Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

T follicular helper cells and T follicular regulatory cells in rheumatic diseases

Abstract

As a hallmark of autoimmune rheumatic diseases, autoantibodies have been used in diagnosis for decades. However, the immunological mechanism underlying their generation has only become clear following the identification of T follicular helper (TFH) cells and T follicular regulatory (TFR) cells. TFH cells are instrumental in supporting antibody affinity maturation in germinal centre reactions and humoral memory formation, whereas TFR cells suppress TFH cell-mediated antibody responses. Evidence indicates that patients with autoimmune rheumatic diseases have increased numbers of TFH cells that can be hyperactive, and also potentially have altered numbers of TFR cells with reduced function, suggesting a conceivable dysregulation in the balance between TFH cells and TFR cells in these diseases. Therefore, by identifying the molecular mechanisms underlying the development and function of these cell populations, new opportunities have emerged to develop novel therapeutic targets. An increased knowledge of TFH cells and TFR cells has inspired, and hopefully will inspire more, approaches to reinstate the balance of these cells in the prevention and treatment of rheumatic diseases.

Key points

  • T follicular helper (TFH) cells promote autoantibody production and are present at increased amounts in mouse models of autoimmune diseases and in patients with autoimmune rheumatic diseases.

  • T follicular regulatory (TFR) cells have different T cell receptor repertoires than TFH cells and suppress the production of autoantibodies.

  • TFH cells and TFR cells in secondary lymphoid organs and their related populations in the circulation or non-lymphoid tissues have different characteristic phenotypes.

  • Immunotherapies targeting co-stimulatory molecules or cytokine signalling pathways tilt the balance of TFH cells and TFR cells towards inhibiting autoantibody production in rheumatic diseases.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: Phenotypes of TFH cell and TFR cell subsets.
Fig. 2: Function of TFH cells and TFR cells in germinal centres.
Fig. 3: Targeting TFH cells and TFR cells in autoimmune rheumatic diseases.

References

  1. Mosmann, T. R., Cherwinski, H., Bond, M. W., Giedlin, M. A. & Coffman, R. L. Two types of murine helper T cell clone. I. Definition according to profiles of lymphokine activities and secreted proteins. J. Immunol. 136, 2348–2357 (1986).

    CAS  PubMed  Google Scholar 

  2. Stevens, T. L. et al. Regulation of antibody isotype secretion by subsets of antigen-specific helper T cells. Nature 334, 255–258 (1988).

    Article  CAS  PubMed  Google Scholar 

  3. Ansel, K. M., McHeyzer-Williams, L. J., Ngo, V. N., McHeyzer-Williams, M. G. & Cyster, J. G. In vivo-activated CD4 T cells upregulate CXC chemokine receptor 5 and reprogram their response to lymphoid chemokines. J. Exp. Med. 190, 1123–1134 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Breitfeld, D. et al. Follicular B helper T cells express CXC chemokine receptor 5, localize to B cell follicles, and support immunoglobulin production. J. Exp. Med. 192, 1545–1552 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Schaerli, P. et al. CXC chemokine receptor 5 expression defines follicular homing T cells with B cell helper function. J. Exp. Med. 192, 1553–1562 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Kim, C. H. et al. Subspecialization of CXCR5+ T cells: B helper activity is focused in a germinal center-localized subset of CXCR5+ T cells. J. Exp. Med. 193, 1373–1381 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Johnston, R. J. et al. Bcl6 and Blimp-1 are reciprocal and antagonistic regulators of T follicular helper cell differentiation. Science 325, 1006–1010 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Nurieva, R. I. et al. Bcl6 mediates the development of T follicular helper cells. Science 325, 1001–1005 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Yu, D. et al. The transcriptional repressor Bcl-6 directs T follicular helper cell lineage commitment. Immunity 31, 457–468 (2009).

    Article  CAS  PubMed  Google Scholar 

  10. Victora, G. D. & Nussenzweig, M. C. Germinal centers. Annu. Rev. Immunol. 30, 429–457 (2012).

    Article  CAS  PubMed  Google Scholar 

  11. Crotty, S. T follicular helper cell differentiation, function, and roles in disease. Immunity 41, 529–542 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Vinuesa, C. G., Linterman, M. A., Yu, D. & MacLennan, I. C. Follicular helper T cells. Annu. Rev. Immunol. 34, 335–368 (2016).

    Article  CAS  PubMed  Google Scholar 

  13. Ma, C. S. et al. Monogenic mutations differentially affect the quantity and quality of T follicular helper cells in patients with human primary immunodeficiencies. J. Allergy Clin. Immunol. 136, 993–1006 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Kisand, K. & Peterson, P. Autoimmune polyendocrinopathy candidiasis ectodermal dystrophy. J. Clin. Immunol. 35, 463–478 (2015).

    Article  CAS  PubMed  Google Scholar 

  15. Meyer, S. et al. AIRE-deficient patients harbor unique high-affinity disease-ameliorating autoantibodies. Cell 166, 582–595 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Finnish-German, A. C. An autoimmune disease, APECED, caused by mutations in a novel gene featuring two PHD-type zinc-finger domains. Nat. Genet. 17, 399–403 (1997).

    Article  Google Scholar 

  17. Nagamine, K. et al. Positional cloning of the APECED gene. Nat. Genet. 17, 393–398 (1997).

    Article  CAS  PubMed  Google Scholar 

  18. Anderson, M. S. et al. Projection of an immunological self shadow within the thymus by the AIRE protein. Science 298, 1395–1401 (2002).

    Article  CAS  PubMed  Google Scholar 

  19. Mathis, D. & Benoist, C. Aire. Annu. Rev. Immunol. 27, 287–312 (2009).

    Article  CAS  PubMed  Google Scholar 

  20. Chung, Y. et al. Follicular regulatory T cells expressing Foxp3 and Bcl-6 suppress germinal center reactions. Nat. Med. 17, 983–988 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Linterman, M. A. et al. Foxp3+ follicular regulatory T cells control the germinal center response. Nat. Med. 17, 975–982 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Wollenberg, I. et al. Regulation of the germinal center reaction by Foxp3+ follicular regulatory T cells. J. Immunol. 187, 4553–4560 (2011).

    Article  CAS  PubMed  Google Scholar 

  23. Vinuesa, C. G., Sanz, I. & Cook, M. C. Dysregulation of germinal centres in autoimmune disease. Nat. Rev. Immunol. 9, 845–857 (2009).

    Article  CAS  PubMed  Google Scholar 

  24. Yu, D. & Vinuesa, C. G. The elusive identity of T follicular helper cells. Trends Immunol. 31, 377–383 (2010).

    Article  CAS  PubMed  Google Scholar 

  25. Lu, E. & Cyster, J. G. G-protein coupled receptors and ligands that organize humoral immune responses. Immunol. Rev. 289, 158–172 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Chtanova, T. et al. T follicular helper cells express a distinctive transcriptional profile, reflecting their role as non-Th1/Th2 effector cells that provide help for B cells. J. Immunol. 173, 68–78 (2004).

    Article  CAS  PubMed  Google Scholar 

  27. Rasheed, A. U., Rahn, H. P., Sallusto, F., Lipp, M. & Muller, G. Follicular B helper T cell activity is confined to CXCR5(hi)ICOS(hi) CD4 T cells and is independent of CD57 expression. Eur. J. Immunol. 36, 1892–1903 (2006).

    Article  CAS  PubMed  Google Scholar 

  28. Kitano, M. et al. Bcl6 protein expression shapes pre-germinal center B cell dynamics and follicular helper T cell heterogeneity. Immunity 34, 961–972 (2011).

    Article  CAS  PubMed  Google Scholar 

  29. Haynes, N. M. et al. Role of CXCR5 and CCR7 in follicular Th cell positioning and appearance of a programmed cell death gene-1high germinal center-associated subpopulation. J. Immunol. 179, 5099–5108 (2007).

    Article  CAS  PubMed  Google Scholar 

  30. Shulman, Z. et al. T follicular helper cell dynamics in germinal centers. Science 341, 673–677 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Suan, D. et al. T follicular helper cells have distinct modes of migration and molecular signatures in naive and memory immune responses. Immunity 42, 704–718 (2015).

    Article  CAS  PubMed  Google Scholar 

  32. Crawford, A. et al. Molecular and transcriptional basis of CD4+ T cell dysfunction during chronic infection. Immunity 40, 289–302 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Ozaki, K. et al. A critical role for IL-21 in regulating immunoglobulin production. Science 298, 1630–1634 (2002).

    Article  CAS  PubMed  Google Scholar 

  34. McGuire, H. M. et al. IL-21 and IL-4 collaborate to shape T-dependent antibody responses. J. Immunol. 195, 5123–5135 (2015).

    Article  CAS  PubMed  Google Scholar 

  35. Ma, C. S. et al. Early commitment of naive human CD4+ T cells to the T follicular helper (T(FH)) cell lineage is induced by IL-12. Immunol. Cell Biol. 87, 590–600 (2009).

    Article  CAS  PubMed  Google Scholar 

  36. Schmitt, N., Bentebibel, S. E. & Ueno, H. Phenotype and functions of memory Tfh cells in human blood. Trends Immunol. 35, 436–442 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. He, J. et al. Circulating precursor CCR7(lo)PD-1(hi) CXCR5+ CD4+ T cells indicate Tfh cell activity and promote antibody responses upon antigen reexposure. Immunity 39, 770–781 (2013).

    Article  CAS  PubMed  Google Scholar 

  38. Baumjohann, D. et al. Persistent antigen and germinal center B cells sustain T follicular helper cell responses and phenotype. Immunity 38, 596–605 (2013).

    Article  CAS  PubMed  Google Scholar 

  39. Sallusto, F., Geginat, J. & Lanzavecchia, A. Central memory and effector memory T cell subsets: function, generation, and maintenance. Annu. Rev. Immunol. 22, 745–763 (2004).

    Article  CAS  PubMed  Google Scholar 

  40. Chevalier, N. et al. CXCR5 expressing human central memory CD4 T cells and their relevance for humoral immune responses. J. Immunol. 186, 5556–5568 (2011).

    Article  CAS  PubMed  Google Scholar 

  41. Schmitt, N. et al. Human dendritic cells induce the differentiation of interleukin-21-producing T follicular helper-like cells through interleukin-12. Immunity 31, 158–169 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Nakayamada, S. et al. Early Th1 cell differentiation is marked by a Tfh cell-like transition. Immunity 35, 919–931 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Liu, X. et al. Bcl6 expression specifies the T follicular helper cell program in vivo. J. Exp. Med. 209, 1841–1852 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Oestreich, K. J., Mohn, S. E. & Weinmann, A. S. Molecular mechanisms that control the expression and activity of Bcl-6 in TH1 cells to regulate flexibility with a TFH-like gene profile. Nat. Immunol. 13, 405–411 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Glatman Zaretsky, A. et al. T follicular helper cells differentiate from Th2 cells in response to helminth antigens. J. Exp. Med. 206, 991–999 (2009).

    Article  PubMed  CAS  Google Scholar 

  46. King, I. L. & Mohrs, M. IL-4-producing CD4+ T cells in reactive lymph nodes during helminth infection are T follicular helper cells. J. Exp. Med. 206, 1001–1007 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Morita, R. et al. Human blood CXCR5+CD4+ T cells are counterparts of T follicular cells and contain specific subsets that differentially support antibody secretion. Immunity 34, 108–121 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Tsai, L. M. & Yu, D. Follicular helper T cell memory: establishing new frontiers during antibody response. Immunol. Cell Biol. 92, 57–63 (2014).

    Article  CAS  PubMed  Google Scholar 

  49. Pitzalis, C., Jones, G. W., Bombardieri, M. & Jones, S. A. Ectopic lymphoid-like structures in infection, cancer and autoimmunity. Nat. Rev. Immunol. 14, 447–462 (2014).

    Article  CAS  PubMed  Google Scholar 

  50. Bombardieri, M., Lewis, M. & Pitzalis, C. Ectopic lymphoid neogenesis in rheumatic autoimmune diseases. Nat. Rev. Rheumatol 13, 141–154 (2017).

    Article  CAS  PubMed  Google Scholar 

  51. Manzo, A. et al. Mature antigen-experienced T helper cells synthesize and secrete the B cell chemoattractant CXCL13 in the inflammatory environment of the rheumatoid joint. Arthritis Rheum. 58, 3377–3387 (2008).

    Article  CAS  PubMed  Google Scholar 

  52. Rao, D. A. et al. Pathologically expanded peripheral T helper cell subset drives B cells in rheumatoid arthritis. Nature 542, 110–114 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Liarski, V. M. et al. Cell distance mapping identifies functional T follicular helper cells in inflamed human renal tissue. Sci. Transl Med. 6, 230ra246 (2014).

    Article  CAS  Google Scholar 

  54. Szabo, K., Papp, G., Dezso, B. & Zeher, M. The histopathology of labial salivary glands in primary Sjogren’s syndrome: focusing on follicular helper T cells in the inflammatory infiltrates. Mediators Inflamm. 2014, 631787 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Taylor, D. K. et al. T follicular helper-like cells contribute to skin fibrosis. Sci. Transl Med. 10, eaaf5307 (2018).

    Article  PubMed  CAS  Google Scholar 

  56. Hutloff, A. T follicular helper-like cells in inflamed non-lymphoid tissues. Front. Immunol. 9, 1707 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Sage, P. T. & Sharpe, A. H. T follicular regulatory cells in the regulation of B cell responses. Trends Immunol. 36, 410–418 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Maceiras, A. R., Fonseca, V. R., Agua-Doce, A. & Graca, L. T follicular regulatory cells in mice and men. Immunology 152, 25–35 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Botta, D. et al. Dynamic regulation of T follicular regulatory cell responses by interleukin 2 during influenza infection. Nat. Immunol. 18, 1249–1260 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Fonseca, V. R. et al. Human blood Tfr cells are indicators of ongoing humoral activity not fully licensed with suppressive function. Sci. Immunol. 2, eaan1487 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  61. Ritvo, P. G. et al. Tfr cells lack IL-2Ralpha but express decoy IL-1R2 and IL-1Ra and suppress the IL-1-dependent activation of Tfh cells. Sci. Immunol. 2, eaan0368 (2017).

    Article  PubMed  Google Scholar 

  62. Wing, J. B. et al. A distinct subpopulation of CD25 T-follicular regulatory cells localizes in the germinal centers. Proc. Natl Acad. Sci. USA 114, E6400–E6409 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Sayin, I. et al. Spatial distribution and function of T follicular regulatory cells in human lymph nodes. J. Exp. Med. 215, 1531–1542 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Sage, P. T., Alvarez, D., Godec, J., von Andrian, U. H. & Sharpe, A. H. Circulating T follicular regulatory and helper cells have memory-like properties. J. Clin. Invest. 124, 5191–5204 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  65. Fonseca, V. R. et al. The ratio of blood T follicular regulatory cells to T follicular helper cells marks ectopic lymphoid structure formation while activated follicular helper T cells indicate disease activity in primary Sjogren’s syndrome. Arthritis Rheumatol. 70, 774–784 (2018).

    Article  CAS  PubMed  Google Scholar 

  66. Sage, P. T., Paterson, A. M., Lovitch, S. B. & Sharpe, A. H. The coinhibitory receptor CTLA-4 controls B cell responses by modulating T follicular helper, T follicular regulatory, and T regulatory cells. Immunity 41, 1026–1039 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Wing, J. B., Ise, W., Kurosaki, T. & Sakaguchi, S. Regulatory T cells control antigen-specific expansion of Tfh cell number and humoral immune responses via the coreceptor CTLA-4. Immunity 41, 1013–1025 (2014).

    Article  CAS  PubMed  Google Scholar 

  68. Sage, P. T., Francisco, L. M., Carman, C. V. & Sharpe, A. H. The receptor PD-1 controls follicular regulatory T cells in the lymph nodes and blood. Nat. Immunol. 14, 152–161 (2013).

    Article  CAS  PubMed  Google Scholar 

  69. Richards, D. M., Kyewski, B. & Feuerer, M. Re-examining the nature and function of self-reactive T cells. Trends Immunol. 37, 114–125 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Su, L. F., Kidd, B. A., Han, A., Kotzin, J. J. & Davis, M. M. Virus-specific CD4+ memory-phenotype T cells are abundant in unexposed adults. Immunity 38, 373–383 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Liu, Z. et al. Immune homeostasis enforced by co-localized effector and regulatory T cells. Nature 528, 225–230 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Ballesteros-Tato, A. et al. Interleukin-2 inhibits germinal center formation by limiting T follicular helper cell differentiation. Immunity 36, 847–856 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Li, J., Lu, E., Yi, T. & Cyster, J. G. EBI2 augments Tfh cell fate by promoting interaction with IL-2-quenching dendritic cells. Nature 533, 110–114 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Victoratos, P. & Kollias, G. Induction of autoantibody-mediated spontaneous arthritis critically depends on follicular dendritic cells. Immunity 30, 130–142 (2009).

    Article  CAS  PubMed  Google Scholar 

  75. Block, K. E., Zheng, Z., Dent, A. L., Kee, B. L. & Huang, H. Gut microbiota regulates K/BxN autoimmune arthritis through follicular helper T but not Th17 cells. J. Immunol. 196, 1550–1557 (2016).

    Article  CAS  PubMed  Google Scholar 

  76. Chevalier, N. et al. The role of follicular helper T Cell molecules and environmental influences in autoantibody production and progression to inflammatory arthritis in mice. Arthritis Rheumatol. 68, 1026–1038 (2016).

    Article  CAS  PubMed  Google Scholar 

  77. Teng, F. et al. Gut microbiota drive autoimmune arthritis by promoting differentiation and migration of Peyer’s patch T follicular helper cells. Immunity 44, 875–888 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Manfredo Vieira, S. et al. Translocation of a gut pathobiont drives autoimmunity in mice and humans. Science 359, 1156–1161 (2018).

    Article  CAS  PubMed  Google Scholar 

  79. Tsuji, M. et al. Preferential generation of follicular B helper T cells from Foxp3+ T cells in gut Peyer’s patches. Science 323, 1488–1492 (2009).

    Article  CAS  PubMed  Google Scholar 

  80. Hirota, K. et al. Plasticity of Th17 cells in Peyer’s patches is responsible for the induction of T cell-dependent IgA responses. Nat. Immunol. 14, 372–379 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Kawamoto, S. et al. The inhibitory receptor PD-1 regulates IgA selection and bacterial composition in the gut. Science 336, 485–489 (2012).

    Article  CAS  PubMed  Google Scholar 

  82. Kato, L. M., Kawamoto, S., Maruya, M. & Fagarasan, S. Gut TFH and IgA: key players for regulation of bacterial communities and immune homeostasis. Immunol. Cell Biol. 92, 49–56 (2014).

    Article  CAS  PubMed  Google Scholar 

  83. Kawamoto, S. et al. Foxp3+ T cells regulate immunoglobulin a selection and facilitate diversification of bacterial species responsible for immune homeostasis. Immunity 41, 152–165 (2014).

    Article  CAS  PubMed  Google Scholar 

  84. Proietti, M. et al. ATP-gated ionotropic P2X7 receptor controls follicular T helper cell numbers in Peyer’s patches to promote host-microbiota mutualism. Immunity 41, 789–801 (2014).

    Article  CAS  PubMed  Google Scholar 

  85. Kubinak, J. L. et al. MyD88 signaling in T cells directs IgA-mediated control of the microbiota to promote health. Cell Host Microbe 17, 153–163 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Perruzza, L. et al. T follicular helper cells promote a beneficial gut ecosystem for host metabolic homeostasis by sensing microbiota-derived extracellular ATP. Cell Rep. 18, 2566–2575 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Faliti, C. E. et al. P2X7 receptor restrains pathogenic Tfh cell generation in systemic lupus erythematosus. J. Exp. Med. 216, 317–336 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Maceiras, A. R. et al. T follicular helper and T follicular regulatory cells have different TCR specificity. Nat. Commun. 8, 15067 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  89. Ritvo, P. G. et al. High-resolution repertoire analysis reveals a major bystander activation of Tfh and Tfr cells. Proc. Natl Acad. Sci. USA 115, 9604–9609 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Stritesky, G. L., Jameson, S. C. & Hogquist, K. A. Selection of self-reactive T cells in the thymus. Annu. Rev. Immunol. 30, 95–114 (2012).

    Article  CAS  PubMed  Google Scholar 

  91. Weinstein, J. S. et al. TFH cells progressively differentiate to regulate the germinal center response. Nat. Immunol. 17, 1197–1205 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Krautler, N. J. et al. Differentiation of germinal center B cells into plasma cells is initiated by high-affinity antigen and completed by Tfh cells. J. Exp. Med. 214, 1259–1267 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Wang, Y. et al. Germinal-center development of memory B cells driven by IL-9 from follicular helper T cells. Nat. Immunol. 18, 921–930 (2017).

    Article  CAS  PubMed  Google Scholar 

  94. Xin, G. et al. Single-cell RNA sequencing unveils an IL-10-producing helper subset that sustains humoral immunity during persistent infection. Nat. Commun. 9, 5037 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  95. Caielli, S. et al. A CD4+ T cell population expanded in lupus blood provides B cell help through interleukin-10 and succinate. Nat. Med. 25, 75–81 (2019).

    Article  CAS  PubMed  Google Scholar 

  96. Yu, D. & Vinuesa, C. G. Multiple checkpoints keep follicular helper T cells under control to prevent autoimmunity. Cell. Mol. Immunol. 7, 198–203 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  97. Stott, D. I., Hiepe, F., Hummel, M., Steinhauser, G. & Berek, C. Antigen-driven clonal proliferation of B cells within the target tissue of an autoimmune disease. The salivary glands of patients with Sjogren’s syndrome. J. Clin. Invest. 102, 938–946 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Chang, A. et al. In situ B cell-mediated immune responses and tubulointerstitial inflammation in human lupus nephritis. J. Immunol. 186, 1849–1860 (2011).

    Article  CAS  PubMed  Google Scholar 

  99. Scheel, T., Gursche, A., Zacher, J., Haupl, T. & Berek, C. V-Region gene analysis of locally defined synovial B and plasma cells reveals selected B cell expansion and accumulation of plasma cell clones in rheumatoid arthritis. Arthritis Rheum. 63, 63–72 (2011).

    Article  CAS  PubMed  Google Scholar 

  100. Humby, F. et al. Ectopic lymphoid structures support ongoing production of class-switched autoantibodies in rheumatoid synovium. PLoS Med. 6, e1 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  101. Le Pottier, L. et al. Ectopic germinal centers are rare in Sjogren’s syndrome salivary glands and do not exclude autoreactive B cells. J. Immunol. 182, 3540–3547 (2009).

    Article  PubMed  CAS  Google Scholar 

  102. Bombardieri, M. et al. A BAFF/APRIL-dependent TLR3-stimulated pathway enhances the capacity of rheumatoid synovial fibroblasts to induce AID expression and Ig class-switching in B cells. Ann. Rheum. Dis. 70, 1857–1865 (2011).

    Article  CAS  PubMed  Google Scholar 

  103. Fu, W. et al. Deficiency in T follicular regulatory cells promotes autoimmunity. J. Exp. Med. 215, 815–825 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Wu, H. et al. Follicular regulatory T cells repress cytokine production by follicular helper T cells and optimize IgG responses in mice. Eur. J. Immunol. 46, 1152–1161 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Vaeth, M. et al. Follicular regulatory T cells control humoral autoimmunity via NFAT2-regulated CXCR5 expression. J. Exp. Med. 211, 545–561 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Sage, P. T. & Sharpe, A. H. T follicular regulatory cells. Immunol. Rev. 271, 246–259 (2016).

    Article  CAS  PubMed  Google Scholar 

  107. Stebegg, M. et al. Regulation of the germinal center response. Front. Immunol. 9, 2469 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  108. Wing, K. et al. CTLA-4 control over Foxp3+ regulatory T cell function. Science 322, 271–275 (2008).

    Article  CAS  PubMed  Google Scholar 

  109. Walker, L. S. & Sansom, D. M. The emerging role of CTLA4 as a cell-extrinsic regulator of T cell responses. Nat. Rev. Immunol. 11, 852–863 (2011).

    Article  CAS  PubMed  Google Scholar 

  110. Laidlaw, B. J. et al. Interleukin-10 from CD4+ follicular regulatory T cells promotes the germinal center response. Sci. Immunol. 2, eaan4767 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  111. Sage, P. T. et al. Suppression by TFR cells leads to durable and selective inhibition of B cell effector function. Nat. Immunol. 17, 1436–1446 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Curotto de Lafaille, M. A. et al. Adaptive Foxp3+ regulatory T cell-dependent and -independent control of allergic inflammation. Immunity 29, 114–126 (2008).

    Article  CAS  PubMed  Google Scholar 

  113. Vinuesa, C. G. et al. A RING-type ubiquitin ligase family member required to repress follicular helper T cells and autoimmunity. Nature 435, 452–458 (2005).

    Article  CAS  PubMed  Google Scholar 

  114. Yu, D. et al. Roquin represses autoimmunity by limiting inducible T cell co-stimulator messenger RNA. Nature 450, 299–303 (2007).

    Article  CAS  PubMed  Google Scholar 

  115. Linterman, M. A. et al. Follicular helper T cells are required for systemic autoimmunity. J. Exp. Med. 206, 561–576 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Vogel, K. U. et al. Roquin paralogs 1 and 2 redundantly repress the Icos and Ox40 costimulator mRNAs and control follicular helper T cell differentiation. Immunity 38, 655–668 (2013).

    Article  CAS  PubMed  Google Scholar 

  117. Hu, Y. L., Metz, D. P., Chung, J., Siu, G. & Zhang, M. B7RP-1 blockade ameliorates autoimmunity through regulation of follicular helper T cells. J. Immunol. 182, 1421–1428 (2009).

    Article  CAS  PubMed  Google Scholar 

  118. Bubier, J. A. et al. A critical role for IL-21 receptor signaling in the pathogenesis of systemic lupus erythematosus in BXSB-Yaa mice. Proc. Natl Acad. Sci. USA 106, 1518–1523 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Choi, J. Y. et al. Disruption of pathogenic cellular networks by IL-21 blockade leads to disease amelioration in murine lupus. J. Immunol. 198, 2578–2588 (2017).

    Article  CAS  PubMed  Google Scholar 

  120. Hsu, H. C. et al. Interleukin 17-producing T helper cells and interleukin 17 orchestrate autoreactive germinal center development in autoimmune BXD2 mice. Nat. Immunol. 9, 166–175 (2008).

    Article  CAS  PubMed  Google Scholar 

  121. Ding, Y. et al. Interleukin-21 promotes germinal center reaction by skewing the follicular regulatory T cell to follicular helper T cell balance in autoimmune BXD2 mice. Arthritis Rheumatol. 66, 2601–2612 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Kim, Y. U., Lim, H., Jung, H. E., Wetsel, R. A. & Chung, Y. Regulation of autoimmune germinal center reactions in lupus-prone BXD2 mice by follicular helper T cells. PLoS One 10, e0120294 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  123. Nguyen, V. et al. IL-21 promotes lupus-like disease in chronic graft-versus-host disease through both CD4 T cell- and B cell-intrinsic mechanisms. J. Immunol. 189, 1081–1093 (2012).

    Article  CAS  PubMed  Google Scholar 

  124. Blanco, P., Ueno, H. & Schmitt, N. T follicular helper (Tfh) cells in lupus: activation and involvement in SLE pathogenesis. Eur. J. Immunol. 46, 281–290 (2016).

    Article  CAS  PubMed  Google Scholar 

  125. Kim, S. J., Lee, K. & Diamond, B. Follicular helper T cells in systemic lupus erythematosus. Front. Immunol. 9, 1793 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  126. Simpson, N. et al. Expansion of circulating T cells resembling follicular helper T cells is a fixed phenotype that identifies a subset of severe systemic lupus erythematosus. Arthritis Rheum. 62, 234–244 (2010).

    Article  CAS  PubMed  Google Scholar 

  127. Choi, J. Y. et al. Circulating follicular helper-like T cells in systemic lupus erythematosus: association with disease activity. Arthritis Rheumatol. 67, 988–999 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Zhang, X. et al. Circulating CXCR5+CD4+helper T cells in systemic lupus erythematosus patients share phenotypic properties with germinal center follicular helper T cells and promote antibody production. Lupus 24, 909–917 (2015).

    Article  CAS  PubMed  Google Scholar 

  129. Terrier, B. et al. Interleukin 21 correlates with T cell and B cell subset alterations in systemic lupus erythematosus. J. Rheumatol. 39, 1819–1828 (2012).

    Article  CAS  PubMed  Google Scholar 

  130. Le Coz, C. et al. Circulating TFH subset distribution is strongly affected in lupus patients with an active disease. PLoS One 8, e75319 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  131. Kim, C. J. et al. The transcription factor Ets1 suppresses T follicular helper type 2 cell differentiation to halt the onset of systemic lupus erythematosus. Immunity 49, 1034–1048 (2018).

    Article  CAS  PubMed  Google Scholar 

  132. Xu, B. et al. The ratio of circulating follicular T helper cell to follicular T regulatory cell is correlated with disease activity in systemic lupus erythematosus. Clin. Immunol. 183, 46–53 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Liu, C. et al. Increased circulating CD4+CXCR5+FoxP3+ follicular regulatory T cells correlated with severity of systemic lupus erythematosus patients. Int. Immunopharmacol. 56, 261–268 (2018).

    Article  CAS  PubMed  Google Scholar 

  134. Nocturne, G. & Mariette, X. Advances in understanding the pathogenesis of primary Sjogren’s syndrome. Nat. Rev. Rheumatol. 9, 544–556 (2013).

    Article  CAS  PubMed  Google Scholar 

  135. Lin, X. et al. Th17 cells play a critical role in the development of experimental Sjogren’s syndrome. Ann. Rheum. Dis. 74, 1302–1310 (2015).

    Article  CAS  PubMed  Google Scholar 

  136. Li, X. Y. et al. Role of the frequency of blood CD4+ CXCR5+ CCR6+ T cells in autoimmunity in patients with Sjogren’s syndrome. Biochem. Biophys. Res. Commun. 422, 238–244 (2012).

    Article  CAS  PubMed  Google Scholar 

  137. Jin, L. et al. CD4+CXCR5+ follicular helper T cells in salivary gland promote B cells maturation in patients with primary Sjogren’s syndrome. Int. J. Clin. Exp. Pathol. 7, 1988–1996 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  138. Szabo, K. et al. Follicular helper T cells may play an important role in the severity of primary Sjogren’s syndrome. Clin. Immunol. 147, 95–104 (2013).

    Article  CAS  PubMed  Google Scholar 

  139. Kang, K. Y. et al. Impact of interleukin-21 in the pathogenesis of primary Sjogren’s syndrome: increased serum levels of interleukin-21 and its expression in the labial salivary glands. Arthritis Res. Ther. 13, R179 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Kwok, S. K. et al. A pathogenetic role for IL-21 in primary Sjogren syndrome. Nat. Rev. Rheumatol. 11, 368–374 (2015).

    Article  CAS  PubMed  Google Scholar 

  141. Verstappen, G. M. et al. Is the T follicular regulatory: follicular helper T cell ratio in blood a biomarker for ectopic lymphoid structure formation in Sjogren’s syndrome? Comment on the article by Fonseca et al. Arthritis Rheumatol. 70, 1354–1355 (2018).

    Article  PubMed  Google Scholar 

  142. Hoffman, G. S. & Calabrese, L. H. Vasculitis: determinants of disease patterns. Nat. Rev. Rheumatol. 10, 454–462 (2014).

    Article  PubMed  Google Scholar 

  143. Weyand, C. M. & Goronzy, J. J. Immune mechanisms in medium and large-vessel vasculitis. Nat. Rev. Rheumatol. 9, 731–740 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Zhao, Y. et al. Circulating T follicular helper cell and regulatory T cell frequencies are influenced by B cell depletion in patients with granulomatosis with polyangiitis. Rheumatology 53, 621–630 (2014).

    Article  CAS  PubMed  Google Scholar 

  145. Xie, J. et al. Expansion of circulating T follicular helper cells in children with acute Henoch-Schonlein purpura. J. Immunol. Res. 2015, 742535 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  146. Liu, D. et al. Distinct phenotypic subpopulations of circulating CD4+CXCR5+ follicular helper T cells in children with active IgA vasculitis. BMC Immunol. 17, 40 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  147. Liu, D. et al. Distribution of circulating T follicular helper cell subsets is altered in immunoglobulin A vasculitis in children. PLoS One 12, e0189133 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  148. Block, K. E. & Huang, H. The cellular source and target of IL-21 in K/BxN autoimmune arthritis. J. Immunol. 191, 2948–2955 (2013).

    Article  CAS  PubMed  Google Scholar 

  149. Zhong, M. C. & Veillette, A. The adaptor molecule signaling lymphocytic activation molecule (SLAM)-associated protein (SAP) is essential in mechanisms involving the Fyn tyrosine kinase for induction and progression of collagen-induced arthritis. J. Biol. Chem. 288, 31423–31436 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Moschovakis, G. L. et al. T cell specific Cxcr5 deficiency prevents rheumatoid arthritis. Sci. Rep. 7, 8933 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  151. Ma, J. et al. Increased frequency of circulating follicular helper T cells in patients with rheumatoid arthritis. Clin. Dev. Immunol. 2012, 827480 (2012).

    PubMed  PubMed Central  Google Scholar 

  152. Wang, J. et al. High frequencies of activated B cells and T follicular helper cells are correlated with disease activity in patients with new-onset rheumatoid arthritis. Clin. Exp. Immunol. 174, 212–220 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  153. Arroyo-Villa, I. et al. Constitutively altered frequencies of circulating follicullar helper T cell counterparts and their subsets in rheumatoid arthritis. Arthritis Res. Ther. 16, 500 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  154. Deng, J. et al. Signal transducer and activator of transcription 3 hyperactivation associates with follicular helper T cell differentiation and disease activity in rheumatoid arthritis. Front. Immunol. 9, 1226 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  155. Liu, C. et al. Increased circulating follicular Treg cells are associated with lower levels of autoantibodies in patients with rheumatoid arthritis in stable remission. Arthritis Rheumatol. 70, 711–721 (2018).

    Article  CAS  PubMed  Google Scholar 

  156. Wang, X. et al. Imbalance of circulating Tfr/Tfh ratio in patients with rheumatoid arthritis. Clin. Exp. Med. 19, 55–64 (2018).

    Article  CAS  PubMed  Google Scholar 

  157. Niu, Q. et al. Enhanced IL-6/phosphorylated STAT3 signaling is related to the imbalance of circulating T follicular helper/T follicular regulatory cells in patients with rheumatoid arthritis. Arthritis Res. Ther. 20, 200 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  158. Romao, V. C. et al. T follicular regulatory cells are decreased in patients with established treated rheumatoid arthritis with active disease: comment on the article by Liu et al. Arthritis Rheumatol. 70, 1893–1895 (2018).

    Article  PubMed  Google Scholar 

  159. Ranganathan, V., Gracey, E., Brown, M. A., Inman, R. D. & Haroon, N. Pathogenesis of ankylosing spondylitis - recent advances and future directions. Nat. Rev. Rheumatol. 13, 359–367 (2017).

    Article  CAS  PubMed  Google Scholar 

  160. Xiao, F. et al. Higher frequency of peripheral blood interleukin 21 positive follicular helper T cells in patients with ankylosing spondylitis. J. Rheumatol. 40, 2029–2037 (2013).

    Article  CAS  PubMed  Google Scholar 

  161. Bautista-Caro, M. B. et al. Decreased frequencies of circulating follicular helper T cell counterparts and plasmablasts in ankylosing spondylitis patients naive for TNF blockers. PLoS One 9, e107086 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  162. Shan, Y. et al. Higher frequency of peripheral blood follicular regulatory T cells in patients with new onset ankylosing spondylitis. Clin. Exp. Pharmacol. Physiol. 42, 154–161 (2015).

    Article  CAS  PubMed  Google Scholar 

  163. Ho, Y. Y., Lagares, D., Tager, A. M. & Kapoor, M. Fibrosis — a lethal component of systemic sclerosis. Nat. Rev. Rheumatol. 10, 390–402 (2014).

    Article  CAS  PubMed  Google Scholar 

  164. Oddis, C. V. & Aggarwal, R. Treatment in myositis. Nat. Rev. Rheumatol. 14, 279–289 (2018).

    Article  CAS  PubMed  Google Scholar 

  165. Espinosa-Ortega, F. et al. Quantitative T cell subsets profile in peripheral blood from patients with idiopathic inflammatory myopathies: tilting the balance towards proinflammatory and pro-apoptotic subsets. Clin. Exp. Immunol. 179, 520–528 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Xu, X. et al. Inhibition of increased circulating Tfh cell by anti-CD20 monoclonal antibody in patients with type 1 diabetes. PLoS One 8, e79858 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  167. Audia, S. et al. B cell depleting therapy regulates splenic and circulating T follicular helper cells in immune thrombocytopenia. J. Autoimmun. 77, 89–95 (2017).

    Article  CAS  PubMed  Google Scholar 

  168. Wallin, E. F. et al. Human T-follicular helper and T-follicular regulatory cell maintenance is independent of germinal centers. Blood 124, 2666–2674 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Ise, W. et al. Memory B cells contribute to rapid Bcl6 expression by memory follicular helper T cells. Proc. Natl Acad. Sci. USA 111, 11792–11797 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Gandhi, G. D., Krishnamoorthy, N., Motal, U. M. A. & Yacoub, M. Towards developing a vaccine for rheumatic heart disease. Glob. Cardiol. Sci. Pract. 2017, e201704 (2017).

    PubMed  PubMed Central  Google Scholar 

  171. Opazo, M. C. et al. Intestinal microbiota influences non-intestinal related autoimmune diseases. Front. Microbiol. 9, 432 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  172. de Oliveira, G. L. V., Leite, A. Z., Higuchi, B. S., Gonzaga, M. I. & Mariano, V. S. Intestinal dysbiosis and probiotic applications in autoimmune diseases. Immunology 152, 1–12 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  173. Tan, J. K., McKenzie, C., Marino, E., Macia, L. & Mackay, C. R. Metabolite-sensing G protein-coupled receptors-facilitators of diet-related immune regulation. Annu. Rev. Immunol. 35, 371–402 (2017).

    Article  CAS  PubMed  Google Scholar 

  174. Balakrishnan, B. & Taneja, V. Microbial modulation of the gut microbiome for treating autoimmune diseases. Expert Rev. Gastroenterol. Hepatol. 12, 985–996 (2018).

    Article  CAS  PubMed  Google Scholar 

  175. Hirsch, D. L. & Ponda, P. Antigen-based immunotherapy for autoimmune disease: current status. Immunotargets Ther. 4, 1–11 (2015).

    CAS  PubMed  Google Scholar 

  176. Jutel, M. et al. International consensus on allergy immunotherapy. J. Allergy Clin. Immunol. 136, 556–568 (2015).

    Article  PubMed  Google Scholar 

  177. Yao, Y. et al. Allergen immunotherapy improves defective follicular regulatory T cells in patients with allergic rhinitis. J. Allergy Clin. Immunol. https://doi.org/10.1016/j.jaci.2019.02.008 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  178. Benham, H. et al. Citrullinated peptide dendritic cell immunotherapy in HLA risk genotype-positive rheumatoid arthritis patients. Sci. Transl Med. 7, 290ra287 (2015).

    Article  CAS  Google Scholar 

  179. [No authors listed]. Sangamo poised for CAR-Treg race. Nat. Biotechnol. 36, 783 (2018).

  180. Ford, M. L., Adams, A. B. & Pearson, T. C. Targeting co-stimulatory pathways: transplantation and autoimmunity. Nat. Rev. Nephrol. 10, 14–24 (2014).

    Article  CAS  PubMed  Google Scholar 

  181. Fukuyo, S. et al. Abatacept therapy reduces CD28+CXCR5+ follicular helper-like T cells in patients with rheumatoid arthritis. Clin. Exp. Rheumatol. 35, 562–570 (2017).

    PubMed  Google Scholar 

  182. Verstappen, G. M. et al. Attenuation of follicular helper T cell-dependent B cell hyperactivity by abatacept treatment in primary Sjogren’s syndrome. Arthritis Rheumatol. 69, 1850–1861 (2017).

    Article  CAS  PubMed  Google Scholar 

  183. Leibler, C. et al. Control of humoral response in renal transplantation by belatacept depends on a direct effect on B cells and impaired T follicular helper-B cell crosstalk. J. Am. Soc. Nephrol. 29, 1049–1062 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  184. Kremer, J. M. et al. Effects of abatacept in patients with methotrexate-resistant active rheumatoid arthritis: a randomized trial. Ann. Intern. Med. 144, 865–876 (2006).

    Article  CAS  PubMed  Google Scholar 

  185. Weinblatt, M. et al. Safety of the selective costimulation modulator abatacept in rheumatoid arthritis patients receiving background biologic and nonbiologic disease-modifying antirheumatic drugs: A one-year randomized, placebo-controlled study. Arthritis Rheum. 54, 2807–2816 (2006).

    Article  CAS  PubMed  Google Scholar 

  186. Uettwiller, F., Rigal, E. & Hoarau, C. Infections associated with monoclonal antibody and fusion protein therapy in humans. MAbs 3, 461–466 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  187. Zhang, Q. & Vignali, D. A. Co-stimulatory and co-inhibitory pathways in autoimmunity. Immunity 44, 1034–1051 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Sullivan, B. A. et al. Inducible T cell co-stimulator ligand (ICOSL) blockade leads to selective inhibition of anti-KLH IgG responses in subjects with systemic lupus erythematosus. Lupus Sci. Med. 3, e000146 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Cheng, L. E. et al. Brief report: a randomized, double-blind, parallel-group, placebo-controlled, multiple-dose study to evaluate AMG 557 in patients with systemic lupus erythematosus and active lupus arthritis. Arthritis Rheumatol. 70, 1071–1076 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Adis International. Prezalumab - Amgen/AstraZeneca. Adis Insight https://adisinsight.springer.com/drugs/800028079 (2019).

  191. Croft, M. & Siegel, R. M. Beyond TNF: TNF superfamily cytokines as targets for the treatment of rheumatic diseases. Nat. Rev. Rheumatol. 13, 217–233 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Peters, A. L., Stunz, L. L. & Bishop, G. A. CD40 and autoimmunity: the dark side of a great activator. Semin. Immunol. 21, 293–300 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Karnell, J. L. et al. A CD40L-targeting protein reduces autoantibodies and improves disease activity in patients with autoimmunity. Sci. Transl Med. 11, eaar6584 (2019).

    Article  PubMed  Google Scholar 

  194. Visvanathan, S. et al. Effects of BI 655064, an antagonistic anti-CD40 antibody, on clinical and biomarker variables in patients with active rheumatoid arthritis: a randomised, double-blind, placebo-controlled, phase IIa study. Ann. Rheum. Dis. 78, 754–760 (2019).

    Article  PubMed  Google Scholar 

  195. Jacquemin, C. et al. OX40 ligand contributes to human lupus pathogenesis by promoting T follicular helper response. Immunity 42, 1159–1170 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. O’Shea, J. J. et al. The JAK-STAT pathway: impact on human disease and therapeutic intervention. Annu. Rev. Med. 66, 311–328 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  197. Ray, J. P. et al. Transcription factor STAT3 and type I interferons are corepressive insulators for differentiation of follicular helper and T helper 1 cells. Immunity 40, 367–377 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Wu, H., Xie, M. M., Liu, H. & Dent, A. L. Stat3 is important for follicular regulatory T cell differentiation. PLoS One 11, e0155040 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  199. Ma, C. S. et al. Functional STAT3 deficiency compromises the generation of human T follicular helper cells. Blood 119, 3997–4008 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Read, K. A. et al. Integrated STAT3 and Ikaros zinc finger transcription factor activities regulate Bcl-6 expression in CD4+ Th cells. J. Immunol. 199, 2377–2387 (2017).

    Article  CAS  PubMed  Google Scholar 

  201. Wei, L., Laurence, A., Elias, K. M. & O’Shea, J. J. IL-21 is produced by Th17 cells and drives IL-17 production in a STAT3-dependent manner. J. Biol. Chem. 282, 34605–34610 (2007).

    Article  CAS  PubMed  Google Scholar 

  202. Isomaki, P., Junttila, I., Vidqvist, K. L., Korpela, M. & Silvennoinen, O. The activity of JAK-STAT pathways in rheumatoid arthritis: constitutive activation of STAT3 correlates with interleukin 6 levels. Rheumatology 54, 1103–1113 (2015).

    Article  CAS  PubMed  Google Scholar 

  203. Kuuliala, K. et al. Constitutive STAT3 phosphorylation in circulating CD4+ T lymphocytes associates with disease activity and treatment response in recent-onset rheumatoid arthritis. PLoS One 10, e0137385 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  204. Anderson, A. E. et al. IL-6-driven STAT signalling in circulating CD4+ lymphocytes is a marker for early anticitrullinated peptide antibody-negative rheumatoid arthritis. Ann. Rheum. Dis. 75, 466–473 (2016).

    Article  CAS  PubMed  Google Scholar 

  205. Suto, A. et al. Development and characterization of IL-21-producing CD4+ T cells. J. Exp. Med. 205, 1369–1379 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Dienz, O. et al. The induction of antibody production by IL-6 is indirectly mediated by IL-21 produced by CD4+ T cells. J. Exp. Med. 206, 69–78 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  207. Eto, D. et al. IL-21 and IL-6 are critical for different aspects of B cell immunity and redundantly induce optimal follicular helper CD4 T cell (Tfh) differentiation. PLoS One 6, e17739 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  208. Harker, J. A., Lewis, G. M., Mack, L. & Zuniga, E. I. Late interleukin-6 escalates T follicular helper cell responses and controls a chronic viral infection. Science 334, 825–829 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  209. Diehl, S. A., Schmidlin, H., Nagasawa, M., Blom, B. & Spits, H. IL-6 triggers IL-21 production by human CD4+ T cells to drive STAT3-dependent plasma cell differentiation in B cells. Immunol. Cell Biol. 90, 802–811 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  210. Choi, Y. S., Eto, D., Yang, J. A., Lao, C. & Crotty, S. Cutting edge: STAT1 is required for IL-6-mediated Bcl6 induction for early follicular helper cell differentiation. J. Immunol. 190, 3049–3053 (2013).

    Article  CAS  PubMed  Google Scholar 

  211. Chavele, K. M., Merry, E. & Ehrenstein, M. R. Cutting edge: circulating plasmablasts induce the differentiation of human T follicular helper cells via IL-6 production. J. Immunol. 194, 2482–2485 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  212. Jandl, C. et al. IL-21 restricts T follicular regulatory T cell proliferation through Bcl-6 mediated inhibition of responsiveness to IL-2. Nat. Commun. 8, 14647 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  213. Kimura, A. & Kishimoto, T. IL-6: regulator of Treg/Th17 balance. Eur. J. Immunol. 40, 1830–1835 (2010).

    Article  CAS  PubMed  Google Scholar 

  214. Schmitt, N. et al. The cytokine TGF-beta co-opts signaling via STAT3-STAT4 to promote the differentiation of human TFH cells. Nat. Immunol. 15, 856–865 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  215. Weinstein, J. S. et al. STAT4 and T-bet control follicular helper T cell development in viral infections. J. Exp. Med. 215, 337–355 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  216. Winthrop, K. L. The emerging safety profile of JAK inhibitors in rheumatic disease. Nat. Rev. Rheumatol. 13, 234–243 (2017).

    Article  CAS  PubMed  Google Scholar 

  217. Johnston, R. J., Choi, Y. S., Diamond, J. A., Yang, J. A. & Crotty, S. STAT5 is a potent negative regulator of TFH cell differentiation. J. Exp. Med. 209, 243–250 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  218. Nurieva, R. I. et al. STAT5 protein negatively regulates T follicular helper (Tfh) cell generation and function. J. Biol. Chem. 287, 11234–11239 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  219. Hatzi, K. et al. BCL6 orchestrates Tfh cell differentiation via multiple distinct mechanisms. J. Exp. Med. 212, 539–553 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  220. Liu, X. et al. Genome-wide analysis identifies Bcl6-controlled regulatory networks during T follicular helper cell differentiation. Cell Rep. 14, 1735–1747 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  221. Boyman, O. & Sprent, J. The role of interleukin-2 during homeostasis and activation of the immune system. Nat. Rev. Immunol. 12, 180–190 (2012).

    Article  CAS  PubMed  Google Scholar 

  222. Koreth, J. et al. Interleukin-2 and regulatory T cells in graft-versus-host disease. N. Engl. J. Med. 365, 2055–2066 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  223. Saadoun, D. et al. Regulatory T cell responses to low-dose interleukin-2 in HCV-induced vasculitis. N. Engl. J. Med. 365, 2067–2077 (2011).

    Article  CAS  PubMed  Google Scholar 

  224. Hartemann, A. et al. Low-dose interleukin 2 in patients with type 1 diabetes: a phase 1/2 randomised, double-blind, placebo-controlled trial. Lancet Diabetes Endocrinol. 1, 295–305 (2013).

    Article  CAS  PubMed  Google Scholar 

  225. Klatzmann, D. & Abbas, A. K. The promise of low-dose interleukin-2 therapy for autoimmune and inflammatory diseases. Nat. Rev. Immunol. 15, 283–294 (2015).

    Article  CAS  PubMed  Google Scholar 

  226. He, J. et al. Low-dose interleukin-2 treatment selectively modulates CD4+ T cell subsets in patients with systemic lupus erythematosus. Nat. Med. 22, 991–993 (2016).

    Article  CAS  PubMed  Google Scholar 

  227. Humrich, J. Y. et al. Rapid induction of clinical remission by low-dose interleukin-2 in a patient with refractory SLE. Ann. Rheum. Dis. 74, 791–792 (2015).

    Article  PubMed  Google Scholar 

  228. Yu, D. & Ye, L. A portrait of CXCR5+ follicular cytotoxic CD8+ T cells. Trends Immunol. 39, 965–979 (2018).

    Article  CAS  PubMed  Google Scholar 

  229. Zhang, X. et al. The oral and gut microbiomes are perturbed in rheumatoid arthritis and partly normalized after treatment. Nat. Med. 21, 895–905 (2015).

    Article  CAS  PubMed  Google Scholar 

  230. Chen, J. et al. An expansion of rare lineage intestinal microbes characterizes rheumatoid arthritis. Genome Med. 8, 43 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  231. Kivity, S., Agmon-Levin, N., Blank, M. & Shoenfeld, Y. Infections and autoimmunity – friends or foes? Trends Immunol. 30, 409–414 (2009).

    Article  CAS  PubMed  Google Scholar 

  232. Cusick, M. F., Libbey, J. E. & Fujinami, R. S. Molecular mimicry as a mechanism of autoimmune disease. Clin. Rev. Allergy Immunol. 42, 102–111 (2012).

    Article  CAS  PubMed  Google Scholar 

  233. Fae, K. C. et al. Mimicry in recognition of cardiac myosin peptides by heart-intralesional T cell clones from rheumatic heart disease. J. Immunol. 176, 5662–5670 (2006).

    Article  CAS  PubMed  Google Scholar 

  234. Fahey, L. M. et al. Viral persistence redirects CD4 T cell differentiation toward T follicular helper cells. J. Exp. Med. 208, 987–999 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  235. Padovan, E. et al. Expression of two T cell receptor alpha chains: dual receptor T cells. Science 262, 422–424 (1993).

    Article  CAS  PubMed  Google Scholar 

  236. Brady, B. L., Steinel, N. C. & Bassing, C. H. Antigen receptor allelic exclusion: an update and reappraisal. J. Immunol. 185, 3801–3808 (2010).

    Article  CAS  PubMed  Google Scholar 

  237. Bradley, C. P. et al. Segmented filamentous bacteria provoke lung autoimmunity by inducing gut-lung axis Th17 cells expressing dual TCRs. Cell Host Microbe 22, 697–704 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  238. Schuldt, N. J. et al. Cutting edge: Dual TCRalpha expression poses an autoimmune hazard by limiting regulatory T cell generation. J. Immunol. 199, 33–38 (2017).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank members of the Yu and Graca groups for intellectual input and E. Bartlett for editing. The work of the authors was funded by grants from the National Key Research and Development Program of China (2017YFC0909003 to D.Y.), the National Natural Science Foundation of China (31600708 to J.D. and 81429003 to D.Y.), the Australian National Health and Medical Research Council (GNT1147769 to D.Y.), the Shandong Provincial Natural Science Foundation, China (ZR2016YL013 to D.Y. and ZR2015YL005 to D.Y. and Y.W.) and the Priority Research Program of the Shandong Academy of Sciences (to D.Y. and Y.W.). D.Y. is supported by the Bellberry-Viertel Senior Medical Research Fellowship, Innovative Research Team of High-Level Local Universities in Shanghai, and the Taishan Scholars Program of Shandong Province, China.

Peer review information

Nature Reviews Rheumatology thanks H. Ueno, Y. Tanaka and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Review criteria

A search for original articles published between 2000 and 2019 and focusing on 2009 onwards was performed in MEDLINE and PubMed. The search terms used were “TFH”, “TFR”, “autoimmunity” and “rheumatic disease”, alone and in combination. All articles identified were English-language, full-text papers. We also searched the reference lists of identified articles for further relevant papers.

Author information

Authors and Affiliations

Authors

Contributions

D.Y. and L.G. researched data for this article. J.D., Y.W., V.F., L.G. and D.Y. provided substantial contributions to discussions of content and wrote the article. All authors reviewed and/or edited the article before submission. J.D. and Y.W. contributed equally to this article.

Corresponding authors

Correspondence to Luis Graca or Di Yu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Ectopic lymphoid structure

Ectopic lymphoid structures are lymphoid aggregates that range from clusters of B cells and T cells to highly organized structures that resemble functional germinal centres, and often develop in inflamed tissues.

Peyer’s patches

Peyer’s patches are organized lymphoid follicles located primarily in the submucosa layer of the ileum that have important immune sensing functions for the intestines.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Deng, J., Wei, Y., Fonseca, V.R. et al. T follicular helper cells and T follicular regulatory cells in rheumatic diseases. Nat Rev Rheumatol 15, 475–490 (2019). https://doi.org/10.1038/s41584-019-0254-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41584-019-0254-2

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing