Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Cardiometabolic comorbidities in RA and PsA: lessons learned and future directions

Abstract

Cardiometabolic comorbidities present a considerable burden for patients with rheumatoid arthritis (RA) or psoriatic arthritis (PsA). Both RA and PsA are associated with an increased risk of cardiovascular disease (CVD). PsA more often exhibits an increased risk of metabolically linked comorbidities such as obesity, insulin resistance, type 2 diabetes mellitus and non-alcoholic fatty liver disease. Although both RA and PsA are characterized by a state of chronic inflammation, the mechanisms that contribute to CVD risk in these conditions might not be identical. In RA, systemic inflammation is thought to directly contribute to CVD risk, whereas in PsA, adiposity is thought to contribute to a notable metabolic phenotype that, in turn, contributes to CVD risk. Hence, appropriate management strategies that consider the increased risk of cardiometabolic comorbidities in patients with inflammatory arthropathy are important. In RA, such strategies should focus on the prediction of CVD risk and its management through targeting chronic inflammation and traditional CVD risk factors. In PsA, management strategies should additionally focus on targeting metabolic components, including weight management, which might not only help improve disease activity in the joints, entheses and skin, but also reduce the risk of metabolic comorbidities and improve the quality of life of patients.

Key points

  • Cardiometabolic comorbidities represent a notable morbidity and mortality burden in patients with rheumatoid arthritis (RA) or psoriatic arthritis (PsA).

  • Patients with RA have a higher risk of cardiovascular disease than individuals of the general population; however, some of this increased risk might be driven by steroid use.

  • PsA is more strongly linked to metabolic comorbidities, including obesity, non-alcoholic fatty liver disease and type 2 diabetes mellitus.

  • Dampening inflammation with methotrexate or TNF inhibitors might lower the cardiovascular risk of patients with RA, but formal randomized controlled trials are currently sparse.

  • In PsA, weight loss might reduce disease severity and/or risk of PsA development, but future prospective studies are needed to assess the effects of lifestyle interventions and/or pharmacologically induced weight loss.

  • Clinical trials assessing the long-term effects of new drugs for the treatment of RA or PsA on cardiovascular outcomes are warranted, including the safety and benefits of  these treatments.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Potential relationship between systemic inflammation in RA and PsA and cardiovascular risk.
Fig. 2: Potential relationship between cardiovascular and metabolic comorbidities in RA and PsA.

Similar content being viewed by others

References

  1. Ogdie, A. et al. Risk of major cardiovascular events in patients with psoriatic arthritis, psoriasis and rheumatoid arthritis: a population-based cohort study. Ann. Rheum. Dis. 74, 326–332 (2014).

    Article  PubMed  Google Scholar 

  2. Jamnitski, A. et al. Cardiovascular comorbidities in patients with psoriatic arthritis: a systematic review. Ann. Rheum. Dis. 72, 211–216 (2013).

    Article  PubMed  Google Scholar 

  3. Mahmoudi, M., Aslani, S., Fadaei, R. & Jamshidi, A. R. New insights to the mechanisms underlying atherosclerosis in rheumatoid arthritis. Int. J. Rheum. Dis. 20, 287–297 (2017).

    Article  PubMed  Google Scholar 

  4. Budu-Aggrey, A. et al. Evidence of a causal relationship between body mass index and psoriasis: a mendelian randomization study. PLOS Med. 16, e1002739 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Di Minno, M. N. D. et al. Weight loss and achievement of minimal disease activity in patients with psoriatic arthritis starting treatment with tumour necrosis factor α blockers. Ann. Rheum. Dis. 73, 1157–1162 (2014).

    Article  PubMed  CAS  Google Scholar 

  6. Klingberg, E. et al. Weight loss improves disease activity in patients with psoriatic arthritis and obesity: an interventional study. Arthritis Res. Ther. 21, 17 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Jafri, K., Bartels, C. M., Shin, D., Gelfand, J. M. & Ogdie, A. Incidence and management of cardiovascular risk factors in psoriatic arthritis and rheumatoid arthritis: a population-based study. Arthritis Care Res. 69, 51–57 (2017).

    Article  Google Scholar 

  8. Hot, A., Lenief, V. & Miossec, P. Combination of IL-17 and TNFα induces a pro-inflammatory, pro-coagulant and pro-thrombotic phenotype in human endothelial cells. Ann. Rheum. Dis. 71, 768–776 (2012).

    Article  CAS  PubMed  Google Scholar 

  9. Sattar, N. Explaining how “high-grade” systemic inflammation accelerates vascular risk in rheumatoid arthritis. Circulation 108, 2957–2963 (2003).

    Article  PubMed  Google Scholar 

  10. Avina-Zubieta, J. A., Thomas, J., Sadatsafavi, M., Lehman, A. J. & Lacaille, D. Risk of incident cardiovascular events in patients with rheumatoid arthritis: a meta-analysis of observational studies. Ann. Rheum. Dis. 71, 1524–1529 (2012).

    Article  PubMed  Google Scholar 

  11. Schieir, O., Tosevski, C., Glazier, R. H., Hogg-Johnson, S. & Badley, E. M. Incident myocardial infarction associated with major types of arthritis in the general population: a systematic review and meta-analysis. Ann. Rheum. Dis. 76, 1396–1404 (2017).

    Article  PubMed  Google Scholar 

  12. D’Agostino, R. B. et al. General cardiovascular risk profile for use in primary care. Circulation 117, 743–753 (2008).

    Article  PubMed  Google Scholar 

  13. Conroy, R. et al. Estimation of ten-year risk of fatal cardiovascular disease in Europe: the SCORE project. Eur. Heart J. 24, 987–1003 (2003).

    Article  CAS  PubMed  Google Scholar 

  14. Arts, E. E. A. et al. Performance of four current risk algorithms in predicting cardiovascular events in patients with early rheumatoid arthritis. Ann. Rheum. Dis. 74, 668–674 (2015).

    Article  CAS  PubMed  Google Scholar 

  15. Crowson, C. S., Matteson, E. L., Roger, V. L., Therneau, T. M. & Gabriel, S. E. Usefulness of risk scores to estimate the risk of cardiovascular disease in patients with rheumatoid arthritis. Am. J. Cardiol. 110, 420–424 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Agca, R. et al. EULAR recommendations for cardiovascular disease risk management in patients with rheumatoid arthritis and other forms of inflammatory joint disorders: 2015/2016 update. Ann. Rheum. Dis. 76, 17–28 (2017).

    Article  CAS  PubMed  Google Scholar 

  17. Gómez-Vaquero, C. et al. SCORE and REGICOR function charts underestimate the cardiovascular risk in Spanish patients with rheumatoid arthritis. Arthritis Res. Ther. 15, R91 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Crowson, C. S. & Gabriel, S. E. Towards improving cardiovascular risk management in patients with rheumatoid arthritis: the need for accurate risk assessment. Ann. Rheum. Dis. 70, 719–721 (2011).

    Article  PubMed  Google Scholar 

  19. Lindhardsen, J. et al. The risk of myocardial infarction in rheumatoid arthritis and diabetes mellitus: a Danish nationwide cohort study. Ann. Rheum. Dis. 70, 929–934 (2011).

    Article  PubMed  Google Scholar 

  20. Hippisley-Cox, J., Coupland, C. & Brindle, P. Development and validation of QRISK3 risk prediction algorithms to estimate future risk of cardiovascular disease: prospective cohort study. BMJ 357, j2099 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Ahlehoff, O. et al. Psoriasis is associated with clinically significant cardiovascular risk: a Danish nationwide cohort study. J. Intern. Med. 270, 147–157 (2011).

    Article  CAS  PubMed  Google Scholar 

  22. Polachek, A., Touma, Z., Anderson, M. & Eder, L. Risk of cardiovascular morbidity in patients with psoriatic arthritis: a meta-analysis of observational studies. Arthritis Care Res. 69, 67–74 (2017).

    Article  Google Scholar 

  23. Gladman, D. D. et al. Cardiovascular morbidity in psoriatic arthritis. Ann. Rheum. Dis. 68, 1131–1135 (2009).

    Article  CAS  PubMed  Google Scholar 

  24. Gulati, A. M. et al. On the HUNT for cardiovascular risk factors and disease in patients with psoriatic arthritis: population-based data from the Nord-Trøndelag Health Study. Ann. Rheum. Dis. 75, 819–824 (2016).

    Article  CAS  PubMed  Google Scholar 

  25. Eder, L., Wu, Y., Chandran, V., Cook, R. & Gladman, D. D. Incidence and predictors for cardiovascular events in patients with psoriatic arthritis. Ann. Rheum. Dis. 75, 1680–1686 (2016).

    Article  PubMed  Google Scholar 

  26. Eder, L. et al. Gaps in diagnosis and treatment of cardiovascular risk factors in patients with psoriatic disease: an international multicenter study. J. Rheumatol. 45, 378–384 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. van Breukelen-van der Stoep, D. F. et al. Marked underdiagnosis and undertreatment of hypertension and hypercholesterolaemia in rheumatoid arthritis. Rheumatology 55, 1210–1216 (2016).

    Article  PubMed  CAS  Google Scholar 

  28. Emerging Risk Factors Collaboration. C-reactive protein concentration and risk of coronary heart disease, stroke, and mortality: an individual participant meta-analysis. Lancet 375, 132–140 (2010).

    Article  CAS  Google Scholar 

  29. Ridker, P. M., Cushman, M., Stampfer, M. J., Tracy, R. P. & Hennekens, C. H. Inflammation, aspirin, and the risk of cardiovascular disease in apparently healthy men. N. Engl. J. Med. 336, 973–979 (1997).

    Article  CAS  PubMed  Google Scholar 

  30. Ridker, P. M. et al. Rosuvastatin to prevent vascular events in men and women with elevated C-reactive protein. N. Engl. J. Med. 359, 2195–2207 (2008).

    Article  CAS  PubMed  Google Scholar 

  31. Opie, L. H. & Dalby, A. J. Cardiovascular prevention: lifestyle and statins — competitors or companions? S. Afr. Med. J. 104, 168–173 (2014).

    Article  CAS  PubMed  Google Scholar 

  32. Sever, P. S. et al. Evaluation of C-reactive protein before and on-treatment as a predictor of benefit of atorvastatin: a cohort analysis from the Anglo-Scandinavian Cardiac Outcomes Trial lipid-lowering arm. J. Am. Coll. Cardiol. 62, 717–729 (2013).

    Article  CAS  PubMed  Google Scholar 

  33. Ridker, P. M. et al. Antiinflammatory therapy with canakinumab for atherosclerotic disease. N. Engl. J. Med. 377, 1119–1131 (2017).

    Article  CAS  PubMed  Google Scholar 

  34. Ridker, P. M. et al. Low-dose methotrexate for the prevention of atherosclerotic events. N. Engl. J. Med. 380, 752–762 (2019).

    Article  CAS  PubMed  Google Scholar 

  35. Libby, P. Role of inflammation in atherosclerosis associated with rheumatoid arthritis. Am. J. Med. 121, S21–S31 (2008).

    Article  CAS  PubMed  Google Scholar 

  36. Skeoch, S. & Bruce, I. N. Atherosclerosis in rheumatoid arthritis: is it all about inflammation? Nat. Rev. Rheumatol. 11, 390–400 (2015).

    Article  CAS  PubMed  Google Scholar 

  37. Gonzalez-Juanatey, C. et al. Increased prevalence of severe subclinical atherosclerotic findings in long-term treated rheumatoid arthritis patients without clinically evident atherosclerotic disease. Medicine (Baltimore) 82, 407–413 (2003).

    Article  Google Scholar 

  38. Karpouzas, G. A. et al. Prevalence, extent and composition of coronary plaque in patients with rheumatoid arthritis without symptoms or prior diagnosis of coronary artery disease. Ann. Rheum. Dis. 73, 1797–1804 (2014).

    Article  PubMed  Google Scholar 

  39. Pundziute, G. et al. Evaluation of plaque characteristics in acute coronary syndromes: non-invasive assessment with multi-slice computed tomography and invasive evaluation with intravascular ultrasound radiofrequency data analysis. Eur. Heart J. 29, 2373–2381 (2008).

    Article  PubMed  Google Scholar 

  40. Mehta, N. N., Torigian, D. A., Gelfand, J. M., Saboury, B. & Alavi, A. Quantification of atherosclerotic plaque activity and vascular inflammation using [18-F] fluorodeoxyglucose positron emission tomography/computed tomography (FDG-PET/CT). J. Vis. Exp. https://doi.org/10.3791/3777 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  41. Maki-Petaja, K. M. et al. Anti-tumor necrosis factor-therapy reduces aortic inflammation and stiffness in patients with rheumatoid arthritis. Circulation 126, 2473–2480 (2012).

    Article  PubMed  CAS  Google Scholar 

  42. Geraldino-Pardilla, L. et al. Arterial inflammation detected with 18F-fluorodeoxyglucose-positron emission tomography in rheumatoid arthritis. Arthritis Rheumatol. 70, 30–39 (2018).

    Article  CAS  PubMed  Google Scholar 

  43. Michalak-Stoma, A. et al. Cytokine network in psoriasis revisited. Eur. Cytokine Netw. 22, 160–168 (2011).

    CAS  PubMed  Google Scholar 

  44. Armstrong, E. J. & Krueger, J. G. Lipoprotein metabolism and inflammation in patients with psoriasis. Am. J. Cardiol. 118, 603–609 (2016).

    Article  CAS  PubMed  Google Scholar 

  45. Alenius, G.-M., Eriksson, C. & Rantapää Dahlqvist, S. Interleukin-6 and soluble interleukin-2 receptor alpha-markers of inflammation in patients with psoriatic arthritis? Clin. Exp. Rheumatol. 27, 120–123 (2009).

    PubMed  Google Scholar 

  46. The Interleukin-6 Receptor Mendelian Randomisation Analysis (IL6R MR) Consortium. The interleukin-6 receptor as a target for prevention of coronary heart disease: a mendelian randomisation analysis. Lancet 379, 1214–1224 (2012).

    Article  CAS  Google Scholar 

  47. IL6R Genetics Consortium Emerging Risk Factors Collaboration. Interleukin-6 receptor pathways in coronary heart disease: a collaborative meta-analysis of 82 studies. Lancet 379, 1205–1213 (2012).

    Article  PubMed Central  CAS  Google Scholar 

  48. Boehncke, W.-H., Boehncke, S., Tobin, A.-M. & Kirby, B. The ‘psoriatic march’: a concept of how severe psoriasis may drive cardiovascular comorbidity. Exp. Dermatol. 20, 303–307 (2011).

    Article  PubMed  Google Scholar 

  49. The Global Burden of Metabolic Risk Factors for Chronic Diseases Collaboration. Metabolic mediators of the effects of body-mass index, overweight, and obesity on coronary heart disease and stroke: a pooled analysis of 97 prospective cohorts with 1.8 million participants. Lancet 383, 970–983 (2014).

    Article  Google Scholar 

  50. Gonzalez-Juanatey, C. et al. Endothelial dysfunction in psoriatic arthritis patients without clinically evident cardiovascular disease or classic atherosclerosis risk factors. Arthritis Rheum. 57, 287–293 (2007).

    Article  CAS  PubMed  Google Scholar 

  51. Gonzalez-Juanatey, C. et al. High prevalence of subclinical atherosclerosis in psoriatic arthritis patients without clinically evident cardiovascular disease or classic atherosclerosis risk factors. Arthritis Rheum. 57, 1074–1080 (2007).

    Article  PubMed  Google Scholar 

  52. Szentpetery, A. et al. Higher coronary plaque burden in psoriatic arthritis is independent of metabolic syndrome and associated with underlying disease severity. Arthritis Rheumatol. 70, 396–407 (2018).

    Article  PubMed  Google Scholar 

  53. Min, J. K. et al. Relationship of coronary artery plaque composition to coronary artery stenosis severity: results from the prospective multicenter ACCURACY trial. Atherosclerosis 219, 573–578 (2011).

    Article  CAS  PubMed  Google Scholar 

  54. The Emerging Risk Factors Collaboration. Major lipids, apolipoproteins, and risk of vascular disease. JAMA 302, 1993–2000 (2009).

    Article  PubMed Central  Google Scholar 

  55. Baigent, C. et al. Efficacy and safety of cholesterol-lowering treatment: prospective meta-analysis of data from 90,056 participants in 14 randomised trials of statins. Lancet 366, 1267–1278 (2005).

    Article  CAS  PubMed  Google Scholar 

  56. Cholesterol Treatment Trialists’ (CTT) Collaboration. Efficacy and safety of more intensive lowering of LDL cholesterol: a meta-analysis of data from 170,000 participants in 26 randomised trials. Lancet 376, 1670–1681 (2010).

    Article  CAS  Google Scholar 

  57. Robertson, J., Peters, M. J., McInnes, I. B. & Sattar, N. Changes in lipid levels with inflammation and therapy in RA: a maturing paradigm. Nat. Rev. Rheumatol. 9, 513–523 (2013).

    Article  CAS  PubMed  Google Scholar 

  58. Mok, C. C. et al. Prevalence of atherosclerotic risk factors and the metabolic syndrome in patients with chronic inflammatory arthritis. Arthritis Care Res. 63, 195–202 (2011).

    Article  Google Scholar 

  59. van Sijl, A. M. et al. The effect of TNF-alpha blocking therapy on lipid levels in rheumatoid arthritis: a meta-analysis. Semin. Arthritis Rheum. 41, 393–400 (2011).

    Article  PubMed  CAS  Google Scholar 

  60. McInnes, I. B. et al. Effect of interleukin-6 receptor blockade on surrogates of vascular risk in rheumatoid arthritis: MEASURE, a randomised, placebo-controlled study. Ann. Rheum. Dis. 74, 694–702 (2015).

    Article  CAS  PubMed  Google Scholar 

  61. Robertson, J. et al. Interleukin-6 blockade raises LDL via reduced catabolism rather than via increased synthesis: a cytokine-specific mechanism for cholesterol changes in rheumatoid arthritis. Ann. Rheum. Dis. 76, 1949–1952 (2017).

    Article  CAS  PubMed  Google Scholar 

  62. Taylor, P. C. et al. Lipid profile and effect of statin treatment in pooled phase II and phase III baricitinib studies. Ann. Rheum. Dis. 77, 988–995 (2018).

    Article  CAS  PubMed  Google Scholar 

  63. McInnes, I. B. et al. Open-label tofacitinib and double-blind atorvastatin in rheumatoid arthritis patients: a randomised study. Ann. Rheum. Dis. 73, 124–131 (2014).

    Article  CAS  PubMed  Google Scholar 

  64. Charles-Schoeman, C. et al. Potential mechanisms leading to the abnormal lipid profile in patients with rheumatoid arthritis versus healthy volunteers and reversal by tofacitinib. Arthritis Rheumatol. 67, 616–625 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Rizzo, M. et al. Atherogenic lipoprotein phenotype and LDL size and subclasses in drug-naïve patients with early rheumatoid arthritis. Atherosclerosis 207, 502–506 (2009).

    Article  CAS  PubMed  Google Scholar 

  66. Chung, C. P. et al. Lipoprotein subclasses determined by nuclear magnetic resonance spectroscopy and coronary atherosclerosis in patients with rheumatoid arthritis. J. Rheumatol. 37, 1633–1638 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Jones, S. M. et al. Lipoproteins and their subfractions in psoriatic arthritis: identification of an atherogenic profile with active joint disease. Ann. Rheum. Dis. 59, 904–909 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Tam, L.-S. et al. Cardiovascular risk profile of patients with psoriatic arthritis compared to controls—the role of inflammation. Rheumatology 47, 718–723 (2008).

    Article  PubMed  Google Scholar 

  69. The Global BMI Mortality Collaboration. Body-mass index and all-cause mortality: individual-participant-data meta-analysis of 239 prospective studies in four continents. Lancet 388, 776–786 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  70. Wannamethee, S. G. et al. Assessing prediction of diabetes in older adults using different adiposity measures: a 7 year prospective study in 6,923 older men and women. Diabetologia 53, 890–898 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Iliodromiti, S. et al. The impact of confounding on the associations of different adiposity measures with the incidence of cardiovascular disease: a cohort study of 296 535 adults of white European descent. Eur. Heart J. 39, 1514–1520 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  72. Symmons, D. P. M. et al. Blood transfusion, smoking, and obesity as risk factors for the development of rheumatoid arthritis. Results from a primary care-based incident case-control study in Norfolk, England. Arthritis Rheum. 40, 1955–1961 (1997).

    Article  CAS  PubMed  Google Scholar 

  73. García Rodríguez, L. A., Tolosa, L. B., Ruigómez, A., Johansson, S. & Wallander, M. Rheumatoid arthritis in UK primary care: incidence and prior morbidity. Scand. J. Rheumatol. 38, 173–177 (2009).

    Article  Google Scholar 

  74. Ferguson, L. D. et al. Association of central adiposity with psoriasis, psoriatic arthritis and rheumatoid arthritis: a cross-sectional study of the UK Biobank. Rheumatology https://doi.org/10.1093/rheumatology/kez192 (2019)

    Article  PubMed  PubMed Central  Google Scholar 

  75. Sattar, N. & McInnes, I. B. Debunking the obesity–mortality paradox in RA. Nat. Rev. Rheumatol. 11, 445–446 (2015).

    Article  PubMed  Google Scholar 

  76. Wolfe, F. & Michaud, K. Effect of body mass index on mortality and clinical status in rheumatoid arthritis. Arthritis Care Res. 64, 1471–1479 (2012).

    Article  Google Scholar 

  77. Escalante, A., Haas, R. W. & del Rincón, I. Paradoxical effect of body mass index on survival in rheumatoid arthritis. Arch. Intern. Med. 165, 1624 (2005).

    Article  PubMed  Google Scholar 

  78. Baker, J. F. et al. Weight loss, the obesity paradox, and the risk of death in rheumatoid arthritis. Arthritis Rheumatol. 67, 1711–1717 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  79. Giles, J. T. et al. Abnormal body composition phenotypes in older rheumatoid arthritis patients: association with disease characteristics and pharmacotherapies. Arthritis Rheum. 59, 807–815 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  80. Mahabadi, A. A. et al. Association of pericardial fat, intrathoracic fat, and visceral abdominal fat with cardiovascular disease burden: the Framingham Heart Study. Eur. Heart J. 30, 850–856 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  81. Giles, J. T. et al. Abdominal adiposity in rheumatoid arthritis: association with cardiometabolic risk factors and disease characteristics. Arthritis Rheum. 62, 3173–3182 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Johnsson, H., McInnes, I. B. & Sattar, N. Cardiovascular and metabolic risks in psoriasis and psoriatic arthritis: pragmatic clinical management based on available evidence. Ann. Rheum. Dis. 71, 480–483 (2012).

    Article  PubMed  Google Scholar 

  83. Soltani-Arabshahi, R. et al. Obesity in early adulthood as a risk factor for psoriatic arthritis. Arch. Dermatol. 146, 721–726 (2010).

    Article  PubMed  Google Scholar 

  84. Love, T. J. et al. Obesity and the risk of psoriatic arthritis: a population-based study. Ann. Rheum. Dis. 71, 1273–1277 (2012).

    Article  PubMed  Google Scholar 

  85. Li, W., Han, J. & Qureshi, A. A. Obesity and risk of incident psoriatic arthritis in US women. Ann. Rheum. Dis. 71, 1267–1272 (2012).

    Article  PubMed  Google Scholar 

  86. Eder, L., Abji, F., Rosen, C. F., Chandran, V. & Gladman, D. D. The association between obesity and clinical features of psoriatic arthritis: a case-control study. J. Rheumatol. 44, 437–443 (2017).

    Article  PubMed  Google Scholar 

  87. Langley, R. G. B., Krueger, G. G. & Griffiths, C. E. M. Psoriasis: epidemiology, clinical features, and quality of life. Ann. Rheum. Dis. 64 (Suppl. 2), ii18–ii23 (2005).

    PubMed  Google Scholar 

  88. Queiro, R., Tejón, P., Alonso, S. & Coto, P. Age at disease onset: a key factor for understanding psoriatic disease. Rheumatology 53, 1178–1185 (2014).

    Article  CAS  PubMed  Google Scholar 

  89. Sattar, N. & Gill, J. M. R. Type 2 diabetes as a disease of ectopic fat? BMC Med. 12, 123 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  90. Egeberg, A. et al. Incidence and prognosis of psoriasis and psoriatic arthritis in patients undergoing bariatric surgery. JAMA Surg. 152, 344 (2017).

    Article  PubMed  Google Scholar 

  91. Shah, A. D. et al. Type 2 diabetes and incidence of cardiovascular diseases: a cohort study in 1.9 million people. Lancet Diabetes Endocrinol. 3, 105–113 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  92. Dubreuil, M. et al. Diabetes incidence in psoriatic arthritis, psoriasis and rheumatoid arthritis: a UK population-based cohort study. Rheumatology 53, 346–352 (2014).

    Article  CAS  PubMed  Google Scholar 

  93. Solomon, D. H., Love, T. J., Canning, C. & Schneeweiss, S. Risk of diabetes among patients with rheumatoid arthritis, psoriatic arthritis and psoriasis. Ann. Rheum. Dis. 69, 2114–2117 (2010).

    Article  PubMed  Google Scholar 

  94. Eder, L., Chandran, V., Cook, R. & Gladman, D. D. The risk of developing diabetes mellitus in patients with psoriatic arthritis: a cohort study. J. Rheumatol. 44, 286–291 (2017).

    Article  PubMed  Google Scholar 

  95. Queiro, R. et al. Prevalence and type II diabetes-associated factors in psoriatic arthritis. Clin. Rheumatol. 37, 1059–1064 (2018).

    Article  PubMed  Google Scholar 

  96. Hiebert, P. & Werner, S. Targeting metabolism to treat psoriasis. Nat. Med. 24, 537–539 (2018).

    Article  CAS  PubMed  Google Scholar 

  97. Sattar, N., Forrest, E. & Preiss, D. Non-alcoholic fatty liver disease. BMJ 349, g4596 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  98. Candia, R. et al. Risk of non-alcoholic fatty liver disease in patients with psoriasis: a systematic review and meta-analysis. J. Eur. Acad. Dermatol. Venereol. 29, 656–662 (2015).

    Article  CAS  PubMed  Google Scholar 

  99. Miele, L. et al. Prevalence, characteristics and severity of non-alcoholic fatty liver disease in patients with chronic plaque psoriasis. J. Hepatol. 51, 778–786 (2009).

    Article  CAS  PubMed  Google Scholar 

  100. Ogdie, A. et al. Risk of incident liver disease in patients with psoriasis, psoriatic arthritis, and rheumatoid arthritis: a population-based study. J. Invest. Dermatol. 138, 760–767 (2018).

    Article  CAS  PubMed  Google Scholar 

  101. Ettehad, D. et al. Blood pressure lowering for prevention of cardiovascular disease and death: a systematic review and meta-analysis. Lancet 387, 957–967 (2016).

    Article  PubMed  Google Scholar 

  102. Dougados, M. et al. Prevalence of comorbidities in rheumatoid arthritis and evaluation of their monitoring: results of an international, cross-sectional study (COMORA). Ann. Rheum. Dis. 73, 62–68 (2014).

    Article  PubMed  Google Scholar 

  103. Siebert, S. et al. Characteristics of rheumatoid arthritis and its association with major comorbid conditions: cross-sectional study of 502 649 UK Biobank participants. RMD Open 2, e000267 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  104. Baker, J. F. et al. Initiation of disease-modifying therapies in rheumatoid arthritis is associated with changes in blood pressure. J. Clin. Rheumatol. 24, 203–209 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  105. Armstrong, A. W., Harskamp, C. T. & Armstrong, E. J. The association between psoriasis and hypertension. J. Hypertens. 31, 433–443 (2013).

    Article  CAS  PubMed  Google Scholar 

  106. Kearney, P. M. et al. Do selective cyclo-oxygenase-2 inhibitors and traditional non-steroidal anti-inflammatory drugs increase the risk of atherothrombosis? Meta-analysis of randomised trials. BMJ 332, 1302–1308 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Ruschitzka, F. et al. Differential blood pressure effects of ibuprofen, naproxen, and celecoxib in patients with arthritis: the PRECISION-ABPM (prospective randomized evaluation of celecoxib integrated safety versus ibuprofen or naproxen ambulatory blood pressure measurement) trial. Eur. Heart J. 38, 3282–3292 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Fosbøl, E. et al. Risk of myocardial infarction and death associated with the use of nonsteroidal anti-inflammatory drugs (NSAIDs) among healthy individuals: a nationwide cohort study. Clin. Pharmacol. Ther. 85, 190–197 (2009).

    Article  PubMed  CAS  Google Scholar 

  109. Coxib and Traditional NSAID Trialists’ (CNT) Collaboration. Vascular and upper gastrointestinal effects of non-steroidal anti-inflammatory drugs: meta-analyses of individual participant data from randomised trials. Lancet 382, 769–779 (2013).

    Article  CAS  Google Scholar 

  110. Bresalier, R. S. et al. Cardiovascular events associated with rofecoxib in a colorectal adenoma chemoprevention trial. N. Engl. J. Med. 352, 1092–1102 (2005).

    Article  CAS  PubMed  Google Scholar 

  111. Lindhardsen, J. et al. Non-steroidal anti-inflammatory drugs and risk of cardiovascular disease in patients with rheumatoid arthritis: a nationwide cohort study. Ann. Rheum. Dis. 73, 1515–1521 (2014).

    Article  CAS  PubMed  Google Scholar 

  112. Wilson, J. C. et al. Incidence and risk of glucocorticoid-associated adverse effects in patients with rheumatoid arthritis. Arthritis Care Res. 71, 498–511 (2019).

    Article  CAS  Google Scholar 

  113. Panoulas, V. F. et al. Prevalence and associations of hypertension and its control in patients with rheumatoid arthritis. Rheumatology 46, 1477–1482 (2007).

    Article  CAS  PubMed  Google Scholar 

  114. van Sijl, A. M., Boers, M., Voskuyl, A. E. & Nurmohamed, M. T. Confounding by indication probably distorts the relationship between steroid use and cardiovascular disease in rheumatoid arthritis: results from a prospective cohort study. PLOS ONE 9, e87965 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  115. Hartman, L. et al. Harm, benefit and costs associated with low-dose glucocorticoids added to the treatment strategies for rheumatoid arthritis in elderly patients (GLORIA trial): study protocol for a randomised controlled trial. Trials 19, 67 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  116. del Rincón, I., Battafarano, D. F., Restrepo, J. F., Erikson, J. M. & Escalante, A. Glucocorticoid dose thresholds associated with all-cause and cardiovascular mortality in rheumatoid arthritis. Arthritis Rheumatol. 66, 264–272 (2014).

    Article  PubMed  CAS  Google Scholar 

  117. Choi, H. K., Hernán, M. A., Seeger, J. D., Robins, J. M. & Wolfe, F. Methotrexate and mortality in patients with rheumatoid arthritis: a prospective study. Lancet 359, 1173–1177 (2002).

    Article  CAS  PubMed  Google Scholar 

  118. Micha, R. et al. Systematic review and meta-analysis of methotrexate use and risk of cardiovascular disease. Am. J. Cardiol. 108, 1362–1370 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Roubille, C. et al. The effects of tumour necrosis factor inhibitors, methotrexate, non-steroidal anti-inflammatory drugs and corticosteroids on cardiovascular events in rheumatoid arthritis, psoriasis and psoriatic arthritis: a systematic review and meta-analysis. Ann. Rheum. Dis. 74, 480–489 (2015).

    Article  CAS  PubMed  Google Scholar 

  120. Baker, J. F. et al. Changes in body mass related to the initiation of disease-modifying therapies in rheumatoid arthritis. Arthritis Rheumatol. 68, 1818–1827 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Ozen, G. et al. Risk of diabetes mellitus associated with disease-modifying antirheumatic drugs and statins in rheumatoid arthritis. Ann. Rheum. Dis. 76, 848–854 (2017).

    Article  PubMed  Google Scholar 

  122. Wasko, M. C. M. et al. Hydroxychloroquine and risk of diabetes in patients with rheumatoid arthritis. JAMA 298, 187 (2007).

    Article  CAS  PubMed  Google Scholar 

  123. Nam, J. L. et al. Current evidence for the management of rheumatoid arthritis with biological disease-modifying antirheumatic drugs: a systematic literature review informing the EULAR recommendations for the management of RA. Ann. Rheum. Dis. 69, 976–986 (2010).

    Article  CAS  PubMed  Google Scholar 

  124. Glintborg, B. et al. Treatment response, drug survival, and predictors thereof in 764 patients with psoriatic arthritis treated with anti-tumor necrosis factor α therapy: results from the nationwide Danish DANBIO registry. Arthritis Rheum. 63, 382–390 (2011).

    Article  PubMed  Google Scholar 

  125. Dixon, W. G. et al. Reduction in the incidence of myocardial infarction in patients with rheumatoid arthritis who respond to anti-tumor necrosis factor α therapy: results from the British Society for Rheumatology Biologics Register. Arthritis Rheum. 56, 2905–2912 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Barnabe, C., Martin, B.-J. & Ghali, W. A. Systematic review and meta-analysis: anti-tumor necrosis factor α therapy and cardiovascular events in rheumatoid arthritis. Arthritis Care Res. 63, 522–529 (2011).

    Article  CAS  Google Scholar 

  127. Zhang, J. et al. Comparative effects of biologics on cardiovascular risk among older patients with rheumatoid arthritis. Ann. Rheum. Dis. 75, 1813–1818 (2016).

    Article  CAS  PubMed  Google Scholar 

  128. Kim, S. C. et al. Cardiovascular safety of tocilizumab versus tumor necrosis factor inhibitors in patients with rheumatoid arthritis: a multi-database cohort study. Arthritis Rheumatol. 69, 1154–1164 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Giles, J. T. et al. Comparative cardiovascular safety of tocilizumab vs etanercept in rheumatoid arthritis: results of a randomized, parallel-group, multicenter, noninferiority, phase 4 clinical trial [abstract]. Arthritis Rheumatol. 68 (Suppl. 10), 3L (2016).

    Google Scholar 

  130. Solomon, D. H. et al. Association between disease-modifying antirheumatic drugs and diabetes risk in patients with rheumatoid arthritis and psoriasis. JAMA 305, 2525–2531 (2011).

    Article  CAS  PubMed  Google Scholar 

  131. Toussirot, É. et al. TNFα blockade for inflammatory rheumatic diseases is associated with a significant gain in android fat mass and has varying effects on adipokines: a 2-year prospective study. Eur. J. Nutr. 53, 951–961 (2014).

    Article  CAS  PubMed  Google Scholar 

  132. Edwards, C. J. et al. Apremilast, an oral phosphodiesterase 4 inhibitor, in patients with psoriatic arthritis and current skin involvement: a phase III, randomised, controlled trial (PALACE 3). Ann. Rheum. Dis. 75, 1065–1073 (2016).

    Article  CAS  PubMed  Google Scholar 

  133. Paul, C. et al. Efficacy and safety of apremilast, an oral phosphodiesterase 4 inhibitor, in patients with moderate-to-severe plaque psoriasis over 52 weeks: a phase III, randomized controlled trial (ESTEEM 2). Br. J. Dermatol. 173, 1387–1399 (2015).

    Article  CAS  PubMed  Google Scholar 

  134. Ferguson, L. D. et al. FRI0431 Effect of phosphodiesterase 4 inhibition with apremilast on body weight and vascular function in psoriatic arthritis - initial results from the Immune Metabolic Associations in Psoriatic Arthritis (IMAPA) study. Ann. Rheum. Dis. 78, 905–906 (2019).

  135. von Stebut, E. et al. Impact of secukinumab on endothelial dysfunction and other cardiovascular disease parameters in psoriasis patients over 52 weeks. J. Invest. Dermatol. 139, 1054–1062 (2018).

    Article  CAS  Google Scholar 

  136. The SPRINT Research Group. A randomized trial of intensive versus standard blood-pressure control. N. Engl. J. Med. 373, 2103–2116 (2015).

    Article  PubMed Central  CAS  Google Scholar 

  137. Hartman, O., Kovanen, P. T., Lehtonen, J., Eklund, K. K. & Sinisalo, J. Hydroxychloroquine for the prevention of recurrent cardiovascular events in myocardial infarction patients: rationale and design of the OXI trial. Eur. Heart J. Cardiovasc. Pharmacother. 3, 92–97 (2017).

    PubMed  Google Scholar 

Download references

Acknowledgements

The work by L.D.F. is supported by a clinical research fellowship fund from the British Heart Foundation (BHF) Centre of Research Excellence (grant number, RE/13/5/30177).

Review criteria

A search for studies published up to January 2019 and focusing on cardiometabolic comorbidities in rheumatoid and psoriatic arthritis was performed in PubMed. The search terms used were “rheumatoid arthritis” or “psoriatic arthritis”, with either “cardiometabolic”, “cardiovascular”, “dyslipidaemia”, “adiposity”, “diabetes”, “NAFLD”, “blood pressure”, “hypertension”, “DMARDs”, “TNF inhibitors”, “corticosteroids”, or “NSAIDs”. All articles identified were English language, full-text papers. We also searched the reference lists of identified articles for further relevant papers.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding authors

Correspondence to Lyn D. Ferguson or Naveed Sattar.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Rheumatology thanks A. Ogdie, M. Nurmohamed and the other, anonymous, reviewer for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ferguson, L.D., Siebert, S., McInnes, I.B. et al. Cardiometabolic comorbidities in RA and PsA: lessons learned and future directions. Nat Rev Rheumatol 15, 461–474 (2019). https://doi.org/10.1038/s41584-019-0256-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41584-019-0256-0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing