017).

    PubMed  PubMed Central  Google Scholar 

  165. Levy, S. B., Pinnell, S. R., Meadows, L., Snyderman, R. & Ward, F. E. Hereditary C2 deficiency associated with cutaneous lupus erythematosus: clinical, laboratory, and genetic studies. Arch. Dermatol. 115, 57–61 (1979).

    CAS  PubMed  Google Scholar 

  166. Agnello, V., Gell, J. & Tye, M. J. Partial genetic deficiency of the C4 component of complement in discoid lupus erythematosus and urticaria/angioedema. J. Am. Acad. Dermatol. 9, 894–898 (1983).

    CAS  PubMed  Google Scholar 

  167. Racila, D. M. et al. Homozygous single nucleotide polymorphism of the complement C1QA gene is associated with decreased levels of C1q in patients with subacute cutaneous lupus erythematosus. Lupus 12, 124–132 (2003).

    CAS  PubMed  Google Scholar 

  168. Lipsker, D. & Hauptmann, G. Cutaneous manifestations of complement deficiencies. Lupus 19, 1096–1106 (2010).

    CAS  PubMed  Google Scholar 

  169. Sanchez, E. et al. Phenotypic associations of genetic susceptibility loci in systemic lupus erythematosus. Ann. Rheum. Dis. 70, 1752–1757 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  170. Järvinen, T. M. et al. Polymorphisms of the ITGAM gene confer higher risk of discoid cutaneous than of systemic lupus erythematosus. PLOS ONE 5, e14212 (2010).

    PubMed  PubMed Central  Google Scholar 

  171. Da Silva Fonseca, A. M. et al. Polymorphisms in STK17A gene are associated with systemic lupus erythematosus and its clinical manifestations. Gene 527, 435–439 (2013).

    PubMed  Google Scholar 

  172. Azevêdo Silva, J. De et al. Vitamin D receptor (VDR) gene polymorphisms and susceptibility to systemic lupus erythematosus clinical manifestations. Lupus 22, 1110–1117 (2013).

    PubMed  Google Scholar 

  173. Zhong, H. et al. Replicated associations of TNFAIP3, TNIP1 and ETS1 with systemic lupus erythematosus in a southwestern Chinese population. Arthritis Res. Ther. 13, R186 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  174. Vigato-Ferreira, I. C. C. et al. FcγRIIa and FcγRIIIb polymorphisms and associations with clinical manifestations in systemic lupus erythematosus patients. Autoimmunity 47, 451–458 (2014).

    CAS  PubMed  Google Scholar 

  175. Harley, I. T. W. et al. The role of genetic variation near interferon-kappa in systemic lupus erythematosus. J. Biomed. Biotechnol. 2010, 706825 (2010).

    PubMed  PubMed Central  Google Scholar 

  176. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT03122431 (2018).

  177. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02176148 (2018).

  178. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT03260166 (2017).

  179. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02428309 (2019).

  180. European Medicines Agency. EU Clinical Trials Register https://www.clinicaltrialsregister.eu/ctr-search/trial/2017-001203-79/HU (2017).

  181. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT03288324 (2019).

  182. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT03517722 (2019).

  183. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT03866317 (2019).

  184. European Medicines Agency. EU Clinical Trials Register https://www.clinicaltrialsregister.eu/ctr-search/trial/2016-003246-93/PL (2016).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joerg Wenzel.

Ethics declarations

Competing interests

J.W. declares that he has received financial support from GSK (for clinical studies, investigator-initiated trials and advisory board fees), Incyte (for investigator-initiated trials), Spirig (for an investigator-initiated trial), Medac (for advisory board fees), Actelion (for advisory board fees), Celgene (for advisory board fees), Biogen (for advisory board fees), Roche (for advisory board fees and clinical studies), Leo (for advisory board fees and clinical studies), Merck Serono (for clinical studies) and ArrayBio (for clinical studies).

Additional information

Peer review information

Nature Reviews Rheumatology thanks M. Caproni, F. Furukawa and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Glossary

Interface dermatitis

Cytotoxic, anti-epithelial inflammation at the dermo-epidermal junction, characterized by hydropic degeneration, keratinocytic cell death and colloid bodies

Papulosquamous

A medium-sized (3–10 mm) elevated skin lesion with scaling

Psoriasiform

A ‘psoriasis-like’, well-circumscribed, elevated skin lesion with scaling

Annular

A ring-shaped skin lesion

Polycyclic

Skin lesions formed of several erythematous rings

Erythrosquamous

A red and scaling skin lesion

Bullae

Large blisters (>1 cm)

Target lesions

Annular skin lesions with similarity to an archer’s bullseye with a central papule or vesicle, surrounded by pale oedema, and a peripheral ring-shaped erythema

Colloid bodies

Pale, hyaline residue material derived from dead keratinocytes seen in the lower epidermis and the upper dermis (also known as Civatte bodies)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wenzel, J. Cutaneous lupus erythematosus: new insights into pathogenesis and therapeutic strategies. Nat Rev Rheumatol 15, 519–532 (2019). https://doi.org/10.1038/s41584-019-0272-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41584-019-0272-0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing