Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

IVD progenitor cells: a new horizon for understanding disc homeostasis and repair

Abstract

Intervertebral disc (IVD) degeneration is associated with low back pain. In IVDs, a high mechanical load, high osmotic pressure and hypoxic conditions create a hostile microenvironment for resident cells. How IVD homeostasis and function are maintained under stress remains to be understood; however, several research groups have reported isolating native endogenous progenitor-like or otherwise proliferative cells from the IVD. The isolation of such cells implies that the IVD might contain a quiescent progenitor-like population that could be activated for IVD repair and regeneration. Increased understanding of endogenous disc progenitor cells will improve our knowledge of IVD homeostasis and, when combined with tissue engineering techniques, might hold promise for future therapeutic applications. In this Review, the characteristics of progenitor cells in different IVD compartments are discussed, as well as the potency of different cell populations within the IVD. The stem cell characteristics of these cells are also compared with those of mesenchymal stromal cells. On the basis of existing evidence, whether and how IVD degeneration and the hostile microenvironment might affect endogenous progenitor cell function are considered, and ways to channel the potential of these cells for IVD repair are suggested.

Key points

  • Intervertebral disc (IVD) progenitor cells express typical mesenchymal stromal cell (MSC) markers and pluripotency markers, as well as demonstrating tri-lineage differentiation potential similar to MSCs.

  • Cultured IVD progenitor cells are heterogeneous and cell subsets marked by expression of the tyrosine-protein kinase receptor TIE2 might possess increased multipotency.

  • IVD degeneration and ageing affect the quantity and the properties of IVD progenitor cells.

  • The degenerated IVD microenvironment affects the fate of IVD progenitor cells, which should be considered and individually targeted when developing regenerative strategies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: IVD progenitor cells and the stem cell niche.
Fig. 2: Cell subsets within the IVD.
Fig. 3: Influence of ageing and degeneration on IVD progenitor cells.
Fig. 4: The influence of a degenerative microenvironment on IVD progenitor cell fate.

Similar content being viewed by others

References

  1. Vos, T. et al. Years lived with disability (YLDs) for 1160 sequelae of 289 diseases and injuries 1990-2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet 380, 2163–2196 (2012).

    PubMed  PubMed Central  Google Scholar 

  2. Andersson, G. B. Epidemiological features of chronic low-back pain. Lancet 354, 581–585 (1999).

    CAS  PubMed  Google Scholar 

  3. Walker, B. F. The prevalence of low back pain: a systematic review of the literature from 1966 to 1998. J. Spinal Disord. 13, 205–217 (2000).

    CAS  PubMed  Google Scholar 

  4. Smith, L. J., Nerurkar, N. L., Choi, K. S., Harfe, B. D. & Elliott, D. M. Degeneration and regeneration of the intervertebral disc: lessons from development. Dis. Model. Mech. 4, 31–41 (2011).

    PubMed  Google Scholar 

  5. Alini, M. et al. Are animal models useful for studying human disc disorders/degeneration? Eur. Spine J. 17, 2–19 (2008).

    PubMed  Google Scholar 

  6. Cheung, K. M. et al. Prevalence and pattern of lumbar magnetic resonance imaging changes in a population study of one thousand forty-three individuals. Spine 34, 934–940 (2009).

    PubMed  Google Scholar 

  7. Markolf, K. L. & Morris, J. M. The structural components of the intervertebral disc. A study of their contributions to the ability of the disc to withstand compressive forces. J. Bone Joint Surg. Am. 56, 675–687 (1974).

    CAS  PubMed  Google Scholar 

  8. Debnath, S. et al. Discovery of a periosteal stem cell mediating intramembranous bone formation. Nature 562, 133–139 (2018).

    CAS  PubMed  Google Scholar 

  9. Ito, Y. et al. Localization of chondrocyte precursors in periosteum. Osteoarthr. Cartil. 9, 215–223 (2001).

    CAS  PubMed  Google Scholar 

  10. Lee, C. H. et al. Harnessing endogenous stem/progenitor cells for tendon regeneration. J. Clin. Invest. 125, 2690–2701 (2015).

    PubMed  PubMed Central  Google Scholar 

  11. Jiang, D. et al. Combined effect of ligament stem cells and umbilical-cord-blood-derived CD34+ cells on ligament healing. Cell Tissue Res. 362, 587–592 (2015).

    CAS  PubMed  Google Scholar 

  12. Mifune, Y. et al. The effect of platelet-rich plasma on the regenerative therapy of muscle derived stem cells for articular cartilage repair. Osteoarthr. Cartil. 21, 175–185 (2013).

    CAS  PubMed  Google Scholar 

  13. de Sousa, E. B., Casado, P. L., Moura Neto, V., Duarte, M. E. & Aguiar, D. P. Synovial fluid and synovial membrane mesenchymal stem cells: latest discoveries and therapeutic perspectives. Stem Cell Res. Ther. 5, 112 (2014).

    PubMed  PubMed Central  Google Scholar 

  14. Yang, F., Leung, V. Y., Luk, K. D., Chan, D. & Cheung, K. M. Mesenchymal stem cells arrest intervertebral disc degeneration through chondrocytic differentiation and stimulation of endogenous cells. Mol. Ther. 17, 1959–1966 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Sakai, D. et al. Exhaustion of nucleus pulposus progenitor cells with ageing and degeneration of the intervertebral disc. Nat. Commun. 3, 1264 (2012).

    PubMed  PubMed Central  Google Scholar 

  16. Huang, S. et al. Coupling of small leucine-rich proteoglycans to hypoxic survival of a progenitor cell-like subpopulation in Rhesus Macaque intervertebral disc. Biomaterials 34, 6548–6558 (2013).

    CAS  PubMed  Google Scholar 

  17. Henriksson, H. et al. Identification of cell proliferation zones, progenitor cells and a potential stem cell niche in the intervertebral disc region: a study in four species. Spine 34, 2278–2287 (2009).

    PubMed  Google Scholar 

  18. Yasen, M. et al. Changes of number of cells expressing proliferation and progenitor cell markers with age in rabbit intervertebral discs. Acta Biochim. Biophys. Sin. 45, 368–376 (2013).

    CAS  PubMed  Google Scholar 

  19. Blanco, J. F. et al. Isolation and characterization of mesenchymal stromal cells from human degenerated nucleus pulposus: comparison with bone marrow mesenchymal stromal cells from the same subjects. Spine 35, 2259–2265 (2010).

    PubMed  Google Scholar 

  20. Feng, G. et al. Multipotential differentiation of human anulus fibrosus cells: an in vitro study. J. Bone Joint Surg. Am. 92, 675–685 (2010).

    PubMed  Google Scholar 

  21. Huang, B. et al. Study to determine the presence of progenitor cells in the degenerated human cartilage endplates. Eur. Spine J. 21, 613–622 (2012).

    PubMed  Google Scholar 

  22. Liu, L. T. et al. Characteristics of stem cells derived from the degenerated human intervertebral disc cartilage endplate. PLoS ONE 6, e26285 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Risbud, M. V. et al. Evidence for skeletal progenitor cells in the degenerate human intervertebral disc. Spine 32, 2537–2544 (2007).

    PubMed  Google Scholar 

  24. Xiong, C. J. et al. Macrophage migration inhibitory factor inhibits the migration of cartilage end plate-derived stem cells by reacting with CD74. PLoS ONE 7, e43984 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Mizrahi, O. et al. Nucleus pulposus degeneration alters properties of resident progenitor cells. Spine J. 13, 803–814 (2013).

    PubMed  PubMed Central  Google Scholar 

  26. van den Akker, G. G. et al. Novel immortal human cell lines reveal subpopulations in the nucleus pulposus. Arthritis Res. Ther. 16, R135 (2014).

    PubMed  PubMed Central  Google Scholar 

  27. Doskocil, M., Valouch, P. & Pazderka, V. On vertebral body growth. Funct. Dev. Morphol. 3, 149–155 (1993).

    CAS  PubMed  Google Scholar 

  28. Trout, J. J., Buckwalter, J. A., Moore, K. C. & Landas, S. K. Ultrastructure of the human intervertebral disc. I. Changes in notochordal cells with age. Tissue Cell 14, 359–369 (1982).

    CAS  PubMed  Google Scholar 

  29. Kim, K. W. et al. The origin of chondrocytes in the nucleus pulposus and histologic findings associated with the transition of a notochordal nucleus pulposus to a fibrocartilaginous nucleus pulposus in intact rabbit intervertebral discs. Spine 28, 982–990 (2003).

    PubMed  Google Scholar 

  30. Minogue, B. M., Richardson, S. M., Zeef, L. A., Freemont, A. J. & Hoyland, J. A. Transcriptional profiling of bovine intervertebral disc cells: implications for identification of normal and degenerate human intervertebral disc cell phenotypes. Arthritis Res. Ther. 12, R22 (2010).

    PubMed  PubMed Central  Google Scholar 

  31. Sive, J. I. et al. Expression of chondrocyte markers by cells of normal and degenerate intervertebral discs. Mol. Pathol. 55, 91–97 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Mwale, F., Roughley, P. & Antoniou, J. Distinction between the extracellular matrix of the nucleus pulposus and hyaline cartilage: a requisite for tissue engineering of intervertebral disc. Eur. Cell. Mater. 8, 58–63 (2004).

    CAS  PubMed  Google Scholar 

  33. Henriksson, H. B., Svala, E., Skioldebrand, E., Lindahl, A. & Brisby, H. Support of concept that migrating progenitor cells from stem cell niches contribute to normal regeneration of the adult mammal intervertebral disc: a descriptive study in the New Zealand white rabbit. Spine 37, 722–732 (2012).

    PubMed  Google Scholar 

  34. Erwin, W. M. et al. Intervertebral disc-derived stem cells: implications for regenerative medicine and neural repair. Spine 38, 211–216 (2013).

    PubMed  Google Scholar 

  35. Dominici, M. et al. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 8, 315–317 (2006).

    CAS  PubMed  Google Scholar 

  36. Pettine, K. A., Murphy, M. B., Suzuki, R. K. & Sand, T. T. Percutaneous injection of autologous bone marrow concentrate cells significantly reduces lumbar discogenic pain through 12 months. Stem Cells 33, 146–156 (2015).

    CAS  PubMed  Google Scholar 

  37. Shu, C. C. et al. A histopathological scheme for the quantitative scoring of intervertebral disc degeneration and the therapeutic utility of adult mesenchymal stem cells for intervertebral disc regeneration. Int. J. Mol. Sci. 18, E1049 (2017).

    PubMed  Google Scholar 

  38. Navone, S. E. et al. Expression of neural and neurotrophic markers in nucleus pulposus cells isolated from degenerated intervertebral disc. J. Orthop. Res. 30, 1470–1477 (2012).

    CAS  PubMed  Google Scholar 

  39. Shen, Q., Zhang, L., Chai, B. & Ma, X. Isolation and characterization of mesenchymal stem-like cells from human nucleus pulposus tissue. Sci. China Life Sci. 58, 509–511 (2015).

    CAS  PubMed  Google Scholar 

  40. Rui, Y. F. et al. Isolation, culture and identification of nucleus pulposus-derived mesenchymal stem cells from adult rats in vitro. Chinese J. Tissue Engineer. Res. 17, 8576–8582 (2013).

    CAS  Google Scholar 

  41. Tao, Y. et al. TGF-β3 and IGF-1 synergy ameliorates nucleus pulposus mesenchymal stem cell differentiation towards the nucleus pulposus cell type through MAPK/ERK signaling. Growth Factors 33, 326–336 (2015).

    CAS  PubMed  Google Scholar 

  42. Zhang, H. et al. The ability to form cartilage of NPMSC and BMSC in SD rats. Int. J. Clin. Exp. Med. 8, 4989–4996 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Liu, C. et al. Identification of rabbit annulus fibrosus-derived stem cells. PLoS ONE 9, e108239 (2014).

    PubMed  PubMed Central  Google Scholar 

  44. Jin, L. et al. Annulus fibrosus cell characteristics are a potential source of intervertebral disc pathogenesis. PLoS ONE 9, e96519 (2014).

    PubMed  PubMed Central  Google Scholar 

  45. Nakai, T. et al. CD146 defines commitment of cultured annulus fibrosus cells to express a contractile phenotype. J. Orthop. Res. 34, 1361–1372 (2016).

    CAS  PubMed  Google Scholar 

  46. Gruber, H. E. et al. Human annulus progenitor cells: analyses of this viable endogenous cell population. J. Orthop. Res. 34, 1351–1360 (2016).

    CAS  PubMed  Google Scholar 

  47. Ishii, T. et al. Sciatic nerve regeneration by transplantation of in vitro differentiated nucleus pulposus progenitor cells. Regen. Med. 12, 365–376 (2017).

    CAS  PubMed  Google Scholar 

  48. Li, Z. CD133: a stem cell biomarker and beyond. Exp. Hematol. Oncol. 2, 17 (2013).

    PubMed  PubMed Central  Google Scholar 

  49. Bonanno, G. et al. Human cord blood CD133+ cells immunoselected by a clinical-grade apparatus differentiate in vitro into endothelial- and cardiomyocyte-like cells. Transfusion 47, 280–289 (2007).

    CAS  PubMed  Google Scholar 

  50. Takahashi, M. et al. CD133 is a positive marker for a distinct class of primitive human cord blood-derived CD34-negative hematopoietic stem cells. Leukemia 28, 1308–1315 (2014).

    CAS  PubMed  Google Scholar 

  51. Sidney, L. E., Branch, M. J., Dunphy, S. E., Dua, H. S. & Hopkinson, A. Concise review: evidence for CD34 as a common marker for diverse progenitors. Stem Cells 32, 1380–1389 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Ning, Z. et al. Interleukin-1β affects the biological properties of rat nucleus pulposus-derived mesenchymal stem cells. Chinese J. Tissue Engineer. Res. 18, 4437–4443 (2014).

    Google Scholar 

  53. Henriksson, H. B. et al. Indications of that migration of stem cells is influenced by the extra cellular matrix architecture in the mammalian intervertebral disk region. Tissue Cell 47, 439–455 (2015).

    CAS  PubMed  Google Scholar 

  54. Matta, A., Karim, M. Z., Isenman, D. E. & Erwin, W. M. Molecular therapy for degenerative disc disease: clues from secretome analysis of the notochordal cell-rich nucleus pulposus. Sci. Rep. 7, 45623 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. da Silva Meirelles, L., Caplan, A. I. & Nardi, N. B. In search of the in vivo identity of mesenchymal stem cells. Stem Cells 26, 2287–2299 (2008).

    PubMed  Google Scholar 

  56. Li, H. et al. Influence of hypoxia in the intervertebral disc on the biological behaviors of rat adipose- and nucleus pulposus-derived mesenchymal stem cells. Cells Tissues Organs 198, 266–277 (2013).

    CAS  PubMed  Google Scholar 

  57. Li, X. C. et al. Characteristics and potentials of stem cells derived from human degenerated nucleus pulposus: potential for regeneration of the intervertebral disc. BMC Musculoskelet Disord. 18, 242 (2017).

    PubMed  PubMed Central  Google Scholar 

  58. Wu, H. et al. Comparison of nucleus pulposus stem/progenitor cells isolated from degenerated intervertebral discs with umbilical cord derived mesenchymal stem cells. Exp. Cell Res. 361, 324–332 (2017).

    CAS  PubMed  Google Scholar 

  59. Wang, H. et al. Distinguishing characteristics of stem cells derived from different anatomical regions of human degenerated intervertebral discs. Eur. Spine J. 25, 2691–2704 (2016).

    PubMed  Google Scholar 

  60. Shi, R. et al. The presence of stem cells in potential stem cell niches of the intervertebral disc region: an in vitro study on rats. Eur. Spine J. 24, 2411–2424 (2015).

    PubMed  Google Scholar 

  61. Duff, S. E., Li, C., Garland, J. M. & Kumar, S. CD105 is important for angiogenesis: evidence and potential applications. FASEB J. 17, 984–992 (2003).

    CAS  PubMed  Google Scholar 

  62. Kong, D. H., Kim, Y. K., Kim, M. R., Jang, J. H. & Lee, S. Emerging roles of vascular cell adhesion molecule-1 (VCAM-1) in immunological disorders and cancer. Int. J. Mol. Sci. 19, E1057 (2018).

    PubMed  Google Scholar 

  63. Wang, H. et al. Utilization of stem cells in alginate for nucleus pulposus tissue engineering. Tissue Eng. Part A. 20, 908–920 (2014).

    CAS  PubMed  Google Scholar 

  64. Brown, S. et al. Cell clusters are indicative of stem cell activity in the degenerate intervertebral disc: can their properties be manipulated to improve intrinsic repair of the disc? Stem Cells Dev. 27, 147–165 (2018).

    CAS  PubMed  Google Scholar 

  65. Turner, S., Balain, B., Caterson, B., Morgan, C. & Roberts, S. Viability, growth kinetics and stem cell markers of single and clustered cells in human intervertebral discs: implications for regenerative therapies. Eur. Spine J. 23, 2462–2472 (2014).

    PubMed  Google Scholar 

  66. Liu, M. H., Cui, Y. H. & Zhou, Y. Cellular mechanical properties reflect the differentiation potential of nucleus pulposus-derived progenitor cells. Am. J. Transl Res. 8, 4446–4454 (2016).

    PubMed  PubMed Central  Google Scholar 

  67. Tekari, A., Chan, S. C., Sakai, D., Grad, S. & Gantenbein, B. Angiopoietin-1 receptor Tie2 distinguishes multipotent differentiation capability in bovine coccygeal nucleus pulposus cells. Stem Cell Res. Ther. 7, 75 (2016).

    PubMed  PubMed Central  Google Scholar 

  68. Benz, K., Stippich, C., Freudigmann, C., Mollenhauer, J. A. & Aicher, W. K. Maintenance of “stem cell” features of cartilage cell sub-populations during in vitro propagation. J. Transl Med. 11, 27 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Jia, Z. et al. Comparison of biological characteristics of nucleus pulposus mesenchymal stem cells derived from non-degenerative and degenerative human nucleus pulposus. Exp. Ther. Med. 13, 3574–3580 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Zhao, Y. et al. Age-related changes in nucleus pulposus mesenchymal stem cells: an in vitro study in rats. Stem Cells Int. 2017, 6761572 (2017).

    PubMed  PubMed Central  Google Scholar 

  71. Molinos, M. et al. Age-correlated phenotypic alterations in cells isolated from human degenerated intervertebral discs with contained hernias. Spine 43, E274–E284 (2018).

    PubMed  Google Scholar 

  72. Barker, T. H. & Hagood, J. S. Getting a grip on Thy-1 signaling. Biochim. Biophys. Acta 1793, 921–923 (2009).

    CAS  PubMed  Google Scholar 

  73. Zhi, X. et al. RNA interference of ecto-5′-nucleotidase (CD73) inhibits human breast cancer cell growth and invasion. Clin. Exp. Metastasis 24, 439–448 (2007).

    CAS  PubMed  Google Scholar 

  74. Miettinen, M. & Lasota, J. KIT (CD117): a review on expression in normal and neoplastic tissues, and mutations and their clinicopathologic correlation. Appl. Immunohistochem. Mol. Morphol. 13, 205–220 (2005).

    CAS  PubMed  Google Scholar 

  75. Yeh, C. H., Jin, L., Shen, F., Balian, G. & Li, X. J. miR-221 attenuates the osteogenic differentiation of human annulus fibrosus cells. Spine J. 16, 896–904 (2016).

    PubMed  PubMed Central  Google Scholar 

  76. Melrose, J. Strategies in regenerative medicine for intervertebral disc repair using mesenchymal stem cells and bioscaffolds. Regen. Med. 11, 705–724 (2016).

    CAS  PubMed  Google Scholar 

  77. Diamant, B., Karlsson, J. & Nachemson, A. Correlation between lactate levels and pH in discs of patients with lumbar rhizopathies. Experientia 24, 1195–1196 (1968).

    CAS  PubMed  Google Scholar 

  78. Bartels, E. M., Fairbank, J. C., Winlove, C. P. & Urban, J. P. Oxygen and lactate concentrations measured in vivo in the intervertebral discs of patients with scoliosis and back pain. Spine 23, 1–7 (1998).

    CAS  PubMed  Google Scholar 

  79. Lv, F. J. et al. Matrix metalloproteinase 12 is an indicator of intervertebral disc degeneration co-expressed with fibrotic markers. Osteoarthritis Cartilage 24, 1826–1836 (2016).

    PubMed  Google Scholar 

  80. Phillips, K. L. et al. Potential roles of cytokines and chemokines in human intervertebral disc degeneration: interleukin-1 is a master regulator of catabolic processes. Osteoarthritis Cartilage 23, 1165–1177 (2015).

    CAS  PubMed  Google Scholar 

  81. Peng, Y. & Lv, F.-J. Symptomatic versus asymptomatic intervertebral disc degeneration: is inflammation the key? Crit. Rev. Eukaryot. Gene Expr. 25, 13–21 (2015).

    CAS  PubMed  Google Scholar 

  82. Li, Y. Y. et al. Delivering mesenchymal stem cells in collagen microsphere carriers to rabbit degenerative disc: reduced risk of osteophyte formation. Tissue Eng. Part A. 20, 1379–1391 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Setton, L. A. & Chen, J. Mechanobiology of the intervertebral disc and relevance to disc degeneration. J. Bone Joint Surg. Am. 88 (Suppl. 2), 52–57 (2006).

    PubMed  Google Scholar 

  84. Huang, Y. C., Urban, J. P. & Luk, K. D. Intervertebral disc regeneration: do nutrients lead the way? Nat. Rev. Rheumatol. 10, 561–566 (2014).

    PubMed  Google Scholar 

  85. Han, B. et al. Nucleus pulposus mesenchymal stem cells in acidic conditions mimicking degenerative intervertebral discs give better performance than adipose tissue-derived mesenchymal stem cells. Cells Tissues Organs 199, 342–352 (2014).

    CAS  PubMed  Google Scholar 

  86. Liu, J. et al. Biological behavior of human nucleus pulposus mesenchymal stem cells in response to changes in the acidic environment during intervertebral disc degeneration. Stem Cells Dev. 26, 901–911 (2017).

    CAS  PubMed  Google Scholar 

  87. Yao, Y. et al. A genome-wide analysis of the gene expression profiles and alternative splicing events during the hypoxia-regulated osteogenic differentiation of human cartilage endplate-derived stem cells. Mol. Med. Rep. 16, 1991–2001 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Yao, Y. et al. MIF plays a key role in regulating tissue-specific chondro-osteogenic differentiation fate of human cartilage endplate stem cells under hypoxia. Stem Cell Rep. 7, 249–262 (2016).

    CAS  Google Scholar 

  89. Navaro, Y. et al. Matrix stiffness determines the fate of nucleus pulposus-derived stem cells. Biomaterials 49, 68–76 (2015).

    CAS  PubMed  Google Scholar 

  90. Liu, C. et al. The effect of the fibre orientation of electrospun scaffolds on the matrix production of rabbit annulus fibrosus-derived stem cells. Bone Res. 3, 15012 (2015).

    PubMed  PubMed Central  Google Scholar 

  91. Yuan, C. et al. [Stress regulating osteogenic differentiation of human intervertebral disc cartilage endplate-derived stem cells]. Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi 29, 351–355 (2015).

    PubMed  Google Scholar 

  92. Yuan, C., Pu, L., He, Z. & Wang, J. BNIP3/Bcl-2-mediated apoptosis induced by cyclic tensile stretch in human cartilage endplate-derived stem cells. Exp. Ther. Med. 15, 235–241 (2018).

    CAS  PubMed  Google Scholar 

  93. He, Z., Pu, L., Yuan, C., Jia, M. & Wang, J. Nutrition deficiency promotes apoptosis of cartilage endplate stem cells in a caspase-independent manner partially through upregulating BNIP3. Acta Biochim. Biophys. Sin. (Shanghai) 49, 25–32 (2017).

    CAS  Google Scholar 

  94. Vadala, G. et al. Mesenchymal stem cells injection in degenerated intervertebral disc: cell leakage may induce osteophyte formation. J. Tissue Eng. Regen. Med. 6, 348–355 (2012).

    CAS  PubMed  Google Scholar 

  95. Huang, Y. Z. et al. Species variation in the spontaneous calcification of bone marrow-derived mesenchymal stem cells. Cytotherapy 15, 323–329 (2013).

    CAS  PubMed  Google Scholar 

  96. Lv, F., Lu, M., Cheung, K. M., Leung, V. Y. & Zhou, G. Intrinsic properties of mesemchymal stem cells from human bone marrow, umbilical cord and umbilical cord blood comparing the different sources of MSC. Curr. Stem Cell Res. Ther. 7, 389–399 (2012).

    CAS  PubMed  Google Scholar 

  97. Sasaki, N. et al. Physical exercise affects cell proliferation in lumbar intervertebral disc regions in rats. Spine 37, 1440–1447 (2012).

    PubMed  Google Scholar 

  98. Saraiya, M. et al. Reversine enhances generation of progenitor-like cells by dedifferentiation of annulus fibrosus cells. Tissue Eng. Part A. 16, 1443–1455 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Zhu, C. et al. Modulation of the gene expression of annulus fibrosus-derived stem cells using poly(ether carbonate urethane)urea scaffolds of tunable elasticity. Acta Biomater. 29, 228–238 (2016).

    CAS  PubMed  Google Scholar 

  100. Pratsinis, H. & Kletsas, D. PDGF, bFGF and IGF-I stimulate the proliferation of intervertebral disc cells in vitro via the activation of the ERK and Akt signaling pathways. Eur. Spine J. 16, 1858–1866 (2007).

    PubMed  PubMed Central  Google Scholar 

  101. Leung, V. Y. L. et al. Bone morphogenetic protein-2 and -7 mediate the anabolic function of nucleus pulposus cells with discrete mechanisms. Connect. Tissue Res. 58, 573–585 (2017).

    CAS  PubMed  Google Scholar 

  102. Kumar, H. et al. Safety and tolerability of intradiscal implantation of combined autologous adipose-derived mesenchymal stem cells and hyaluronic acid in patients with chronic discogenic low back pain: 1-year follow-up of a phase I study. Stem Cell Res. Ther. 8, 262 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Elabd, C. et al. Intra-discal injection of autologous, hypoxic cultured bone marrow-derived mesenchymal stem cells in five patients with chronic lower back pain: a long-term safety and feasibility study. J. Transl Med. 14, 253 (2016).

    PubMed  PubMed Central  Google Scholar 

  104. US National Library of Medicine. ClinialTrials.gov https://clinicaltrials.gov/ct2/show/NCT03347708 (2018).

  105. Brisby, H. et al. The presence of local mesenchymal progenitor cells in human degenerated intervertebral discs and possibilities to influence these in vitro: a descriptive study in humans. Stem Cells Dev. 22, 804–814 (2013).

    CAS  PubMed  Google Scholar 

  106. Shang, J., Fan, X., Shangguan, L., Liu, H. & Zhou, Y. Global gene expression profiling and alternative splicing events during the chondrogenic differentiation of human cartilage endplate-derived stem cells. Biomed Res. Int. 2015, 604972 (2015).

    PubMed  PubMed Central  Google Scholar 

  107. Sang, C., Cao, X., Chen, F., Yang, X. & Zhang, Y. Differential characterization of two kinds of stem cells isolated from rabbit nucleus pulposus and annulus fibrosus. Stem Cells Int. 2016, 8283257 (2016).

    PubMed  PubMed Central  Google Scholar 

  108. Lin, L. et al. Use of limiting dilution method for isolation of nucleus pulposus mesenchymal stem/progenitor cells and effects of plating density on biological characteristics and plasticity. Biomed Res. Int. 2017, 9765843 (2017).

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The work of the authors was supported by the National Natural Science Foundation of China (grant 81702191 to F.-J.L.), the Fundamental Research Funds for the Central Universities, South China University of Technology (grant 2018MS70 to F.-J.L.) and the general research fund (grant 17126615 to V.Y.L.) and theme-based research scheme (grant T12-708/12N to K.M.C.) of the Research Grant Council of Hong Kong.

Review criteria

A search for original articles published between inception and 2018 without language restriction was performed in MEDLINE, PubMed, Ovid and SCOPUS. The search terms used were ‘intervertebral disc’, ‘nucleus pulposus’, ‘endplate’ or ‘annulus fibrosus’ in combination with ‘stem cells’ or ‘progenitor’. All articles identified were reviewed manually for eligibility. Confusion regarding the description of cells in these articles was noted for in vitro studies. For example, in some articles, the studied cells were defined as intervertebral disc stem or progenitor cells without full examination of the stem cell-like phenotype and function of the cells. Such articles were excluded from further analysis.

Reviewer information

Nature Reviews Rheumatology thanks J. Melrose, M. Alini and H. Brisby for their contribution to the peer review of this work.

Author information

Authors and Affiliations

Authors

Contributions

F.-J.L. researched data for the article. All authors made substantial contributions to discussion of the content of the article, wrote the article and reviewed and/or edited the article before submission.

Corresponding authors

Correspondence to Daisuke Sakai or Victor Y. Leung.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lyu, FJ., Cheung, K.M., Zheng, Z. et al. IVD progenitor cells: a new horizon for understanding disc homeostasis and repair. Nat Rev Rheumatol 15, 102–112 (2019). https://doi.org/10.1038/s41584-018-0154-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41584-018-0154-x

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing