Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Inclusion body myositis: clinical features and pathogenesis

Abstract

Inclusion body myositis (IBM) is often viewed as an enigmatic disease with uncertain pathogenic mechanisms and confusion around diagnosis, classification and prospects for treatment. Its clinical features (finger flexor and quadriceps weakness) and pathological features (invasion of myofibres by cytotoxic T cells) are unique among muscle diseases. Although IBM T cell autoimmunity has long been recognized, enormous attention has been focused for decades on several biomarkers of myofibre protein aggregates, which are present in <1% of myofibres in patients with IBM. This focus has given rise, together with the relative treatment refractoriness of IBM, to a competing view that IBM is not an autoimmune disease. Findings from the past decade that implicate autoimmunity in IBM include the identification of a circulating autoantibody (anti-cN1A); the absence of any statistically significant genetic risk factor other than the common autoimmune disease 8.1 MHC haplotype in whole-genome sequencing studies; the presence of a marked cytotoxic T cell signature in gene expression studies; and the identification in muscle and blood of large populations of clonal highly differentiated cytotoxic CD8+ T cells that are resistant to many immunotherapies. Mounting evidence that IBM is an autoimmune T cell-mediated disease provides hope that future therapies directed towards depleting these cells could be effective.

Key points

  • Inclusion body myositis (IBM) progresses slowly and is commonly misdiagnosed initially as arthritis or polymyositis; IBM is associated with cardiovascular complications and other autoimmune diseases and has a high economic cost.

  • IBM has unique physical examination features (such as finger flexor and knee extensor weakness) that distinguish it from most other muscle diseases.

  • IBM has a greater range of autoimmune T cell abnormalities than any other muscle disease; treatment refractoriness has paradoxically given rise to the view that IBM is not an autoimmune disease.

  • Degenerative abnormalities that can occur in IBM include numerous myofibre protein aggregates associated with endoplasmic reticulum stress.

  • Degenerative abnormalities might occur following autoimmunity in cell culture and mouse models and following immune cell dysfunction in patients infected with HIV or human T cell lymphotropic virus type 1.

  • Treatment refractoriness probably reflects the inability of current therapies to inhibit or deplete the highly differentiated population of effector memory and terminally differentiated effector T cells present in IBM.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Evolution of inflammatory myopathy classification and history of IBM.
Fig. 2: IBM physical examination and imaging features.
Fig. 3: Pattern of muscle involvement in IBM and other inflammatory myopathies.
Fig. 4: IBM muscle pathology.
Fig. 5: IBM muscle inflammation.
Fig. 6: Proposed pathogenesis of IBM: highly differentiated cytotoxic T cells drive IBM myofibre injury.

Similar content being viewed by others

References

  1. Unverricht, H. Polymyositis acuta progressiva. Z. Klin. Med. 12, 533–549 (1887).

    Google Scholar 

  2. Bohan, A. History and classification of polymyositis and dermatomyositis. Clin. Dermatol. 6, 3–8 (1988).

    Article  CAS  PubMed  Google Scholar 

  3. Uverricht, H. Dermatomyositis acuta. Dtsch. Med. Wochenschr. 17, 41–44 (1891).

    Article  Google Scholar 

  4. Levine, T. D. History of dermatomyositis. Arch. Neurol. 60, 780–782 (2003).

    Article  PubMed  Google Scholar 

  5. Carpenter, S., Karpati, G., Heller, I. & Eisen, A. Inclusion body myositis: a distinct variety of idiopathic inflammatory myopathy. Neurology 28, 8–17 (1978).

    Article  CAS  PubMed  Google Scholar 

  6. Emslie-Smith, A. M. & Engel, A. G. Necrotizing myopathy with pipestem capillaries, microvascular deposition of the complement membrane attack complex (MAC), and minimal cellular infiltration. Neurology 41, 936–939 (1991).

    Article  CAS  PubMed  Google Scholar 

  7. van der Meulen, M. F. et al. Polymyositis: an overdiagnosed entity. Neurology 61, 316–321 (2003).

    Article  PubMed  Google Scholar 

  8. Hoogendijk, J. E. et al. 119th ENMC international workshop: trial design in adult idiopathic inflammatory myopathies, with the exception of inclusion body myositis, 10-12 October 2003, Naarden, The Netherlands. Neuromuscul. Disord. 14, 337–345 (2004).

    Article  PubMed  Google Scholar 

  9. van de Vlekkert, J., Hoogendijk, J. E. & de Visser, M. Myositis with endomysial cell invasion indicates inclusion body myositis even if other criteria are not fulfilled. Neuromuscul. Disord. 25, 451–456 (2015).

    Article  PubMed  Google Scholar 

  10. Dalakas, M. C. Inflammatory muscle diseases. N. Engl. J. Med. 372, 1734–1747 (2015).

    Article  PubMed  Google Scholar 

  11. Wolstencroft, P. W. & Fiorentino, D. F. Dermatomyositis clinical and pathological phenotypes associated with myositis-specific autoantibodies. Curr. Rheumatol. Rep. 20, 28 (2018).

    Article  PubMed  Google Scholar 

  12. Schmidt, J. & Dalakas, M. C. Inclusion body myositis: from immunopathology and degenerative mechanisms to treatment perspectives. Expert Rev. Clin. Immunol. 9, 1125–1133 (2013).

    Article  CAS  PubMed  Google Scholar 

  13. Machado, P. M. et al. Ongoing developments in sporadic inclusion body myositis. Curr. Rheumatol. Rep. 16, 477 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Dimachkie, M. M. & Barohn, R. J. Inclusion body myositis. Neurol. Clin. 32, 629–646 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Mastaglia, F. L. & Needham, M. Inclusion body myositis: a review of clinical and genetic aspects, diagnostic criteria and therapeutic approaches. J. Clin. Neurosci. 22, 6–13 (2015).

    Article  PubMed  Google Scholar 

  16. Greenberg, S. A. Inclusion body myositis. Continuum 22, 1871–1888 (2016).

    PubMed  Google Scholar 

  17. Gallay, L. & Petiot, P. Sporadic inclusion-body myositis: recent advances and the state of the art in 2016. Rev. Neurol. 172, 581–586 (2016).

    Article  CAS  PubMed  Google Scholar 

  18. Needham, M. & Mastaglia, F. L. Sporadic inclusion body myositis: a review of recent clinical advances and current approaches to diagnosis and treatment. Clin. Neurophysiol. 127, 1764–1773 (2016).

    Article  PubMed  Google Scholar 

  19. Schmidt, K. & Schmidt, J. Inclusion body myositis: advancements in diagnosis, pathomechanisms, and treatment. Curr. Opin. Rheumatol. 29, 632–638 (2017).

    PubMed  Google Scholar 

  20. Benveniste, O. et al. Amyloid deposits and inflammatory infiltrates in sporadic inclusion body myositis: the inflammatory egg comes before the degenerative chicken. Acta Neuropathol. 129, 611–624 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Keller, C. W., Schmidt, J. & Lunemann, J. D. Immune and myodegenerative pathomechanisms in inclusion body myositis. Ann. Clin. Transl Neurol. 4, 422–445 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Chou, S. M. Myxovirus-like structures in a case of human chronic polymyositis. Science 158, 1453–1455 (1967).

    Article  CAS  PubMed  Google Scholar 

  23. Nishino, H., Engel, A. G. & Rima, B. K. Inclusion body myositis: the mumps virus hypothesis. Ann. Neurol. 25, 260–264 (1989).

    Article  CAS  PubMed  Google Scholar 

  24. Kallajoki, M. et al. Inclusion body myositis and paramyxoviruses. Hum. Pathol. 22, 29–32 (1991).

    Article  CAS  PubMed  Google Scholar 

  25. Fox, S. A., Ward, B. K., Robbins, P. D., Mastaglia, F. L. & Swanson, N. R. Inclusion body myositis: investigation of the mumps virus hypothesis by polymerase chain reaction. Muscle Nerve 19, 23–28 (1996).

    Article  CAS  PubMed  Google Scholar 

  26. Uruha, A. et al. Hepatitis C virus infection in inclusion body myositis: a case-control study. Neurology 86, 211–217 (2016).

    Article  CAS  PubMed  Google Scholar 

  27. Yunis, E. J. & Samaha, F. J. Inclusion body myositis. Lab. Invest. 25, 240–248 (1971).

    CAS  PubMed  Google Scholar 

  28. Danon, M. J., Reyes, M. G., Perurena, O. H., Masdeu, J. C. & Manaligod, J. R. Inclusion body myositis. A corticosteroid-resistant idiopathic inflammatory myopathy. Arch. Neurol. 39, 760–764 (1982).

    Article  CAS  PubMed  Google Scholar 

  29. Eisen, A., Berry, K. & Gibson, G. Inclusion body myositis (IBM): myopathy or neuropathy? Neurology 33, 1109–1114 (1983).

    Article  CAS  PubMed  Google Scholar 

  30. Ringel, S. P., Kenny, C. E., Neville, H. E., Giorno, R. & Carry, M. R. Spectrum of inclusion body myositis. Arch. Neurol. 44, 1154–1157 (1987).

    Article  CAS  PubMed  Google Scholar 

  31. Calabrese, L. H., Mitsumoto, H. & Chou, S. M. Inclusion body myositis presenting as treatment-resistant polymyositis. Arthritis Rheum. 30, 397–403 (1987).

    Article  CAS  PubMed  Google Scholar 

  32. Lotz, B. P., Engel, A. G., Nishino, H., Stevens, J. C. & Litchy, W. J. Inclusion body myositis. Observations in 40 patients. Brain 112, 727–747 (1989).

    Article  PubMed  Google Scholar 

  33. Sayers, M. E., Chou, S. M. & Calabrese, L. H. Inclusion body myositis: analysis of 32 cases. J. Rheumatol. 19, 1385–1389 (1992).

    CAS  PubMed  Google Scholar 

  34. Lindberg, C., Persson, L. I., Bjorkander, J. & Oldfors, A. Inclusion body myositis: clinical, morphological, physiological and laboratory findings in 18 cases. Acta Neurol. Scand. 89, 123–131 (1994).

    Article  CAS  PubMed  Google Scholar 

  35. Amato, A. A. et al. Inclusion body myositis: clinical and pathological boundaries. Ann. Neurol. 40, 581–586 (1996).

    Article  CAS  PubMed  Google Scholar 

  36. Felice, K. J., Relva, G. M. & Conway, S. R. Further observations on forearm flexor weakness in inclusion body myositis. Muscle Nerve 21, 659–661 (1998).

    Article  CAS  PubMed  Google Scholar 

  37. Phillips, B. A. et al. Patterns of muscle involvement in inclusion body myositis: clinical and magnetic resonance imaging study. Muscle Nerve 24, 1526–1534 (2001).

    Article  CAS  PubMed  Google Scholar 

  38. Badrising, U. A. et al. Inclusion body myositis. Clinical features and clinical course of the disease in 64 patients. J. Neurol. 252, 1448–1454 (2005).

    Article  PubMed  Google Scholar 

  39. Benveniste, O. et al. Long-term observational study of sporadic inclusion body myositis. Brain 134, 3176–3184 (2011).

    Article  PubMed  Google Scholar 

  40. Price, M. A. et al. Mortality and causes of death in patients with sporadic inclusion body myositis: survey study based on the clinical experience of specialists in Australia, Europe and the USA. J. Neuromuscul. Dis. 3, 67–75 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  41. Felice, K. J. & North, W. A. Inclusion body myositis in Connecticut: observations in 35 patients during an 8-year period. Medicine 80, 320–327 (2001).

    Article  CAS  PubMed  Google Scholar 

  42. Needham, M. et al. Sporadic inclusion body myositis: phenotypic variability and influence of HLA-DR3 in a cohort of 57 Australian cases. J. Neurol. Neurosurg. Psychiatry 79, 1056–1060 (2008).

    Article  CAS  PubMed  Google Scholar 

  43. Cox, F. M. et al. A 12-year follow-up in sporadic inclusion body myositis: an end stage with major disabilities. Brain 134, 3167–3175 (2011).

    Article  PubMed  Google Scholar 

  44. Cortese, A. et al. Longitudinal observational study of sporadic inclusion body myositis: implications for clinical trials. Neuromuscul. Disord. 23, 404–412 (2013).

    Article  CAS  PubMed  Google Scholar 

  45. Hogrel, J. Y. et al. Four-year longitudinal study of clinical and functional endpoints in sporadic inclusion body myositis: implications for therapeutic trials. Neuromuscul. Disord. 24, 604–610 (2014).

    Article  PubMed  Google Scholar 

  46. Alfano, L. N. et al. Modeling functional decline over time in sporadic inclusion body myositis. Muscle Nerve 55, 526–531 (2016).

    Article  PubMed  Google Scholar 

  47. Rose, M. R. et al. A prospective natural history study of inclusion body myositis: implications for clinical trials. Neurology 57, 548–550 (2001).

    Article  CAS  PubMed  Google Scholar 

  48. Arahata, K. & Engel, A. G. Monoclonal antibody analysis of mononuclear cells in myopathies. I: Quantitation of subsets according to diagnosis and sites of accumulation and demonstration and counts of muscle fibers invaded by T cells. Ann. Neurol. 16, 193–208 (1984).

    Article  CAS  PubMed  Google Scholar 

  49. Engel, A. G. & Arahata, K. Monoclonal antibody analysis of mononuclear cells in myopathies. II: Phenotypes of autoinvasive cells in polymyositis and inclusion body myositis. Ann. Neurol. 16, 209–215 (1984).

    Article  CAS  PubMed  Google Scholar 

  50. Arahata, K. & Engel, A. G. Monoclonal antibody analysis of mononuclear cells in myopathies. III: Immunoelectron microscopy aspects of cell-mediated muscle fiber injury. Ann. Neurol. 19, 112–125 (1986).

    Article  CAS  PubMed  Google Scholar 

  51. Arahata, K. & Engel, A. G. Monoclonal antibody analysis of mononuclear cells in myopathies. IV: Cell-mediated cytotoxicity and muscle fiber necrosis. Ann. Neurol. 23, 168–173 (1988).

    Article  CAS  PubMed  Google Scholar 

  52. O’Hanlon, T. P., Dalakas, M. C., Plotz, P. H. & Miller, F. W. The αβT cell receptor repertoire in inclusion body myositis: diverse patterns of gene expression by muscle-infiltrating lymphocytes. J. Autoimmun. 7, 321–333 (1994).

    Article  PubMed  Google Scholar 

  53. Lindberg, C., Oldfors, A. & Tarkowski, A. Restricted use of T cell receptor V genes in endomysial infiltrates of patients with inflammatory myopathies. Eur. J. Immunol. 24, 2659–2663 (1994).

    Article  CAS  PubMed  Google Scholar 

  54. Lindberg, C., Oldfors, A. & Tarkowski, A. Local T cell proliferation and differentiation in inflammatory myopathies. Scand. J. Immunol. 41, 421–426 (1995).

    Article  CAS  PubMed  Google Scholar 

  55. Fyhr, I. M., Moslemi, A. R., Tarkowski, A., Lindberg, C. & Oldfors, A. Limited T cell receptor V gene usage in inclusion body myositis. Scand. J. Immunol. 43, 109–114 (1996).

    Article  CAS  PubMed  Google Scholar 

  56. Fyhr, I. M. et al. Oligoclonal expansion of muscle infiltrating T cells in inclusion body myositis. J. Neuroimmunol. 79, 185–189 (1997).

    Article  CAS  PubMed  Google Scholar 

  57. Bender, A., Behrens, L., Engel, A. G. & Hohlfeld, R. T cell heterogeneity in muscle lesions of inclusion body myositis. J. Neuroimmunol. 84, 86–91 (1998).

    Article  CAS  PubMed  Google Scholar 

  58. Amemiya, K., Granger, R. P. & Dalakas, M. C. Clonal restriction of T cell receptor expression by infiltrating lymphocytes in inclusion body myositis persists over time. Studies in repeated muscle biopsies. Brain 123, 2030–2039 (2000).

    PubMed  Google Scholar 

  59. Muntzing, K., Lindberg, C., Moslemi, A. R. & Oldfors, A. Inclusion body myositis: clonal expansions of muscle-infiltrating T cells persist over time. Scand. J. Immunol. 58, 195–200 (2003).

    Article  CAS  PubMed  Google Scholar 

  60. Dimitri, D. et al. Shared blood and muscle CD8+T cell expansions in inclusion body myositis. Brain 129, 986–995 (2006).

    Article  PubMed  Google Scholar 

  61. Salajegheh, M. et al. T cell receptor profiling in muscle and blood lymphocytes in sporadic inclusion body myositis. Neurology 69, 1672–1679 (2007).

    Article  CAS  PubMed  Google Scholar 

  62. Pandya, J. M. et al. Expanded T cell receptor Vβ-restricted T cells from patients with sporadic inclusion body myositis are proinflammatory and cytotoxic CD28null T cells. Arthritis Rheum. 62, 3457–3466 (2010).

    Article  CAS  PubMed  Google Scholar 

  63. Allenbach, Y. et al. Th1 response and systemic treg deficiency in inclusion body myositis. PLOS ONE 9, e88788 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  64. Greenberg, S. A., Pinkus, J. L., Amato, A. A., Kristensen, T. & Dorfman, D. M. Association of inclusion body myositis with T cell large granular lymphocytic leukaemia. Brain 139, 1348–1360 (2016).

    Article  PubMed  Google Scholar 

  65. Hohlfeld, R. & Schulze-Koops, H. Cytotoxic T cells go awry in inclusion body myositis. Brain 139, 1312–1314 (2016).

    Article  PubMed  Google Scholar 

  66. Lindberg, C., Trysberg, E., Tarkowski, A. & Oldfors, A. Anti-T-lymphocyte globulin treatment in inclusion body myositis: a randomized pilot study. Neurology 61, 260–262 (2003).

    Article  CAS  PubMed  Google Scholar 

  67. Dalakas, M. C. et al. Effect of Alemtuzumab (CAMPATH 1-H) in patients with inclusion-body myositis. Brain 132, 1536–1544 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  68. Hogrel, J. Y. et al. Rapamycin vs. placebo for the treatment of inclusion body myositis: improvement of the 6 min walking distance, a functional scale, the FVC and muscle quantitative MRI. Arthritis Rheumatol. 69, 5L (2017).

    Article  Google Scholar 

  69. Targoff, I. N. Autoantibodies and their significance in myositis. Curr. Rheumatol. Rep. 10, 333–340 (2008).

    Article  CAS  PubMed  Google Scholar 

  70. Nishikai, M. & Reichlin, M. Heterogeneity of precipitating antibodies in polymyositis and dermatomyositis. Characterization of the Jo-1 antibody system. Arthritis Rheum. 23, 881–888 (1980).

    Article  CAS  PubMed  Google Scholar 

  71. Reichlin, M. & Mattioli, M. Description of a serological reaction characteristic of polymyositis. Clin. Immunol. Immunopathol. 5, 12–20 (1976).

    Article  CAS  PubMed  Google Scholar 

  72. McHugh, N. J. & Tansley, S. L. Autoantibodies in myositis. Nat. Rev. Rheumatol. 14, 290–302 (2018).

    Article  CAS  PubMed  Google Scholar 

  73. Greenberg, S. A. et al. Molecular profiles of inflammatory myopathies. Neurology 59, 1170–1182 (2002).

    Article  CAS  PubMed  Google Scholar 

  74. Greenberg, S. A. et al. Plasma cells in muscle in inclusion body myositis and polymyositis. Neurology 65, 1782–1787 (2005).

    Article  CAS  PubMed  Google Scholar 

  75. Bradshaw, E. M. et al. A local antigen-driven humoral response is present in the inflammatory myopathies. J. Immunol. 178, 547–556 (2007).

    Article  CAS  PubMed  Google Scholar 

  76. Salajegheh, M. et al. Permissive environment for B cell maturation in myositis muscle in the absence of B cell follicles. Muscle Nerve 42, 576–583 (2010).

    Article  PubMed  Google Scholar 

  77. Ray, A. et al. Autoantibodies produced at the site of tissue damage provide evidence of humoral autoimmunity in inclusion body myositis. PLOS ONE 7, e46709 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Salajegheh, M., Lam, T. & Greenberg, S. A. Autoantibodies against a 43kDa muscle protein in inclusion body myositis. PLOS ONE 6, e20266 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Larman, H. B. et al. Cytosolic 5′-nucleotidase 1A autoimmunity in sporadic inclusion body myositis. Ann. Neurol. 73, 408–418 (2013).

    Article  CAS  PubMed  Google Scholar 

  80. Pluk, H. et al. Autoantibodies to cytosolic 5′-nucleotidase IA in inclusion body myositis. Ann. Neurol. 73, 397–407 (2013).

    Article  CAS  PubMed  Google Scholar 

  81. Mendell, J. R., Sahenk, Z., Gales, T. & Paul, L. Amyloid filaments in inclusion body myositis. Novel findings provide insight into nature of filaments. Arch. Neurol. 48, 1229–1234 (1991).

    Article  CAS  PubMed  Google Scholar 

  82. Oldfors, A., Larsson, N. G., Lindberg, C. & Holme, E. Mitochondrial DNA deletions in inclusion body myositis. Brain 116, 325–336 (1993).

    Article  PubMed  Google Scholar 

  83. Schmidt, J. et al. Interrelation of inflammation and APP in sIBM: IL-1β induces accumulation of β-amyloid in skeletal muscle. Brain 131, 1228–1240 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  84. Freret, M. et al. Overexpression of MHC class I in muscle of lymphocyte-deficient mice causes a severe myopathy with induction of the unfolded protein response. Am. J. Pathol. 183, 893–904 (2013).

    Article  CAS  PubMed  Google Scholar 

  85. Rygiel, K. A. et al. Mitochondrial and inflammatory changes in sporadic inclusion body myositis. Neuropathol. Appl. Neurobiol. 41, 288–303 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Garlepp, M. J., Laing, B., Zilko, P. J., Ollier, W. & Mastaglia, F. L. HLA associations with inclusion body myositis. Clin. Exp. Immunol. 98, 40–45 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Koffman, B. M., Sivakumar, K., Simonis, T., Stroncek, D. & Dalakas, M. C. HLA allele distribution distinguishes sporadic inclusion body myositis from hereditary inclusion body myopathies. J. Neuroimmunol. 84, 139–142 (1998).

    Article  CAS  PubMed  Google Scholar 

  88. Lampe, J. B. et al. Analysis of HLA class I and II alleles in sporadic inclusion-body myositis. J. Neurol. 250, 1313–1317 (2003).

    Article  PubMed  Google Scholar 

  89. Price, P. et al. Two major histocompatibility complex haplotypes influence susceptibility to sporadic inclusion body myositis: critical evaluation of an association with HLA-DR3. Tissue Antigens 64, 575–580 (2004).

    Article  CAS  PubMed  Google Scholar 

  90. Scott, A. P. et al. Sporadic inclusion body myositis in Japanese is associated with the MHC ancestral haplotype 52.1. Neuromuscul. Disord. 16, 311–315 (2006).

    Article  PubMed  Google Scholar 

  91. Rojana-udomsart, A. et al. The association of sporadic inclusion body myositis and Sjögren’s syndrome in carriers of HLA-DR3 and the 8.1 MHC ancestral haplotype. Clin. Neurol. Neurosurg. 113, 559–563 (2011).

    Article  CAS  PubMed  Google Scholar 

  92. Rojana-udomsart, A. et al. High-resolution HLA-DRB1 genotyping in an Australian inclusion body myositis (s-IBM) cohort: an analysis of disease-associated alleles and diplotypes. J. Neuroimmunol. 250, 77–82 (2012).

    Article  CAS  PubMed  Google Scholar 

  93. Rojana-udomsart, A. et al. Analysis of HLA-DRB3 alleles and supertypical genotypes in the MHC class II region in sporadic inclusion body myositis. J. Neuroimmunol. 254, 174–177 (2013).

    Article  CAS  PubMed  Google Scholar 

  94. Rothwell, S. et al. Immune-array analysis in sporadic inclusion body myositis reveals HLA-DRB1 amino acid heterogeneity across the myositis spectrum. Arthritis Rheumatol. 69, 1090–1099 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Dalakas, M. C. et al. Treatment of inclusion-body myositis with IVIg: a double-blind, placebo-controlled study. Neurology 48, 712–716 (1997).

    Article  CAS  PubMed  Google Scholar 

  96. Greenberg, S. A., Pinkus, J. L. & Amato, A. A. Nuclear membrane proteins are present within rimmed vacuoles in inclusion-body myositis. Muscle Nerve 34, 406–416 (2006).

    Article  CAS  PubMed  Google Scholar 

  97. Chahin, N. & Engel, A. G. Correlation of muscle biopsy, clinical course, and outcome in PM and sporadic IBM. Neurology 70, 418–424 (2008).

    Article  PubMed  Google Scholar 

  98. Tawara, N. et al. Pathomechanisms of anti-cytosolic 5′-nucleotidase 1 A autoantibodies in sporadic inclusion body myositis. Ann. Neurol. 81, 512–525 (2017).

    Article  CAS  PubMed  Google Scholar 

  99. Johns Hopkins University. Myopathy, myofibrillar, 1; MFM1. OMIM https://www.omim.org/entry/601419 (2014).

  100. Ahmed, M. et al. Targeting protein homeostasis in sporadic inclusion body myositis. Sci. Transl Med. 8, 331ra41 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Sivakumar, K., Semino-Mora, C. & Dalakas, M. C. An inflammatory, familial, inclusion body myositis with autoimmune features and a phenotype identical to sporadic inclusion body myositis. Studies in three families. Brain 120, 653–661 (1997).

    PubMed  Google Scholar 

  102. Ranque-Francois, B. et al. Familial inflammatory inclusion body myositis. Ann. Rheum. Dis. 64, 634–637 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Tateyama, M. et al. Familial inclusion body myositis: a report on two Japanese sisters. Intern. Med. 42, 1035–1038 (2003).

    Article  PubMed  Google Scholar 

  104. Callan, A., Capkun, G., Vasanthaprasad, V., Freitas, R. & Needham, M. A. Systematic review and meta-analysis of prevalence studies of sporadic inclusion body myositis. J. Neuromuscul. Dis. 4, 127–137 (2017).

    Article  PubMed  Google Scholar 

  105. Tan, J. A. et al. Incidence and prevalence of idiopathic inflammatory myopathies in South Australia: a 30-year epidemiologic study of histology-proven cases. Int. J. Rheum. Dis. 16, 331–338 (2013).

    Article  PubMed  Google Scholar 

  106. Badrising, U. A. et al. Epidemiology of inclusion body myositis in the Netherlands: a nationwide study. Neurology 55, 1385–1387 (2000).

    Article  CAS  PubMed  Google Scholar 

  107. Lefter, S., Hardiman, O. & Ryan, A. M. A population-based epidemiologic study of adult neuromuscular disease in the Republic of Ireland. Neurology 88, 304–313 (2017).

    Article  PubMed  Google Scholar 

  108. Suzuki, N. et al. Increase in number of sporadic inclusion body myositis (sIBM) in Japan. J. Neurol. 259, 554–556 (2012).

    Article  PubMed  Google Scholar 

  109. Dobloug, G. C. et al. High prevalence of inclusion body myositis in Norway; a population-based clinical epidemiology study. Eur. J. Neurol. 22, 672 (2015).

    Article  CAS  PubMed  Google Scholar 

  110. Suzuki, N. et al. Multicenter questionnaire survey for sporadic inclusion body myositis in Japan. Orphanet J. Rare Dis. 11, 146 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  111. Wilson, F. C., Ytterberg, S. R., St Sauver, J. L. & Reed, A. M. Epidemiology of sporadic inclusion body myositis and polymyositis in Olmsted County, Minnesota. J. Rheumatol. 35, 445–447 (2008).

    PubMed  Google Scholar 

  112. Chilingaryan, A., Rison, R. A. & Beydoun, S. R. Misdiagnosis of inclusion body myositis: two case reports and a retrospective chart review. J. Med. Case Rep. 9, 169 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  113. Paltiel, A. D. et al. Demographic and clinical features of inclusion body myositis in North America. Muscle Nerve 52, 527–533 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  114. Keshishian, A., Greenberg, S. A., Agashivala, N., Baser, O. & Johnson, K. Health care costs and comorbidities for patients with inclusion body myositis. Curr. Med. Res. Opin. 34, 1679–1685 (2018).

    Article  PubMed  Google Scholar 

  115. Ko, E. H. & Rubin, A. D. Dysphagia due to inclusion body myositis: case presentation and review of the literature. Ann. Otol. Rhinol. Laryngol. 123, 605–608 (2014).

    Article  PubMed  Google Scholar 

  116. Cox, F. M. et al. Detecting dysphagia in inclusion body myositis. J. Neurol. 256, 2009–2013 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Houser, S. M., Calabrese, L. H. & Strome, M. Dysphagia in patients with inclusion body myositis. Laryngoscope 108, 1001–1005 (1998).

    Article  CAS  PubMed  Google Scholar 

  118. Oh, T. H., Brumfield, K. A., Hoskin, T. L., Kasperbauer, J. L. & Basford, J. R. Dysphagia in inclusion body myositis: clinical features, management, and clinical outcome. Am. J. Phys. Med. Rehabil. 87, 883–889 (2008).

    Article  PubMed  Google Scholar 

  119. Riminton, D. S., Chambers, S. T., Parkin, P. J., Pollock, M. & Donaldson, I. M. Inclusion body myositis presenting solely as dysphagia. Neurology 43, 1241–1243 (1993).

    Article  CAS  PubMed  Google Scholar 

  120. Verma, A., Bradley, W. G., Adesina, A. M., Sofferman, R. & Pendlebury, W. W. Inclusion body myositis with cricopharyngeus muscle involvement and severe dysphagia. Muscle Nerve 14, 470–473 (1991).

    Article  CAS  PubMed  Google Scholar 

  121. Rodriguez Cruz, P. M., Needham, M., Hollingsworth, P., Mastaglia, F. L. & Hillman, D. R. Sleep disordered breathing and subclinical impairment of respiratory function are common in sporadic inclusion body myositis. Neuromuscul. Disord. 24, 1036–1041 (2014).

    Article  PubMed  Google Scholar 

  122. Brady, S., Squier, W. & Hilton-Jones, D. Clinical assessment determines the diagnosis of inclusion body myositis independently of pathological features. J. Neurol. Neurosurg. Psychiatry 84, 1240–1246 (2013).

    Article  PubMed  Google Scholar 

  123. Dion, E. et al. Magnetic resonance imaging criteria for distinguishing between inclusion body myositis and polymyositis. J. Rheumatol. 29, 1897–1906 (2002).

    PubMed  Google Scholar 

  124. Cox, F. M. et al. Magnetic resonance imaging of skeletal muscles in sporadic inclusion body myositis. Rheumatology 50, 1153–1161 (2011).

    Article  PubMed  Google Scholar 

  125. Inaishi, Y. et al. MRI for evaluation of flexor digitorum profundus muscle involvement in inclusion body myositis. Can. J. Neurol. Sci. 41, 780–781 (2014).

    Article  PubMed  Google Scholar 

  126. Tasca, G. et al. Magnetic resonance imaging pattern recognition in sporadic inclusion-body myositis. Muscle Nerve 52, 956–962 (2015).

    Article  PubMed  Google Scholar 

  127. Guimaraes, J. B. et al. Sporadic inclusion body myositis: MRI findings and correlation with clinical and functional parameters. AJR Am. J. Roentgenol. 209, 1340–1347 (2017).

    Article  PubMed  Google Scholar 

  128. Tsukita, K., Yagita, K., Sakamaki-Tsukita, H. & Suenaga, T. Sporadic inclusion body myositis: magnetic resonance imaging and ultrasound characteristics. QJM 111, 667–668 (2018).

    Article  CAS  PubMed  Google Scholar 

  129. Noto, Y. et al. Contrasting echogenicity in flexor digitorum profundus-flexor carpi ulnaris: a diagnostic ultrasound pattern in sporadic inclusion body myositis. Muscle Nerve 49, 745–748 (2014).

    Article  PubMed  Google Scholar 

  130. Nodera, H. et al. Intramuscular dissociation of echogenicity in the triceps surae characterizes sporadic inclusion body myositis. Eur. J. Neurol. 23, 588–596 (2016).

    Article  CAS  PubMed  Google Scholar 

  131. Albayda, J. et al. Pattern of muscle involvement in inclusion body myositis: a sonographic study. Clin. Exp. Rheumatol. 36, 996–1002 (2018).

    PubMed  PubMed Central  Google Scholar 

  132. Bachasson, D., Dubois, G. J. R., Allenbach, Y., Benveniste, O. & Hogrel, J. Y. Muscle shear wave elastography in inclusion body myositis: feasibility, reliability and relationships with muscle impairments. Ultrasound Med. Biol. 44, 1423–1432 (2018).

    Article  PubMed  Google Scholar 

  133. Olthoff, A. et al. Evaluation of dysphagia by novel real-time MRI. Neurology 87, 2132–2138 (2016).

    Article  PubMed  Google Scholar 

  134. Koffman, B. M., Rugiero, M. & Dalakas, M. C. Immune-mediated conditions and antibodies associated with sporadic inclusion body myositis. Muscle Nerve 21, 115–117 (1998).

    Article  CAS  PubMed  Google Scholar 

  135. Greenberg, S. A. Cytoplasmic 5′-nucleotidase autoantibodies in inclusion body myositis: Isotypes and diagnostic utility. Muscle Nerve 50, 488–492 (2014).

    Article  CAS  PubMed  Google Scholar 

  136. Goyal, N. A. et al. Seropositivity for NT5c1A antibody in sporadic inclusion body myositis predicts more severe motor, bulbar and respiratory involvement. J. Neurol. Neurosurg. Psychiatry 87, 373–378 (2016).

    Article  CAS  PubMed  Google Scholar 

  137. Lloyd, T. E. et al. Cytosolic 5′-nucleotidase 1A as a target of circulating autoantibodies in autoimmune diseases. Arthritis Care Res. 68, 66–71 (2016).

    Article  CAS  Google Scholar 

  138. Kramp, S. L. et al. Development and evaluation of a standardized ELISA for the determination of autoantibodies against cN-1A (Mup44, NT5C1A) in sporadic inclusion body myositis. Auto Immun. Highlights 7, 16 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Felice, K. J. et al. Sensitivity and clinical utility of the anti-cytosolic 5’-nucleotidase 1 A (cN1A) antibody test in sporadic inclusion body myositis: Report of 40 patients from a single neuromuscular center. Neuromuscul. Disord. 28, 600–664 (2018).

    Google Scholar 

  140. Herbert, M. K. et al. Disease specificity of autoantibodies to cytosolic 5′-nucleotidase 1A in sporadic inclusion body myositis versus known autoimmune diseases. Ann. Rheum. Dis. 75, 696–701 (2016).

    Article  CAS  PubMed  Google Scholar 

  141. Muro, Y., Nakanishi, H., Katsuno, M., Kono, M. & Akiyama, M. Prevalence of anti-NT5C1A antibodies in Japanese patients with autoimmune rheumatic diseases in comparison with other patient cohorts. Clin. Chim. Acta 472, 1–4 (2017).

    Article  CAS  PubMed  Google Scholar 

  142. Rietveld, A. et al. Autoantibodies to cytosolic 5′-nucleotidase 1A in primary Sjögren’s syndrome and systemic lupus erythematosus. Front. Immunol. 9, 1200 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Mhiri, C. & Gherardi, R. Inclusion body myositis in French patients. A clinicopathological evaluation. Neuropathol. Appl. Neurobiol. 16, 333–344 (1990).

    Article  CAS  PubMed  Google Scholar 

  144. Askanas, V. & Engel, W. K. Molecular pathology and pathogenesis of inclusion-body myositis. Microsc. Res. Tech. 67, 114–120 (2005).

    Article  CAS  PubMed  Google Scholar 

  145. Rodriguez Cruz, P. M. et al. An analysis of the sensitivity and specificity of MHC-I and MHC-II immunohistochemical staining in muscle biopsies for the diagnosis of inflammatory myopathies. Neuromuscul. Disord. 24, 1025–1035 (2014).

    Article  PubMed  Google Scholar 

  146. Ikenaga, C. et al. Clinicopathologic features of myositis patients with CD8-MHC-1 complex pathology. Neurology 89, 1060–1068 (2017).

    Article  PubMed  Google Scholar 

  147. Temiz, P., Weihl, C. C. & Pestronk, A. Inflammatory myopathies with mitochondrial pathology and protein aggregates. J. Neurol. Sci. 278, 25–29 (2009).

    Article  PubMed  Google Scholar 

  148. Pestronk, A. Acquired immune and inflammatory myopathies: pathologic classification. Curr. Opin. Rheumatol. 23, 595–604 (2011).

    Article  CAS  PubMed  Google Scholar 

  149. van der Meulen, M. F. et al. Rimmed vacuoles and the added value of SMI-31 staining in diagnosing sporadic inclusion body myositis. Neuromuscul. Disord. 11, 447–451 (2001).

    Article  PubMed  Google Scholar 

  150. Dalakas, M. C. Polymyositis, dermatomyositis and inclusion-body myositis. N. Engl. J. Med. 325, 1487–1498 (1991).

    Article  CAS  PubMed  Google Scholar 

  151. Mastaglia, F. L. & Phillips, B. A. Idiopathic inflammatory myopathies: epidemiology, classification, and diagnostic criteria. Rheum. Dis. Clin. North Am. 28, 723–741 (2002).

    Article  PubMed  Google Scholar 

  152. Tawil, R. & Griggs, R. C. Inclusion body myositis. Curr. Opin. Rheumatol. 14, 653–657 (2002).

    Article  CAS  PubMed  Google Scholar 

  153. Verschuuren, J. J., van Engelen, B. G. M., van der Hoeven, H. & Hoogendijk, J. Inclusion body myositis diagnostic criteria. Inclusion Body Myositis. http://ibmmyositis.com/emery81.pdf (1997).

  154. Griggs, R. C. et al. Inclusion body myositis and myopathies. Ann. Neurol. 38, 705–713 (1995).

    Article  CAS  PubMed  Google Scholar 

  155. Hilton-Jones, D. et al. Inclusion body myositis: MRC Centre for Neuromuscular Diseases, IBM workshop, London, 13 June 2008. Neuromuscul Disord. 20, 142–147 (2010).

    Article  CAS  PubMed  Google Scholar 

  156. Benveniste, O. & Hilton-Jones, D. International Workshop on Inclusion Body Myositis held at the Institute of Myology, Paris, on 29 May 2009. Neuromuscul. Disord. 20, 414–421 (2010).

    Article  PubMed  Google Scholar 

  157. Rose, M. R. 188th ENMC International Workshop: Inclusion Body Myositis, 2–4 December 2011, Naarden, The Netherlands. Neuromuscul. Disord. 23, 1044–1055 (2013).

    Article  CAS  PubMed  Google Scholar 

  158. Lloyd, T. E. et al. Evaluation and construction of diagnostic criteria for inclusion body myositis. Neurology 83, 426–433 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  159. Kanellopoulos, P., Baltoyiannis, C. & Tzioufas, A. G. Primary Sjögren’s syndrome associated with inclusion body myositis. Rheumatology 41, 440–444 (2002).

    Article  CAS  PubMed  Google Scholar 

  160. Misterska-Skora, M., Sebastian, A., Dziegiel, P., Sebastian, M. & Wiland, P. Inclusion body myositis associated with Sjögren’s syndrome. Rheumatol. Int. 33, 3083–3086 (2013).

    Article  PubMed  Google Scholar 

  161. Colafrancesco, S. et al. Myositis in primary Sjögren’s syndrome: data from a multicentre cohort. Clin. Exp. Rheumatol. 33, 457–464 (2015).

    PubMed  Google Scholar 

  162. Lloyd, T. E. et al. Overlapping features of polymyositis and inclusion body myositis in HIV-infected patients. Neurology 88, 1454–1460 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  163. Hiniker, A., Daniels, B. H. & Margeta, M. T-cell-mediated inflammatory myopathies in HIV-positive individuals: a histologic study of 19 cases. J. Neuropathol. Exp. Neurol. 75, 239–245 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  164. Cupler, E. J. et al. Inclusion body myositis in HIV-1 and HTLV-1 infected patients. Brain 119, 1887–1893 (1996).

    Article  PubMed  Google Scholar 

  165. Couture, P. et al. Inclusion body myositis and human immunodeficiency virus type 1: a new case report and literature review. Neuromuscul. Disord. 28, 334–338 (2018).

    Article  PubMed  Google Scholar 

  166. Matsuura, E. et al. Inclusion body myositis associated with human T-lymphotropic virus-type I infection: eleven patients from an endemic area in Japan. J. Neuropathol. Exp. Neurol. 67, 41–49 (2008).

    Article  CAS  PubMed  Google Scholar 

  167. Cox, F. M. et al. The heart in sporadic inclusion body myositis: a study in 51 patients. J. Neurol. 257, 447–451 (2010).

    Article  PubMed  Google Scholar 

  168. Limaye, V. S., Lester, S., Blumbergs, P. & Roberts-Thomson, P. J. Idiopathic inflammatory myositis is associated with a high incidence of hypertension and diabetes mellitus. Int. J. Rheum. Dis. 13, 132–137 (2010).

    Article  PubMed  Google Scholar 

  169. Lai, Y. T. et al. Dermatomyositis is associated with an increased risk of cardiovascular and cerebrovascular events: a Taiwanese population-based longitudinal follow-up study. Br. J. Dermatol. 168, 1054–1059 (2013).

    Article  PubMed  Google Scholar 

  170. Wang, H., Tang, J., Chen, X., Li, F. & Luo, J. Lipid profiles in untreated patients with dermatomyositis. J. Eur. Acad. Dermatol. Venereol. 27, 175–179 (2013).

    Article  CAS  PubMed  Google Scholar 

  171. Wang, H. et al. Altered lipid levels in untreated patients with early polymyositis. PLOS ONE 9, e89827 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Diederichsen, L. P. et al. Traditional cardiovascular risk factors and coronary artery calcification in adults with polymyositis and dermatomyositis: a Danish multicenter study. Arthritis Care Res. 67, 848–854 (2015).

    Article  Google Scholar 

  173. Rai, S. K., Choi, H. K., Sayre, E. C. & Avina-Zubieta, J. A. Risk of myocardial infarction and ischaemic stroke in adults with polymyositis and dermatomyositis: a general population-based study. Rheumatology 55, 461–469 (2016).

    PubMed  Google Scholar 

  174. Sherer, Y. & Shoenfeld, Y. Mechanisms of disease: atherosclerosis in autoimmune diseases. Nat. Clin. Pract. Rheumatol. 2, 99–106 (2006).

    Article  CAS  PubMed  Google Scholar 

  175. Ahearn, J., Shields, K. J., Liu, C. C. & Manzi, S. Cardiovascular disease biomarkers across autoimmune diseases. Clin. Immunol. 161, 59–63 (2015).

    Article  CAS  PubMed  Google Scholar 

  176. Alexanderson, H. Exercise in inflammatory myopathies, including inclusion body myositis. Curr. Rheumatol. Rep. 14, 244–251 (2012).

    Article  CAS  PubMed  Google Scholar 

  177. Arnardottir, S., Alexanderson, H., Lundberg, I. E. & Borg, K. Sporadic inclusion body myositis: pilot study on the effects of a home exercise program on muscle function, histopathology and inflammatory reaction. J. Rehabil. Med. 35, 31–35 (2003).

    Article  PubMed  Google Scholar 

  178. Johnson, L. G., Edwards, D. J., Walters, S. E., Thickbroom, G. W. & Mastaglia, F. L. The effectiveness of an individualized, home-based functional exercise program for patients with sporadic inclusion body myositis. J. Clin. Neuromuscul. Dis. 8, 187–194 (2007).

    Article  Google Scholar 

  179. Parker, K. C. et al. Fast-twitch sarcomeric and glycolytic enzyme protein loss in inclusion body myositis. Muscle Nerve 39, 739–753 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Cherin, P. et al. Intravenous immunoglobulin for dysphagia of inclusion body myositis. Neurology 58, 326 (2002).

    Article  CAS  PubMed  Google Scholar 

  181. Pars, K. et al. Subcutaneous immunoglobulin treatment of inclusion-body myositis stabilizes dysphagia. Muscle Nerve 48, 838–839 (2013).

    Article  PubMed  Google Scholar 

  182. Cherin, P., Delain, J. C., de Jaeger, C. & Crave, J. C. Subcutaneous immunoglobulin use in inclusion body myositis: a review of 6 cases. Case Rep. Neurol. 7, 227–232 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  183. Mendell, J. R. et al. Follistatin gene therapy for sporadic inclusion body myositis improves functional outcomes. Mol. Ther. 25, 870–879 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Greenberg, S. A. Unfounded claims of improved functional outcomes attributed to follistatin gene therapy in inclusion body myositis. Mol. Ther. 25, 2235–2237 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Walter, M. C. et al. High-dose immunoglobulin therapy in sporadic inclusion body myositis: a double-blind, placebo-controlled study. J. Neurol. 247, 22–28 (2000).

    Article  CAS  PubMed  Google Scholar 

  186. Dalakas, M. C. et al. A controlled study of intravenous immunoglobulin combined with prednisone in the treatment of IBM. Neurology 56, 323–327 (2001).

    Article  CAS  PubMed  Google Scholar 

  187. Badrising, U. A. et al. Comparison of weakness progression in inclusion body myositis during treatment with methotrexate or placebo. Ann. Neurol. 51, 369–372 (2002).

    Article  CAS  PubMed  Google Scholar 

  188. Muscle Study, G. Randomized pilot trial of βINF1a (Avonex) in patients with inclusion body myositis. Neurology 57, 1566–1570 (2001).

    Article  Google Scholar 

  189. Muscle Study, G. Randomized pilot trial of high-dose βINF-1a in patients with inclusion body myositis. Neurology 63, 718–720 (2004).

    Article  CAS  Google Scholar 

  190. Rutkove, S. B. et al. A pilot randomized trial of oxandrolone in inclusion body myositis. Neurology 58, 1081–1087 (2002).

    Article  CAS  PubMed  Google Scholar 

  191. Amato, A. A. et al. Treatment of sporadic inclusion body myositis with bimagrumab. Neurology 83, 2239–2246 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Amato, A. A. et al. A randomized, double-blind, placebo-controlled study of bimagrumab in patients with sporadic inclusion body myositis [abstract 8L]. Arthritis Rheumatol. 68, 4367–4369 (2016).

    Google Scholar 

  193. Chou, S. M. Myxovirus-like structures and accompanying nuclear changes in chronic polymyositis. Arch. Pathol. 86, 649–658 (1968).

    CAS  PubMed  Google Scholar 

  194. Rifai, Z., Welle, S., Kamp, C. & Thornton, C. A. Ragged red fibers in normal aging and inflammatory myopathy. Ann. Neurol. 37, 24–29 (1995).

    Article  CAS  PubMed  Google Scholar 

  195. Oldfors, A. et al. Mitochondrial abnormalities in inclusion-body myositis. Neurology 66, S49–S55 (2006).

    Article  CAS  PubMed  Google Scholar 

  196. Askanas, V., Serdaroglu, P., Engel, W. K. & Alvarez, R. B. Immunolocalization of ubiquitin in muscle biopsies of patients with inclusion body myositis and oculopharyngeal muscular dystrophy. Neurosci. Lett. 130, 73–76 (1991).

    Article  CAS  PubMed  Google Scholar 

  197. Askanas, V., Engel, W. K. & Alvarez, R. B. Light and electron microscopic localization of β-amyloid protein in muscle biopsies of patients with inclusion-body myositis. Am. J. Pathol. 141, 31–36 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  198. Askanas, V., Engel, W. K., Bilak, M., Alvarez, R. B. & Selkoe, D. J. Twisted tubulofilaments of inclusion body myositis muscle resemble paired helical filaments of Alzheimer brain and contain hyperphosphorylated tau. Am. J. Pathol. 144, 177–187 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  199. Greenberg, S. A. Theories of the pathogenesis of inclusion body myositis. Curr. Rheumatol. Rep. 12, 221–228 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Askanas, V. & Engel, W. K. Proposed pathogenetic cascade of inclusion-body myositis: importance of amyloid-β, misfolded proteins, predisposing genes, and aging. Curr. Opin. Rheumatol. 15, 737–744 (2003).

    Article  CAS  PubMed  Google Scholar 

  201. Askanas, V. & Engel, W. K. Inclusion-body myositis: a myodegenerative conformational disorder associated with Aβ, protein misfolding, and proteasome inhibition. Neurology 66, S39–S48 (2006).

    Article  CAS  PubMed  Google Scholar 

  202. Askanas, V., Engel, W. K. & Nogalska, A. Sporadic inclusion-body myositis: a degenerative muscle disease associated with aging, impaired muscle protein homeostasis and abnormal mitophagy. Biochim. Biophys. Acta 1852, 633–643 (2015).

    Article  CAS  PubMed  Google Scholar 

  203. Greenberg, S. A. How citation distortions create unfounded authority: analysis of a citation network. BMJ 339, b2680 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  204. Fergusson, D. Inappropriate referencing in research. BMJ 339, b2049 (2009).

    Article  PubMed  Google Scholar 

  205. Sarkozi, E., Askanas, V., Johnson, S. A., McFerrin, J. & Engel, W. K. Expression of β-amyloid precursor protein gene is developmentally regulated in human muscle fibers in vivo and in vitro. Exp. Neurol. 128, 27–33 (1994).

    Article  CAS  PubMed  Google Scholar 

  206. Askanas, V. & Engel, W. K. Sporadic inclusion-body myositis: conformational multifactorial ageing-related degenerative muscle disease associated with proteasomal and lysosomal inhibition, endoplasmic reticulum stress, and accumulation of amyloid-β42 oligomers and phosphorylated tau. Presse Med. 40, e219–e235 (2011).

    Article  PubMed  Google Scholar 

  207. Salajegheh, M. et al. Nature of “Tau” immunoreactivity in normal myonuclei and inclusion body myositis. Muscle Nerve 40, 520–528 (2009).

    Article  CAS  PubMed  Google Scholar 

  208. Pruitt, J. N. 2nd, Showalter, C. J. & Engel, A. G. Sporadic inclusion body myositis: counts of different types of abnormal fibers. Ann. Neurol. 39, 139–143 (1996).

    Article  PubMed  Google Scholar 

  209. Banwell, B. L. & Engel, A. G. αB-Crystallin immunolocalization yields new insights into inclusion body myositis. Neurology 54, 1033–1041 (2000).

    Article  CAS  PubMed  Google Scholar 

  210. Sherriff, F. E., Joachim, C. L., Squier, M. V. & Esiri, M. M. Ubiquitinated inclusions in inclusion-body myositis patients are immunoreactive for cathepsin D but not β-amyloid. Neurosci. Lett. 194, 37–40 (1995).

    Article  CAS  PubMed  Google Scholar 

  211. Dubourg, O. et al. Diagnostic value of markers of muscle degeneration in sporadic inclusion body myositis. Acta Myol 30, 103–108 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  212. Hiniker, A., Daniels, B. H., Lee, H. S. & Margeta, M. Comparative utility of LC3, p62 and TDP-43 immunohistochemistry in differentiation of inclusion body myositis from polymyositis and related inflammatory myopathies. Acta Neuropathol. Commun. 1, 29 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  213. Vattemi, G., Engel, W. K., McFerrin, J. & Askanas, V. Endoplasmic reticulum stress and unfolded protein response in inclusion body myositis muscle. Am. J. Pathol. 164, 1–7 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  214. Lunemann, J. D. et al. β-amyloid is a substrate of autophagy in sporadic inclusion body myositis. Ann. Neurol. 61, 476–483 (2007).

    Article  CAS  PubMed  Google Scholar 

  215. Nakano, S., Oki, M. & Kusaka, H. The role of p62/SQSTM1 in sporadic inclusion body myositis. Neuromuscul. Disord. 27, 363–369 (2017).

    Article  PubMed  Google Scholar 

  216. Pinkus, J. L., Amato, A. A., Taylor, J. P. & Greenberg, S. A. Abnormal distribution of heterogeneous nuclear ribonucleoproteins in sporadic inclusion body myositis. Neuromuscul. Disord. 24, 611–616 (2014).

    Article  PubMed  Google Scholar 

  217. Weihl, C. C. et al. TDP-43 accumulation in inclusion body myopathy muscle suggests a common pathogenic mechanism with frontotemporal dementia. J. Neurol. Neurosurg. Psychiatry 79, 1186–1189 (2008).

    Article  CAS  PubMed  Google Scholar 

  218. Salajegheh, M. et al. Sarcoplasmic redistribution of nuclear TDP-43 in inclusion body myositis. Muscle Nerve 40, 19–31 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  219. Nogalska, A., Terracciano, C., D’Agostino, C., King Engel, W. & Askanas, V. p62/SQSTM1 is overexpressed and prominently accumulated in inclusions of sporadic inclusion-body myositis muscle fibers, and can help differentiating it from polymyositis and dermatomyositis. Acta Neuropathol. 118, 407–413 (2009).

    Article  CAS  PubMed  Google Scholar 

  220. Hengstman, G. J. & van Engelen, B. G. Polymyositis invasion of non-necrotic muscle fibres, and the art of repetition. BMJ 329, 1464–1467 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  221. Callender, L. A. et al. Human CD8+ EMRA T cells display a senescence-associated secretory phenotype regulated by p38 MAPK. Aging Cell 17, e12675 (2018).

    Article  CAS  Google Scholar 

  222. Chong, L. K. et al. Proliferation and interleukin 5 production by CD8hi CD57+ T cells. Eur. J. Immunol. 38, 995–1000 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  223. Henson, S. M. & Akbar, A. N. KLRG1—more than a marker for T cell senescence. Age 31, 285–291 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  224. Akbar, A. N. & Henson, S. M. Are senescence and exhaustion intertwined or unrelated processes that compromise immunity? Nat. Rev. Immunol. 11, 289–295 (2011).

    Article  CAS  PubMed  Google Scholar 

  225. Melis, L., Van Praet, L., Pircher, H., Venken, K. & Elewaut, D. Senescence marker killer cell lectin-like receptor G1 (KLRG1) contributes to TNF-α production by interaction with its soluble E-cadherin ligand in chronically inflamed joints. Ann. Rheum. Dis. 73, 1223–1231 (2014).

    Article  CAS  PubMed  Google Scholar 

  226. Dumitriu, I. E. The life (and death) of CD4+CD28null T cells in inflammatory diseases. Immunology 146, 185–193 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  227. Maly, K. & Schirmer, M. The story of CD4+CD28- T cells revisited: solved or still ongoing? J. Immunol. Res. 2015, 348746 (2015).

    PubMed  PubMed Central  Google Scholar 

  228. Lima, X. T. et al. Frequency and characteristics of circulating CD4+ CD28null T cells in patients with psoriasis. Br. J. Dermatol. 173, 998–1005 (2015).

    Article  CAS  PubMed  Google Scholar 

  229. Schirmer, M., Vallejo, A. N., Weyand, C. M. & Goronzy, J. J. Resistance to apoptosis and elevated expression of Bcl-2 in clonally expanded CD4+CD28- T cells from rheumatoid arthritis patients. J. Immunol. 161, 1018–1025 (1998).

    CAS  PubMed  Google Scholar 

  230. Schirmer, M. et al. Circulating cytotoxic CD8+ CD28- T cells in ankylosing spondylitis. Arthritis Res. 4, 71–76 (2002).

    Article  PubMed  Google Scholar 

  231. Liaskou, E. et al. Loss of CD28 expression by liver-infiltrating T cells contributes to pathogenesis of primary sclerosing cholangitis. Gastroenterology 147, 221–232 (2014).

    Article  CAS  PubMed  Google Scholar 

  232. Dejaco, C. et al. NKG2D stimulated T cell autoreactivity in giant cell arteritis and polymyalgia rheumatica. Ann. Rheum. Dis. 72, 1852–1859 (2013).

    Article  CAS  PubMed  Google Scholar 

  233. Dejaco, C., Duftner, C., Klauser, A. & Schirmer, M. Altered T cell subtypes in spondyloarthritis, rheumatoid arthritis and polymyalgia rheumatica. Rheumatol. Int. 30, 297–303 (2010).

    Article  PubMed  Google Scholar 

  234. Duftner, C. et al. Prevalence, clinical relevance and characterization of circulating cytotoxic CD4+CD28- T cells in ankylosing spondylitis. Arthritis Res. Ther. 5, R292–R300 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  235. Pinto-Medel, M. J. et al. The CD4+T cell subset lacking expression of the CD28 costimulatory molecule is expanded and shows a higher activation state in multiple sclerosis. J. Neuroimmunol. 243, 1–11 (2012).

    Article  CAS  PubMed  Google Scholar 

  236. Garcia de Tena, J. et al. Active Crohn’s disease patients show a distinctive expansion of circulating memory CD4+CD45RO+CD28null T cells. J. Clin. Immunol. 24, 185–196 (2004).

    Article  CAS  PubMed  Google Scholar 

  237. Leblanc, F., Zhang, D., Liu, X. & Loughran, T. P. Large granular lymphocyte leukemia: from dysregulated pathways to therapeutic targets. Future Oncol. 8, 787–801 (2012).

    Article  CAS  PubMed  Google Scholar 

  238. Mastaglia, F. L. et al. Polymorphism in the TOMM40 gene modifies the risk of developing sporadic inclusion body myositis and the age of onset of symptoms. Neuromuscul. Disord. 23, 969–974 (2013).

    Article  CAS  PubMed  Google Scholar 

  239. Gang, Q. et al. The effects of an intronic polymorphism in TOMM40 and APOE genotypes in sporadic inclusion body myositis. Neurobiol. Aging 36, 1766.e1–1766.e3 (2015).

    Article  CAS  Google Scholar 

  240. De Paepe, B. & De Bleecker, J. L. The nonnecrotic invaded muscle fibers of polymyositis and sporadic inclusion body myositis: on the interplay of chemokines and stress proteins. Neurosci. Lett. 535, 18–23 (2013).

    Article  CAS  PubMed  Google Scholar 

  241. De Paepe, B., Creus, K. K. & De Bleecker, J. L. Chemokines in idiopathic inflammatory myopathies. Front. Biosci. 13, 2548–2577 (2008).

    Article  PubMed  Google Scholar 

  242. Ivanidze, J. et al. Inclusion body myositis: laser microdissection reveals differential up-regulation of IFN-γ signaling cascade in attacked versus nonattacked myofibers. Am. J. Pathol. 179, 1347–1359 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  243. Mammen, A. L. Autoimmune myopathies. Continuum 22, 1852–1870 (2016).

    PubMed  PubMed Central  Google Scholar 

  244. Mammen, A. L. Autoimmune myopathies: autoantibodies, phenotypes and pathogenesis. Nat. Rev. Neurol. 7, 343–354 (2011).

    Article  CAS  PubMed  Google Scholar 

  245. Mammen, A. L. Which nonautoimmune myopathies are most frequently misdiagnosed as myositis? Curr. Opin. Rheumatol. 29, 618–622 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  246. Britson, K. A., Yang, S. Y. & Lloyd, T. E. New developments in the genetics of inclusion body myositis. Curr. Rheumatol. Rep. 20, 26 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  247. Olive, M. et al. Expression of mutant ubiquitin (UBB+1) and p62 in myotilinopathies and desminopathies. Neuropathol. Appl. Neurobiol. 34, 76–87 (2008).

    CAS  PubMed  Google Scholar 

  248. Olive, M. et al. TAR DNA-binding protein 43 accumulation in protein aggregate myopathies. J. Neuropathol. Exp. Neurol. 68, 262–273 (2009).

    Article  CAS  PubMed  Google Scholar 

  249. Duleh, S., Wang, X., Komirenko, A. & Margeta, M. Activation of the Keap1/Nrf2 stress response pathway in autophagic vacuolar myopathies. Acta Neuropathol. Commun. 4, 115 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  250. Arahata, K. et al. Inflammatory response in facioscapulohumeral muscular dystrophy (FSHD): immunocytochemical and genetic analyses. Muscle Nerve Suppl. 2, S56–S66 (1995).

    Article  CAS  PubMed  Google Scholar 

  251. Gallardo, E. et al. Inflammation in dysferlin myopathy: immunohistochemical characterization of 13 patients. Neurology 57, 2136–2138 (2001).

    Article  CAS  PubMed  Google Scholar 

  252. Castets, P., Frank, S., Sinnreich, M. & Ruegg, M. A. “Get the balance right”: pathological significance of autophagy perturbation in neuromuscular disorders. J. Neuromuscul. Dis. 3, 127–155 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  253. Varadhachary, A. S., Weihl, C. C. & Pestronk, A. Mitochondrial pathology in immune and inflammatory myopathies. Curr. Opin. Rheumatol. 22, 651–657 (2010).

    Article  CAS  PubMed  Google Scholar 

  254. Meyer, A. et al. IFN-β-induced reactive oxygen species and mitochondrial damage contribute to muscle impairment and inflammation maintenance in dermatomyositis. Acta Neuropathol. 134, 655–666 (2017).

    Article  CAS  PubMed  Google Scholar 

  255. Nathan, J. A. et al. Immuno- and constitutive proteasomes do not differ in their abilities to degrade ubiquitinated proteins. Cell 152, 1184–1194 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  256. Seifert, U. et al. Immunoproteasomes preserve protein homeostasis upon interferon-induced oxidative stress. Cell 142, 613–624 (2010).

    Article  CAS  PubMed  Google Scholar 

  257. Nagaraju, K. et al. Activation of the endoplasmic reticulum stress response in autoimmune myositis: potential role in muscle fiber damage and dysfunction. Arthritis Rheum. 52, 1824–1835 (2005).

    Article  CAS  PubMed  Google Scholar 

  258. Correia, A. S., Patel, P., Dutta, K. & Julien, J. P. Inflammation induces TDP-43 mislocalization and aggregation. PLOS ONE 10, e0140248 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  259. Zhong, Z. et al. NF-κB restricts inflammasome activation via elimination of damaged mitochondria. Cell 164, 896–910 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  260. Ozden, S. et al. Direct evidence for a chronic CD8+-T cell-mediated immune reaction to tax within the muscle of a human T cell leukemia/lymphoma virus type 1-infected patient with sporadic inclusion body myositis. J. Virol. 78, 10320–10327 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  261. Green, D. R., Droin, N. & Pinkoski, M. Activation-induced cell death in T cells. Immunol. Rev. 193, 70–81 (2003).

    Article  CAS  PubMed  Google Scholar 

  262. Vallejo, A. N., Schirmer, M., Weyand, C. M. & Goronzy, J. J. Clonality and longevity of CD4+CD28null T cells are associated with defects in apoptotic pathways. J. Immunol. 165, 6301–6307 (2000).

    Article  CAS  PubMed  Google Scholar 

  263. Spaulding, C., Guo, W. & Effros, R. B. Resistance to apoptosis in human CD8+T cells that reach replicative senescence after multiple rounds of antigen-specific proliferation. Exp. Gerontol. 34, 633–644 (1999).

    Article  CAS  PubMed  Google Scholar 

  264. Posnett, D. N., Edinger, J. W., Manavalan, J. S., Irwin, C. & Marodon, G. Differentiation of human CD8 T cells: implications for in vivo persistence of CD8+CD28- cytotoxic effector clones. Int. Immunol. 11, 229–241 (1999).

    Article  CAS  PubMed  Google Scholar 

  265. Hodge, G. & Hodge, S. Steroid resistant CD8+CD28null NKT-like pro-inflammatory cytotoxic cells in chronic obstructive pulmonary disease. Front. Immunol. 7, 617 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  266. Pandya, J. M. et al. Effects of conventional immunosuppressive treatment on CD244+(CD28null) and FOXP3+T cells in the inflamed muscle of patients with polymyositis and dermatomyositis. Arthritis Res. Ther. 18, 80 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  267. Pearl, J. P. et al. Immunocompetent T cells with a memory-like phenotype are the dominant cell type following antibody-mediated T cell depletion. Am. J. Transplant. 5, 465–474 (2005).

    Article  CAS  PubMed  Google Scholar 

  268. Olnes, M. J. et al. Effects of systemically administered hydrocortisone on the human immunome. Sci. Rep. 6, 23002 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  269. Bohan, A. & Peter, J. B. Polymyositis and dermatomyositis (first of two parts). N. Engl. J. Med. 292, 344–347 (1975).

    Article  CAS  PubMed  Google Scholar 

  270. Shah, M. V. et al. Molecular profiling of LGL leukemia reveals role of sphingolipid signaling in survival of cytotoxic lymphocytes. Blood 112, 770–781 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  271. Bareau, B. et al. Analysis of a French cohort of patients with large granular lymphocyte leukemia: a report on 229 cases. Haematologica 95, 1534–1541 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  272. Dumitriu, B. et al. Alemtuzumab in T cell large granular lymphocytic leukaemia: interim results from a single-arm, open-label, phase 2 study. Lancet Haematol. 3, e22–e29 (2016).

    Article  PubMed  Google Scholar 

  273. Mohan, S. R. et al. Therapeutic implications of variable expression of CD52 on clonal cytotoxic T cells in CD8+large granular lymphocyte leukemia. Haematologica 94, 1407–1414 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  274. Gitelman, S. E. et al. Antithymocyte globulin therapy for patients with recent-onset type 1 diabetes: 2 year results of a randomised trial. Diabetologia 59, 1153–1161 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  275. Scarsi, M. et al. The number of circulating recent thymic emigrants is severely reduced 1 year after a single dose of alemtuzumab in renal transplant recipients. Transpl. Int. 23, 786–795 (2010).

    Article  CAS  PubMed  Google Scholar 

  276. Neujahr, D. C. et al. Accelerated memory cell homeostasis during T cell depletion and approaches to overcome it. J. Immunol. 176, 4632–4639 (2006).

    Article  CAS  PubMed  Google Scholar 

  277. Crepin, T. et al. ATG-induced accelerated immune senescence: clinical implications in renal transplant recipients. Am. J. Transplant. 15, 1028–1038 (2015).

    Article  CAS  PubMed  Google Scholar 

  278. Macedo, C. et al. Long-term effects of alemtuzumab on regulatory and memory T cell subsets in kidney transplantation. Transplantation 93, 813–821 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  279. Ramos-Casals, M. & Brito-Zeron, P. Emerging biological therapies in primary Sjögren’s syndrome. Rheumatology 46, 1389–1396 (2007).

    Article  CAS  PubMed  Google Scholar 

  280. Lombard, M. et al. Cyclosporin A treatment in primary biliary cirrhosis: results of a long-term placebo controlled trial. Gastroenterology 104, 519–526 (1993).

    Article  CAS  PubMed  Google Scholar 

  281. Mitchison, H. C. et al. A pilot, double-blind, controlled 1-year trial of prednisolone treatment in primary biliary cirrhosis: hepatic improvement but greater bone loss. Hepatology 10, 420–429 (1989).

    Article  CAS  PubMed  Google Scholar 

  282. Wiesner, R. H. et al. A controlled trial of cyclosporine in the treatment of primary biliary cirrhosis. N. Engl. J. Med. 322, 1419–1424 (1990).

    Article  CAS  PubMed  Google Scholar 

  283. Fujihara, T. et al. Preferential localization of CD8+αEβ7 +T cells around acinar epithelial cells with apoptosis in patients with Sjögren’s syndrome. J. Immunol. 163, 2226–2235 (1999).

    CAS  PubMed  Google Scholar 

  284. Kita, H. Autoreactive CD8-specific T cell response in primary biliary cirrhosis. Hepatol. Res. 37 (Suppl. 3), 402–405 (2007).

    Article  CAS  Google Scholar 

  285. Si, L., Whiteside, T. L., Schade, R. R., Starzl, T. E. & Van Thiel, D. H. T-Lymphocyte subsets in liver tissues of patients with primary biliary cirrhosis (PBC), patients with primary sclerosing cholangitis (PSC), and normal controls. J. Clin. Immunol. 4, 262–272 (1984).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  286. Bjorkland, A. et al. Blood and liver-infiltrating lymphocytes in primary biliary cirrhosis: increase in activated T and natural killer cells and recruitment of primed memory T cells. Hepatology 13, 1106–1111 (1991).

    CAS  PubMed  Google Scholar 

  287. Tasaki, S. et al. Multiomic disease signatures converge to cytotoxic CD8 T cells in primary Sjögren’s syndrome. Ann. Rheum. Dis. 76, 1458–1466 (2017).

    Article  CAS  PubMed  Google Scholar 

  288. Tsuda, M. et al. Fine phenotypic and functional characterization of effector cluster of differentiation 8 positive T cells in human patients with primary biliary cirrhosis. Hepatology 54, 1293–1302 (2011).

    Article  CAS  PubMed  Google Scholar 

  289. Yang, Z., Goronzy, J. J. & Weyand, C. M. Autophagy in autoimmune disease. J. Mol. Med. 93, 707–717 (2015).

    Article  CAS  PubMed  Google Scholar 

  290. Hosomi, S., Kaser, A. & Blumberg, R. S. Role of endoplasmic reticulum stress and autophagy as interlinking pathways in the pathogenesis of inflammatory bowel disease. Curr. Opin. Gastroenterol. 31, 81–88 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  291. Grootjans, J., Kaser, A., Kaufman, R. J. & Blumberg, R. S. The unfolded protein response in immunity and inflammation. Nat. Rev. Immunol. 16, 469–484 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  292. Sasaki, M., Miyakoshi, M., Sato, Y. & Nakanuma, Y. A possible involvement of p62/sequestosome-1 in the process of biliary epithelial autophagy and senescence in primary biliary cirrhosis. Liver Int. 32, 487–499 (2012).

    CAS  PubMed  Google Scholar 

  293. Sasaki, M., Miyakoshi, M., Sato, Y. & Nakanuma, Y. Autophagy mediates the process of cellular senescence characterizing bile duct damages in primary biliary cirrhosis. Lab. Invest. 90, 835–843 (2010).

    Article  CAS  PubMed  Google Scholar 

  294. Sasaki, M., Yoshimura-Miyakoshi, M., Sato, Y. & Nakanuma, Y. A possible involvement of endoplasmic reticulum stress in biliary epithelial autophagy and senescence in primary biliary cirrhosis. J. Gastroenterol. 50, 984–995 (2015).

    Article  PubMed  Google Scholar 

  295. Katsiougiannis, S., Tenta, R. & Skopouli, F. N. Endoplasmic reticulum stress causes autophagy and apoptosis leading to cellular redistribution of the autoantigens Ro/Sjögren’s syndrome-related antigen A (SSA) and La/SSB in salivary gland epithelial cells. Clin. Exp. Immunol. 181, 244–252 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  296. Leff, R. L., Miller, F. W., Hicks, J., Fraser, D. D. & Plotz, P. H. The treatment of inclusion body myositis: a retrospective review and a randomized, prospective trial of immunosuppressive therapy. Medicine 72, 225–235 (1993).

    Article  CAS  PubMed  Google Scholar 

  297. Soueidan, S. A. & Dalakas, M. C. Treatment of inclusion-body myositis with high-dose intravenous immunoglobulin. Neurology 43, 876–879 (1993).

    Article  CAS  PubMed  Google Scholar 

  298. Amato, A. A. et al. Inclusion body myositis: treatment with intravenous immunoglobulin. Neurology 44, 1516–1518 (1994).

    Article  CAS  PubMed  Google Scholar 

  299. Barohn, R. J., Amato, A. A., Sahenk, Z., Kissel, J. T. & Mendell, J. R. Inclusion body myositis: explanation for poor response to immunosuppressive therapy. Neurology 45, 1302–1304 (1995).

    Article  CAS  PubMed  Google Scholar 

  300. Barohn, R. J. et al. Pilot trial of etanercept in the treatment of inclusion-body myositis. Neurology 66, S123–S124 (2006).

    Article  CAS  PubMed  Google Scholar 

  301. Kosmidis, M. L., Alexopoulos, H., Tzioufas, A. G. & Dalakas, M. C. The effect of anakinra, an IL1 receptor antagonist, in patients with sporadic inclusion body myositis (sIBM): a small pilot study. J. Neurol. Sci. 334, 123–125 (2013).

    Article  CAS  PubMed  Google Scholar 

  302. US National Library of Medicine. ClinicalTrials.gov http://www.clinicaltrials.gov/ct2/show/NCT00079768 (2010).

  303. US National Library of Medicine. ClinicalTrials.gov http://www.clinicaltrials.gov/ct2/show/NCT00917956 (2010).

  304. US National Library of Medicine. ClinicalTrials.gov http://www.clinicaltrials.gov/ct2/show/NCT01519349 (2017).

  305. US National Library of Medicine. ClinicalTrials.gov http://www.clinicaltrials.gov/ct2/show/NCT02483845 (2017).

  306. US National Library of Medicine. ClinicalTrials.gov http://www.clinicaltrials.gov/ct2/show/NCT02250443 (2018).

  307. US National Library of Medicine. ClinicalTrials.gov http://www.clinicaltrials.gov/ct2/show/NCT00802815 (2014).

  308. US National Library of Medicine. ClinicalTrials.gov http://www.clinicaltrials.gov/ct2/show/NCT00769860 (2017).

  309. US National Library of Medicine. ClinicalTrials.gov http://www.clinicaltrials.gov/ct2/show/NCT01423110 (2017).

  310. US National Library of Medicine. ClinicalTrials.gov http://www.clinicaltrials.gov/ct2/show/NCT01925209 (2017).

  311. US National Library of Medicine. ClinicalTrials.gov http://www.clinicaltrials.gov/ct2/show/NCT02481453 (2019).

  312. US National Library of Medicine. ClinicalTrials.gov http://www.clinicaltrials.gov/ct2/show/NCT02753530 (2018).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steven A. Greenberg.

Ethics declarations

Competing interests

S.A.G. is an inventor of intellectual property related to myositis diagnostics and therapeutics, owned and managed by Brigham and Women’s Hospital; he receives sponsored research from Pfizer, Inc. and is a founder of Abcuro, Inc.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Greenberg, S.A. Inclusion body myositis: clinical features and pathogenesis. Nat Rev Rheumatol 15, 257–272 (2019). https://doi.org/10.1038/s41584-019-0186-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41584-019-0186-x

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing