Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

New therapeutic strategies in systemic lupus erythematosus management

Abstract

The current treatment approach for systemic lupus erythematosus (SLE), as outlined in the recommendations by international medical associations including EULAR and the ACR, is mostly eminence-based rather than evidence-based. However, knowledge on SLE is growing quickly, and such new advances need to be translated into clinical practice. Questions remain regarding the choice and timing of drug administration and tapering until withdrawal, which both can affect the balance between the control of disease activity and damage to organs triggered by long-standing and/or disproportionate immunosuppression. Currently, the treating physicians of patients with SLE are required to weigh the present with the future situation of their patients in an optimized balance between therapeutic harm and benefit. In this Review, the available therapeutic strategies and main challenges in the approach to SLE treatment are discussed. Remission and low disease activity are desirable therapeutic goals. Although the drug armamentarium for SLE has not expanded much in the past few decades, there are nonetheless opportunities to make better choices and explore combination therapies; such opportunities offer the potential of a personalized medicine strategy.

Key points

  • Early diagnosis and early treatment are required for a better outcome in systemic lupus erythematosus (SLE).

  • Preventive strategies should be applied at any stage of the disease course to minimize disease evolution or worsening; potential comorbidities should be prevented from the start of SLE treatment.

  • The achievement of clinical remission and subsequent tapering of glucocorticoids until withdrawal are desirable subsequent steps in SLE management.

  • Even when remission cannot be attained, the treatment of patients with SLE should be optimized to achieve the lowest stable level of disease activity.

  • Tapering of treatment should be initiated once there is a stable response and requires careful monitoring.

  • Patient-tailored therapeutic strategies should consider the immunological background, clinical features, realistic potential for recovery and the expectations of each patient.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Levels of prevention in SLE.
Fig. 2: Proposed treat-to-target algorithm in SLE.
Fig. 3: Proposed algorithm for the management of patients with SLE in remission.

Similar content being viewed by others

References

  1. Doria, A. et al. Long-term prognosis and causes of death in systemic lupus erythematosus. Am. J. Med. 119, 700–706 (2006).

    PubMed  Google Scholar 

  2. Jorge, A. M., Lu, N., Zhang, Y., Rai, S. K. & Choi, H. K. Unchanging premature mortality trends in systemic lupus erythematosus: a general population-based study (1999–2014). Rheumatology (Oxford) 57, 337–344 (2018).

    Google Scholar 

  3. Yen, E. Y. & Singh, R. R. Lupus-an unrecognized leading cause of death in young females: a population-based study using nationwide death certificates, 2000–2015. Arthritis. Rheumatol. 70, 1251–1255 (2018).

    PubMed  PubMed Central  Google Scholar 

  4. Van Vollenhoven, R. F. et al. Treat-to-target in systemic lupus erythematosus: recommendations from an international task force. Ann. Rheum. Dis. 73, 958–967 (2014).

    PubMed  Google Scholar 

  5. Little, J. et al. Glucocorticoid use and factors associated with variability in this use in the Systemic Lupus International Collaborating Clinics Inception Cohort. Rheumatology (Oxford) 57, 677–687 (2018).

    Google Scholar 

  6. Wallace, D. J. et al. Systemic lupus erythematosus-survival patterns. Experience with 609 patients. JAMA 245, 934–938 (1981).

    CAS  PubMed  Google Scholar 

  7. Doria, A. et al. SLE diagnosis and treatment: when early is early. Autoimmun. Rev. 10, 55–60 (2010).

    CAS  PubMed  Google Scholar 

  8. Nightingale, A. L., Davidson, J. E., Molta, C. T., Kan, H. J. & McHugh, N. J. Presentation of SLE in UK primary care using the Clinical Practice Research Datalink. Lupus. Sci. Med. 4, e000172 (2017).

    PubMed  PubMed Central  Google Scholar 

  9. Oglesby, A. et al. Impact of early versus late systemic lupus erythematosus diagnosis on clinical and economic outcomes. Appl. Health. Econ. Health. Policy. 12, 179–190 (2014).

    PubMed  Google Scholar 

  10. Arbuckle, M. R. et al. Development of autoantibodies before the clinical onset of systemic lupus erythematosus. N. Engl. J. Med. 349, 1526–1533 (2003).

    CAS  PubMed  Google Scholar 

  11. Rees, F. et al. Early clinical features in systemic lupus erythematosus: can they be used to achieve earlier diagnosis? A risk prediction model. Arthritis Care Res. (Hoboken) 69, 833–841 (2017).

    Google Scholar 

  12. Arriens, C., Wren, J. D., Munroe, M. E. & Mohan, C. Systemic lupus erythematosus biomarkers: the challenging quest. Rheumatology (Oxford) 56, i32–i45 (2017).

    CAS  Google Scholar 

  13. Compagno, M. et al. Low diagnostic and predictive value of anti-dsDNA antibodies in unselected patients with recent onset of rheumatic symptoms: results from a long-term follow-up Scandinavian multicentre study. Scand. J. Rheumatol. 42, 311–316 (2013).

    CAS  PubMed  Google Scholar 

  14. Piga, M. et al. Failure to achieve lupus low disease activity state (LLDAS) six months after diagnosis is associated with early damage accrual in Caucasian patients with systemic lupus erythematosus. Arthritis. Res. Ther. 19, 247 (2017).

    PubMed  PubMed Central  Google Scholar 

  15. Nossent, J. et al. Disease activity and damage accrual during the early disease course in a multinational inception cohort of patients with systemic lupus erythematosus. Lupus 19, 949–956 (2010).

    CAS  PubMed  Google Scholar 

  16. Iaccarino, L. et al. Clinical predictors of response and discontinuation of belimumab in patients with systemic lupus erythematosus in real life setting. Results of a large, multicentric, nationwide study. J. Autoimmun. 86, 1–8 (2018). This paper presents the first large, prospective, multicentre study on the real-life use of belimumab in SLE and its clinical effects.

    CAS  PubMed  Google Scholar 

  17. Esdaile, J. M., Joseph, L., MacKenzie, T., Kashgarian, M. & Hayslett, J. P. The benefit of early treatment with immunosuppressive agents in lupus nephritis. J. Rheumatol. 21, 2046–2051 (1994).

    CAS  PubMed  Google Scholar 

  18. Jacobsen, S. et al. Prognostic value of renal biopsy and clinical variables in patients with lupus nephritis and normal serum creatinine. Scand. J. Rheumatol. 28, 288–299 (1999).

    CAS  PubMed  Google Scholar 

  19. Faurschou, M., Starklint, H., Halberg, P. & Jacobsen, S. Prognostic factors in lupus nephritis: diagnostic and therapeutic delay increases the risk of terminal renal failure. J. Rheumatol. 33, 1563–1569 (2006).

    PubMed  Google Scholar 

  20. Ciruelo, E., De la Cruz, J., López, I. & Gómez-Reino, J. J. Cumulative rate of relapse of lupus nephritis after successful treatment with cyclophosphamide. Arthritis. Rheum. 39, 2028–2034 (1996).

    CAS  PubMed  Google Scholar 

  21. Fiehn, C. et al. Improved clinical outcome of lupus nephritis during the past decade: importance of early diagnosis and treatment. Ann. Rheum. Dis. 62, 435–439 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Munroe, M. E. et al. Altered type II interferon precedes autoantibody accrual and elevated type I interferon activity prior to systemic lupus erythematosus classification. Ann. Rheum. Dis. 75, 2014–2021 (2016). This paper highlights the occurrence of immunological abnormalities in the very early stages of SLE development and sheds new light on pathogenesis.

    CAS  PubMed  Google Scholar 

  23. Lu, R. et al. Dysregulation of innate and adaptive serum mediators precedes systemic lupus erythematosus classification and improves prognostic accuracy of autoantibodies. J. Autoimmun. 74, 182–193 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Calixto, O. J., Franco, J. S. & Anaya, J. M. Lupus mimickers. Autoimmun. Rev. 13, 865–872 (2014).

    CAS  PubMed  Google Scholar 

  25. Doria, A. & Briani, C. Primary prevention of systemic lupus erythematosus. Nat. Clin. Pract. Rheumatol. 4, 576–577 (2008).

    PubMed  Google Scholar 

  26. Doria, A. & Briani, C. Lupus: improving long-term prognosis. Lupus 17, (166–170 (2008).

    Google Scholar 

  27. Munroe, M. E. et al. Discerning risk of disease transition in relatives of systemic lupus erythematosus patients utilizing soluble mediators and clinical features. Arthritis Rheumatol. 69, 630–642 (2017). This paper explores the topic of anticipating the onset of systemic autoimmunity in SLE, which might shift the border of prevention and treatment.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Durcan, L. & Petri, M. Immunomodulators in SLE: clinical evidence and immunologic actions. J. Autoimmun. 74, 73–84 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Bizzarro, N. et al. Anti-prothrombin antibodies predict thrombosis in patients with systemic lupus erythematosus: a 15-year longitudinal study. J. Thromb. Haemost. 5, 1158–1164 (2007).

    Google Scholar 

  30. Pengo, V. et al. Efficacy and safety of rivaroxaban versus warfarin in high-risk patients with antiphospholipid syndrome: rationale and design of the Trial on Rivaroxaban in AntiPhospholipid Syndrome (TRAPS) trial. Lupus 25, 301–306 (2016).

    CAS  PubMed  Google Scholar 

  31. Arnaud, L. et al. Patient-level analysis of five international cohorts further confirms the efficacy of aspirin for the primary prevention of thrombosis in patients with antiphospholipid antibodies. Autoimmun. Rev. 14, 192–200 (2015).

    CAS  PubMed  Google Scholar 

  32. Ruiz-Irastorza, G. et al. Evidence-based recommendations for the prevention and long-term management of thrombosis in antiphospholipid antibody-positive patients: report of a task force at the 13th international congress on antiphospholipid antibodies. Lupus 20, 206–218 (2011).

    CAS  PubMed  Google Scholar 

  33. Erkan, D. et al. Aspirin for primary thrombosis prevention in the antiphospholipid syndrome: a randomized, double-blind, placebo-controlled trial in asymptomatic antiphospholipid antibody-positive individuals. Arthritis Rheum. 56, 2382–2391 (2007).

    CAS  PubMed  Google Scholar 

  34. Moroni, G. et al. The long-term outcome of 93 patients with proliferative lupus nephritis. Nephrol. Dial. Transplant. 22, 2531–2539 (2007).

    PubMed  Google Scholar 

  35. Lateef, A. & Petri, M. Unmet medical needs in systemic lupus erythematosus. Arthritis. Res. Ther. 14 (Suppl. 4), S4 (2012).

    PubMed  PubMed Central  Google Scholar 

  36. Doria, A. et al. Annual direct medical cost of active systemic lupus erythematosus in five European countries. Ann. Rheum. Dis. 73, 154–160 (2014).

    PubMed  Google Scholar 

  37. Moroni, G. et al. Changing patterns in clinical-histological presentation and renal outcome over the last five decades in a cohort of 499 patients with lupus nephritis. Ann. Rheum. Dis. 77, 1318–1325 (2018). This study explores the changes in patterns of demographic, clinical and histological presentation in lupus nephritis over five decades, the longest observational period of its kind.

    CAS  PubMed  Google Scholar 

  38. Golder, V. et al. Frequency and predictors of the lupus low disease activity state in a multi-national and multi-ethnic cohort. Arthritis. Res. Ther. 18, 260 (2016).

    PubMed  PubMed Central  Google Scholar 

  39. van Vollenhoven, R. et al. A framework for remission in SLE: consensus findings from a large international task force on definitions of remission in SLE (DORIS). Ann. Rheum. Dis. 76, 554–561 (2017).

    PubMed  Google Scholar 

  40. Zen, M. et al. Prolonged remission in Caucasian patients with SLE: prevalence and outcomes. Ann. Rheum. Dis. 74, 2117–2122 (2015).

    CAS  PubMed  Google Scholar 

  41. Polachek, A., Gladman, D. D., Su, J. & Urowitz, M. B. Defining low disease activity in systemic lupus erythematosus. Arthritis Care Res. (Hoboken) 69, 997–1003 (2017).

    CAS  Google Scholar 

  42. Franklyn, K. et al. Definition and initial validation of a Lupus Low Disease Activity State (LLDAS). Ann. Rheum. Dis. 75, 1615–1621 (2016). This paper is the first to propose a definition of LDA in SLE.

    CAS  PubMed  Google Scholar 

  43. Ugarte-Gil, M. F. et al. Remission and Low Disease Activity Status (LDAS) protect lupus patients from damage occurrence: data from a multiethnic, multinational Latin American lupus cohort (GLADEL). Ann. Rheum. Dis. 76, 2071–2074 (2017).

    PubMed  Google Scholar 

  44. Zen, M. et al. The effect of different durations of remission on damage accrual: results from a prospective monocentric cohort of Caucasian patients. Ann. Rheum. Dis. 75, 562–565 (2017). This paper is the first to identify a clear period of remission that is associated with protection from organ damage.

    Google Scholar 

  45. Zen, M. et al. Lupus low disease activity state is associated with a decrease in damage progression in Caucasian patients with SLE, but overlaps with remission. Ann. Rheum. Dis. 77, 104–110 (2018).

    CAS  PubMed  Google Scholar 

  46. Mok, C. C. et al. Prevalence of remission and its effect on damage and quality of life in Chinese patients with systemic lupus erythematosus. Ann. Rheum. Dis. 76, 1420–1425 (2017).

    CAS  PubMed  Google Scholar 

  47. Tsang-A-Sjoe, M. W. et al. Both prolonged remission and lupus low disease activity state are associated with reduced damage accrual in systemic lupus erythematosus. Rheumatology (Oxford) 56, 121–128 (2017).

    Google Scholar 

  48. Petri, M. & Magder, L. S. Comparison of remission and lupus low disease activity state in damage prevention in a United States systemic lupus erythematosus cohort. Arthritis Rheumatol. 70, 1790–1795 (2018).

    PubMed  PubMed Central  Google Scholar 

  49. Formiga, F. et al. High disease activity at baseline does not prevent a remission in patients with systemic lupus erythematosus. Rheumatology (Oxford) 38, 724–727 (1999).

    CAS  Google Scholar 

  50. Medina-Quiñones, C. V., Ramos-Merino, L., Ruiz-Sada, P. & Isenberg, D. Analysis of complete remission in systemic lupus erythematosus patients over a 32-year period. Arthritis Care Res. (Hoboken) 68, 981–987 (2016).

    Google Scholar 

  51. Urowitz, M. B., Feletar, M., Bruce, I. N., Ibañez, D. & Gladman, D. D. Prolonged remission in systemic lupus erythematosus. J. Rheumatol. 32, 1467–1472 (2005).

    PubMed  Google Scholar 

  52. Drenkard, C., Villa, A. R., Garcia-Padilla, C., Pérez-Vázquez, M. E. & Alarcón-Segovia, D. Remission of systematic lupus erythematosus. Medicine (Baltimore) 75, 88–98 (1996).

    CAS  Google Scholar 

  53. Isenberg, D. A. et al. An assessment of disease flare in patients with systemic lupus erythematosus: a comparison of BILAG 2004 and the flare version of SELENA. Ann. Rheum. Dis. 70, 54–59 (2011).

    CAS  PubMed  Google Scholar 

  54. Aranow, C. A pilot study to determine the optimal timing of the Physician Global Assessment (PGA) in patients with systemic lupus erythematosus. Immunol. Res. 63, 167–169 (2015).

    CAS  PubMed  Google Scholar 

  55. Bertsias, G. et al. Joint European League Against Rheumatism and European Renal Association-European Dialysis and Transplant Association (EULAR/ERA-EDTA) recommendations for the management of adult and paediatric lupus nephritis. Ann. Rheum. Dis. 71, 1771–1782 (2012).

    CAS  PubMed  Google Scholar 

  56. Chen, Y. E., Korbet, S. M., Katz, R. S., Schwartz, M. M. & Lewis, E. J. Value of a complete or partial remission in severe lupus nephritis. Clin. J. Am. Soc. Nephrol. 3, 46–53 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Houssiau, F. A. et al. Early response to immunosuppressive therapy predicts good renal outcome in lupus nephritis: lessons from long-term followup of patients in the Euro-Lupus Nephritis Trial. Arthritis. Rheum. 50, 3934–3940 (2004).

    PubMed  Google Scholar 

  58. Medina-Rosas, J., Yap, K. S., Anderson, M., Su, J. & Touma, Z. Utility of urinary protein-creatinine ratio and protein content in a 24-hour urine collection in systemic lupus erythematosus: a systematic review and meta-analysis. Arthritis Care Res. (Hoboken) 68, 1310–1319 (2016).

    CAS  Google Scholar 

  59. Houssiau, F. A. et al. Immunosuppressive therapy in lupus nephritis: the Euro-Lupus Nephritis Trial, a randomized trial of low-dose versus high-dose intravenous cyclophosphamide. Arthritis Rheum. 46, 2121–2131 (2002).

    CAS  PubMed  Google Scholar 

  60. Dall’Era, M. et al. Predictors of long-term renal outcome in lupus nephritis trials: lessons learned from the Euro-Lupus Nephritis cohort. Arthritis Rheumatol. 67, 1305–1313 (2015).

    PubMed  Google Scholar 

  61. Tamirou, F. et al. MAINTAIN nephritis trial investigators. A proteinuria cut-off level of 0.7 g/day after 12 months of treatment best predicts long-term renal outcome in lupus nephritis: data from the MAINTAIN nephritis trial. Lupus. Sci. Med. 12, e000123 (2015).

    Google Scholar 

  62. Arriens, C. et al. Prognostic significance of repeat biopsy in lupus nephritis: histopathologic worsening and a short time between biopsies is associated with significantly increased risk for end stage renal disease and death. Clin. Immunol. 185, 3–9 (2017).

    CAS  PubMed  Google Scholar 

  63. Moroni, G., Depetri, F. & Ponticelli, C. Lupus nephritis: when and how often to biopsy and what does it mean? J. Autoimmun. 74, 27–40 (2016).

    PubMed  Google Scholar 

  64. Touma, Z. et al. Time to recovery from proteinuria in patients with lupus nephritis receiving standard treatment. J. Rheumatol. 41, 688–697 (2014).

    CAS  PubMed  Google Scholar 

  65. Moroni, G. et al. Membranous nephropathy in systemic lupus erythematosus: long-term outcome and prognostic factors of 103 patients. Semin. Arthritis Rheum. 41, 642–651 (2012).

    PubMed  Google Scholar 

  66. Moroni, G. et al. Withdrawal of therapy in patients with proliferative lupus nephritis: long-term follow-up. Nephrol. Dial. Transplant. 21, 1541–1548 (2006).

    CAS  PubMed  Google Scholar 

  67. Mosca, M., Tani, C. & Aringer, M. Withdrawal of therapy in non-renal systemic lupus erythematosus: is this an achievable goal? Clin. Exp. Rheumatol. 31 (Suppl. 78), S71–S74 (2013).

    PubMed  Google Scholar 

  68. Gordon, C. et al. British Society for Rheumatology standards, Audit and Guidelines Working Group. The British Society for Rheumatology guideline for the management of systemic lupus erythematosus in adults. Rheumatolohy (Oxford) 57, e1–e45 (2018).

    Google Scholar 

  69. Bertsias, G. K. et al. EULAR recommendations for the management of systemic lupus erythematosus with neuropsychiatric manifestations: report of a task force of the EULAR standing committee for clinical affairs. Ann. Rheum. Dis. 69, 2074–2082 (2010).

    CAS  PubMed  Google Scholar 

  70. Pons-Estel, B. A. et al. Grupo Latino Americano de Estudio del Lupus (GLADEL) and Pan-American League of Associations of Rheumatology (PANLAR). First Latin American clinical practice guidelines for the treatment of systemic lupus erythematosus: Latin American Group for the Study of Lupus (GLADEL, Grupo Latino Americano de Estudio del Lupus)-Pan-American League of Associations of Rheumatology (PANLAR). Ann. Rheum. Dis. 77, 1549–1557 (2018).

    PubMed  Google Scholar 

  71. Posnick, J. Systemic lupus erythematosus. The effect of corticotropin and adrenocorticoid therapy on survival rate. Calif. Med. 98, 308–312 (1963).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Merrill, J. T. et al. The biomarkers of lupus disease study: a bold approach may mitigate interference of background immunosuppressants in clinical trials. Arthritis Rheumatol. 69, 1257–1266 (2017). This study explores the consequences of immunosuppression-free regimens in SLE and indirectly shows the insufficient effects of corticosteroids in maintaining long-term treatment responses.

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Bruce, I. N. et al. Factors associated with damage accrual in patients with systemic lupus erythematosus: results from the Systemic Lupus International Collaborating Clinics (SLICC) Inception Cohort. Ann. Rheum. Dis. 74, 1706–1713 (2015).

    CAS  PubMed  Google Scholar 

  74. Al Sawah, S. et al. Effect of corticosteroid use by dose on the risk of developing organ damage over time in systemic lupus erythematosus-the Hopkins Lupus Cohort. Lupus. Sci. Med. 2, e000066 (2015).

    PubMed  PubMed Central  Google Scholar 

  75. Guiducci, C. et al. TLR recognition of self nucleic acids hampers glucocorticoid activity in lupus. Nature 465, 937–941 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Edwards, J. C., Snaith, M. L. & Isenberg, D. A. A double blind controlled trial of methylprednisolone infusions in systemic lupus erythematosus using individualized outcome assessment. Ann. Rheum. Dis. 46, 773–776 (1987).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Fischer-Betz, R. et al. Renal outcome in patients with lupus nephritis using a steroid-free regimen of monthly intravenous cyclophosphamide: a prospective observational study. J. Rheumatol. 39, 2111–2117 (2012).

    CAS  PubMed  Google Scholar 

  78. Ruiz-Irastorza, G. et al. Repeated pulses of methyl-prednisolone with reduced doses of prednisone improve the outcome of class III, IV and V lupus nephritis: an observational comparative study of the Lupus-Cruces and lupus-Bordeaux cohorts. Autoimmun. Rev. 16, 826–832 (2017).

    CAS  PubMed  Google Scholar 

  79. Zeher, M. et al. Efficacy and safety of enteric-coated mycophenolate sodium in combination with two glucocorticoid regimens for the treatment of active lupus nephritis. Lupus 20, 1484–1493 (2011).

    CAS  PubMed  Google Scholar 

  80. Merrill, J. T. et al. Lupus community panel proposals for optimising clinical trials: 2018. Lupus. Sci. Med. 5, e000258 (2018).

    PubMed  PubMed Central  Google Scholar 

  81. Lightstone, L. et al. Can we manage lupus nephritis without chronic corticosteroids administration? Autoimmun. Rev. 17, 4–10 (2018). This commentary provides a complete overview of the evidence supporting or cautioning against steroid-free regimens in lupus nephritis.

    CAS  PubMed  Google Scholar 

  82. Condon, M. B. et al. Prospective observational single-centre cohort study to evaluate the effectiveness of treating lupus nephritis with rituximab and mycophenolate mofetil but no oral steroids. Ann. Rheum. Dis. 72, 1280–1286 (2013).

    CAS  PubMed  Google Scholar 

  83. Porter, A. B. et al. Long term follow up of the Rituxilup steroid sparing regimen in lupus nephritis [abstract FR-OR065]. J. Am. Soc. Nephrol. 25, 61A (2014).

    Google Scholar 

  84. Pepper, R. et al. Rituximab is an effective treatment for lupus nephritis and allows a reduction in maintenance steroids. Nephrol. Dial. Transplant. 24, 3717–3723 (2009).

    CAS  PubMed  Google Scholar 

  85. Pillay, C., Levy, J. B., Cairns, T. & Lightstone, L. G. M. Treating lupus nephritis with rituximab and mycophenolate mofetil (rituxirescue regimen) without increasing maintenance oral steroids leads to sustained disease remission and steroid reduction. J. Am. Soc. Nephrol. 27, 500A (2016).

    Google Scholar 

  86. Iaccarino, L. et al. Effects of belimumab on flare rate and expected damage progression in patients with active systemic lupus erythematosus. Arthritis Care Res. (Hoboken) 69, 115–123 (2017).

    CAS  Google Scholar 

  87. Ginzler, E. M. et al. Disease control and safety of belimumab plus standard therapy over 7 years in patients with systemic lupus erythematosus. J. Rheumatol. 41, 300–309 (2014).

    CAS  PubMed  Google Scholar 

  88. Trentin, F. et al. Effectiveness, tolerability, and safety of belimumab in patients with refractory SLE: a review of observational clinical-practice-based studies. Clin. Rev. Allergy Immunol. 54, 331–343 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Bruce, I. N. et al. Long-term organ damage accrual and safety in patients with SLE treated with belimumab plus standard of care. Lupus 25, 699–709 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Liu, Z. et al. Multitarget therapy for induction treatment of lupus nephritis: a randomized trial. Ann. Intern. Med. 162, 18–26 (2015).

    PubMed  Google Scholar 

  91. Zhang, H. et al. Multitarget therapy for maintenance treatment of lupus nephritis. J. Am. Soc. Nephrol. 28, 3671–3678 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Furie, R. et al. Anifrolumab, an anti-interferon-α receptor monoclonal antibody, in moderate-to-severe systemic lupus erythematosus. Arthritis Rheumatol. 69, 376–386 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT03021499?term=NCT03021499&rank=1 (2018).

  94. Watanabe, H. et al. The efficacy of add-on tacrolimus for minor flare in patients with systemic lupus erythematosus: a retrospective study. Lupus 25, 54–60 (2016).

    CAS  PubMed  Google Scholar 

  95. Mok, C. C. Calcineurin inhibitors in systemic lupus erythematosus. Best Pract. Res. Clin. Rheumatol. 31, 429–438 (2017).

    PubMed  Google Scholar 

  96. Gracia-Tello, B. et al. The use of rituximab in newly diagnosed patients with systemic lupus erythematosus: long-term steroid saving capacity and clinical effectiveness. Lupus. Sci. Med. 4, e000182 (2017).

    PubMed  PubMed Central  Google Scholar 

  97. Roccatello, D. et al. Intensive short term treatment with rituximab, cyclophosphamide and methylprednisolone pulses induces remission in severe cases of SLE with nephritis and avoids further immunosuppressive maintenance therapy. Nephrol. Dial. Transplant. 26, 3987–3989 (2011).

    CAS  PubMed  Google Scholar 

  98. Ruiz-Arruza, I. et al. Comparison of high versus low-medium prednisone doses for the treatment of systemic lupus erythematosus patients with high disease activity at diagnosis. Autoimmun. Rev. 14, 875–879 (2015). This study shows that low-dose steroids are as effective as high-dose steroids during induction treatment and have a better safety profile.

    CAS  PubMed  Google Scholar 

  99. Gladman, D. D., Iban˜ez, D., Ruiz, I. & Urowitz, M. B. Recommendations for frequency of visits to monitor systemic lupus erythematosus in asymptomatic patients: data from an observational cohort study. J. Rheumatol. 40, 630–633 (2013).

    PubMed  Google Scholar 

  100. Bertsias, G. et al. Task force of the EULAR Standing Committee for International Clinical Studies Including Therapeutics. EULAR recommendations for the management of systemic lupus erythematosus. Report of a Task Force of the EULAR Standing Committee for International Clinical Studies Including Therapeutics. Ann. Rheum. Dis. 67, 195–205 (2008).

    CAS  PubMed  Google Scholar 

  101. Ruiz-Irastorza, G., Ramos-Casals, M., Brito-Zeron, P. & Khamashta, M. A. Clinical efficacy and side effects of antimalarials in systemic lupus erythematosus: a systematic review. Ann. Rheum. Dis. 69, 20–28 (2010).

    CAS  PubMed  Google Scholar 

  102. Hsu, C. Y. et al. Adherence to hydroxychloroquine improves long-term survival of patients with systemic lupus erythematosus. Rheumatology (Oxford) 57, 1743–1751 (2018).

    Google Scholar 

  103. Alarcón, G. S. et al. Effect of hydroxychloroquine on the survival of patients with systemic lupus erythematosus: data from LUMINA, a multiethnic US cohort (LUMINA L). Ann. Rheum. Dis. 66, 1168–1172 (2007).

    PubMed  PubMed Central  Google Scholar 

  104. Costedoat-Chalumeau, N. et al. Low blood concentration of hydroxychloroquine is a marker for and predictor of disease exacerbations in patients with systemic lupus erythematosus. Arthritis. Rheum. 54, 3284–3290 (2006).

    CAS  PubMed  Google Scholar 

  105. Costedoat-Chalumeau, N. et al. Routine hydroxychloroquine blood concentration measurement in systemic lupus erythematosus reaches adulthood. J. Rheumatol. 42, 1997–1999 (2015).

    CAS  PubMed  Google Scholar 

  106. Ting, T. V. et al. Usefulness of cellular text messaging for improving adherence among adolescents and young adults with systemic lupus erythematosus. J. Rheumatol. 39, 174–179 (2012).

    PubMed  Google Scholar 

  107. Costedoat-Chalumeau, N. et al. A prospective international study on adherence to treatment in 305 patients with flaring SLE: assessment by drug levels and self-administered questionnaires. Clin. Pharmacol. Ther. 103, 1074–1082 (2018).

    CAS  PubMed  Google Scholar 

  108. Durcan, L., Clarke, W. A., Magder, L. S. & Petri, M. Hydroxychloroquine blood levels in systemic lupus erythematosus: clarifying dosing controversies and improving adherence. J. Rheumatol. 42, 2092–2097 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Fessler, B. J. et al. Systemic lupus erythematosus in three ethnic groups: XVI. Association of hydroxychloroquine use with reduced risk of damage accrual. Arthritis Rheum. 52, 1473–1480 (2005).

    PubMed  Google Scholar 

  110. Pons-Estel, G. et al. Protective effect of hydroxychloroquine on renal damage in patients with lupus nephritis: LXV, data from a multiethnic US cohort. Arthritis Rheum. 61, 830–839 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Londoño Jimenez, A. et al. Tubulointerstitial damage in lupus nephritis: a comparison of the factors associated with tubulointerstitial inflammation and renal scarring. Arthritis Rheumatol. 70, 1801–1806 (2018).

    PubMed  Google Scholar 

  112. Pego-Reigosa, J. M. et al. Efficacy and safety of nonbiologic immunosuppressants in the treatment of nonrenal systemic lupus erythematosus: a systematic review. Arthritis Care Res. (Hoboken) 65, 1775–1785 (2013).

    CAS  Google Scholar 

  113. Allison, A. C. & Eugui, E. M. Purine metabolism and immunosuppressive effects of mycophenolate mofetil (MMF). Clin. Transplant. 10, 77–84 (1996).

    CAS  PubMed  Google Scholar 

  114. Chen, W. et al. Outcomes of maintenance therapy with tacrolimus versus azathioprine for active lupus nephritis: a multicenter randomized clinical trial. Lupus 21, 944–952 (2012).

    CAS  PubMed  Google Scholar 

  115. Dooley, M. A. et al. Speed of remission with the use of voclosporin, MMF and low dose steroids: results of a global lupus nephritis study [abstract]. Arthritis Rheumatol. 68 (Suppl. 10), 5L (2016).

    Google Scholar 

  116. Fu, J. et al. Transcriptomic analysis uncovers novel synergistic mechanisms in combination therapy for lupus nephritis. Kidney. Int. 93, 416–429 (2018). The researchers of this study, in a transcriptomic analysis, shed light on the synergistic effects of combination therapy.

    CAS  PubMed  Google Scholar 

  117. Kraaij, T. et al. TAC-TIC use of tacrolimus-based regimens in lupus nephritis. Lupus Sci. Med. 3, e000169 (2016).

    PubMed  PubMed Central  Google Scholar 

  118. van Vollenhoven, R. et al. Efficacy and safety of ustekinumab, an interleukin 12/23 inhibitor, in patients with active systemic lupus erythematosus: results of a phase 2, randomized placebo-controlled study [abstract]. Arthritis. Rheumatol. 69 (Suppl. 10), 6L (2017).

    Google Scholar 

  119. Wallace, D. J. et al. Baricitinib for systemic lupus erythematosus: a double-blind, randomised, placebo-controlled, phase 2 trial. Lancet 392, 222–231 (2018).

    CAS  PubMed  Google Scholar 

  120. Furie, R. et al. A phase III, randomized, placebo-controlled study of belimumab, a monoclonal antibody that inhibits B lymphocyte stimulator, in patients with systemic lupus erythematosus. Arthritis Rheum. 63, 3918–3930 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Navarra, S. V. et al. Efficacy and safety of belimumab in patients with active systemic lupus erythematosus: a randomised, placebo-controlled, phase 3 trial. Lancet 377, 721–731 (2011).

    CAS  PubMed  Google Scholar 

  122. Merrill, J. T. et al. Efficacy and safety of rituximab in moderately-to-severely active systemic lupus erythematosus: the randomized, double-blind, phase II/III systemic lupus erythematosus evaluation of rituximab trial. Arthritis Rheum. 62, 222–233 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Rovin, B. H. et al. Efficacy and safety of rituximab in patients with active proliferative lupus nephritis: the lupus nephritis assessment with rituximab study. Arthritis Rheum. 64, 1215–1226 (2012).

    CAS  PubMed  Google Scholar 

  124. Iaccarino, L. et al. Efficacy and safety of off-label use of rituximab in refractory lupus: data from the Italian Multicentre Registry. Clin. Exp. Rheumatol. 33, 449–456 (2015).

    PubMed  Google Scholar 

  125. McCarthy, E. M. et al. Short-term efficacy and safety of rituximab therapy in refractory systemic lupus erythematosus: results from the British Isles lupus assessment group biologics register. Rheumatology (Oxford) 57, 470–479 (2018).

    Google Scholar 

  126. Witt, M. et al. Clinical outcomes and safety of rituximab treatment for patients with systemic lupus erythematosus (SLE) - results from a nationwide cohort in Germany (GRAID). Lupus 22, 1142–1149 (2013).

    CAS  PubMed  Google Scholar 

  127. Hahn, B. et al. American College of Rheumatology guidelines for screening, treatment, and management of lupus nephritis. Arthritis Care Res. (Hoboken) 64, 797–808 (2012).

    Google Scholar 

  128. Jovancevic, B., Lindholm, C. & Pullerits, R. Anti B cell therapy against refractory thrombocytopenia in SLE and MCTD patients: long-term follow-up and review of the literature. Lupus 22, 664–674 (2013).

    CAS  PubMed  Google Scholar 

  129. Hofmann, S. C., Leandro, M. J., Morris, S. D. & Isenberg, D. A. Effects of rituximab-based B cell depletion therapy on skin manifestations of lupus erythematosus—report of 17 cases and review of the literature. Lupus 22, 932–939 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Weidenbusch, M., Römmele, C., Schröttle, A. & Anders, H. J. Beyond the LUNAR trial. Efficacy of rituximab in refractory lupus nephritis. Nephrol. Dial. Transplant. 28, 106–111 (2013).

    CAS  PubMed  Google Scholar 

  131. Ezeonyeji, A. N. & Isenberg, D. A. Early treatment with rituximab in newly diagnosed systemic lupus erythematosus patients: a steroid-sparing regimen. Rheumatology (Oxford) 51, 476–481 (2012).

    CAS  Google Scholar 

  132. Stohl, W. et al. Efficacy and safety of subcutaneous belimumab in systemic lupus erythematosus: a fifty-two-week randomized, double-blind, placebo-controlled study. Arthritis Rheumatol. 69, 1016–1027 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  133. Fanouriakis, A. et al. Low disease activity-irrespective of serologic status at baseline-associated with reduction of corticosteroid dose and number of flares in patients with systemic lupus erythematosus treated with belimumab: a real-life observational study. Semin. Arthritis Rheum. https://doi.org/10.1016/j.semarthrit.2018.02.014 (2018).

    Article  PubMed  Google Scholar 

  134. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT01639339?term=NCT01639339&rank=1 (2018).

  135. Dooley, M. A. et al. Effect of belimumab treatment on renal outcomes: results from the phase 3 belimumab clinical trials in patients with SLE. Lupus 22, 63–72 (2013).

    CAS  PubMed  Google Scholar 

  136. Kraaij, T., Huizinga, T. W., Rabelink, T. J. & Teng, Y. K. Belimumab after rituximab as maintenance therapy in lupus nephritis. Rheumatology (Oxford) 53, 2122–2124 (2014).

    CAS  Google Scholar 

  137. Simonetta, F., Allali, D., Roux-Lombard, P. & Chizzolini, C. Successful treatment of refractory lupus nephritis by the sequential use of rituximab and belimumab. Joint Bone Spine 84, 235–236 (2017).

    PubMed  Google Scholar 

  138. Psarelis, S., Nikiphorou, E. & Boumpas, D. T. Successful use of sequential B cell depletion therapy in lupus. Lupus 27, 345–346 (2018).

    CAS  PubMed  Google Scholar 

  139. Carter, L. M., Isenberg, D. A. & Ehrenstein, M. R. Elevated serum BAFF levels are associated with rising anti-double-stranded DNA antibody levels and disease flare following B cell depletion therapy in systemic lupus erythematosus. Arthritis Rheum. 65, 2672–2679 (2013).

    CAS  PubMed  Google Scholar 

  140. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT03312907?term=NCT03312907&rank=1 (2018).

  141. Specchia, M. L. et al. Health technology assessment of belimumab: a new monoclonal antibody for the treatment of systemic lupus erythematosus. Biomed. Res. Int. 2014, 704207 (2014).

    PubMed  PubMed Central  Google Scholar 

  142. Vallejo-Aparicio, L. A., Díaz-Cerezo, S., Parrondo, J. & García-Aparicio, A. M. Cost-effectiveness analysis of belimumab in the treatment of adult systemic lupus erythematosus (Sle) Patients With Positive Biomarkers In Spain. Value. Health. 17, A530 (2014).

    CAS  PubMed  Google Scholar 

  143. Athanasakis, K. et al. Belimumab for the treatment of systemic lupus erythematosus (Sle) in Greece: a cost-effectiveness and cost-utility analysis. Value Health 17, A532–A533 (2014).

    CAS  PubMed  Google Scholar 

  144. National Institute for Health and Care Excellence. Final appraisal determination: belimumab for treating active autoantibody-positive systemic lupus erythematosus. NICE https://www.nice.org.uk/guidance/ta397/documents/final-appraisal-determination-document (2016).

  145. European Medicines Agency. Benlysta: EPAR- product information. Annex I: summary of product characteristics. ema.europa https://www.ema.europa.eu/documents/product-information/benlysta-epar-product-information_en.pdf (2017).

  146. van Vollenhoven, R. F. et al. Belimumab in the treatment of systemic lupus erythematosus: high disease activity predictors of response. Ann. Rheum. Dis. 71, 1343–1349 (2012).

    PubMed  Google Scholar 

  147. Dooley, M. A. et al. Mycophenolate versus azathioprine as maintenance therapy for lupus nephritis. N. Engl. J. Med. 365, 1886–1895 (2011).

    CAS  PubMed  Google Scholar 

  148. Houssiau, F. A. et al. Azathioprine versus mycophenolate mofetil for long-term immunosuppression in lupus nephritis: results from the MAINTAIN Nephritis Trial. Ann. Rheum. Dis. 69, 2083–2089 (2010).

    CAS  PubMed  Google Scholar 

  149. Zen, M. et al. Disease activity patterns in a monocentric cohort of SLE patients: a seven-year follow-up study. Clin. Exp. Rheumatol. 30, 856–863 (2012).

    PubMed  Google Scholar 

  150. Györi, N. et al. Disease activity patterns over time in patients with SLE: analysis of the Hopkins Lupus Cohort. Lupus. Sci. Med. 4, e000192 (2017).

    PubMed  PubMed Central  Google Scholar 

  151. Bakker, M. F., Jacobs, J. W., Verstappen, S. M. & Bijlsma, J. W. Tight control in the treatment of rheumatoid arthritis: efficacy and feasibility. Ann. Rheum. Dis. 66 (Suppl. 3), 56–60 (2007).

    Google Scholar 

  152. Aljohani, R., Gladman, D. D., Su, J. & Urowitz, M. B. Comparison of systemic lupus erythematosus (SLE) patients managed early after diagnosis in specialty versus community care clinics. Clin. Rheumatol. 36, 1773–1778 (2017).

    PubMed  Google Scholar 

  153. Steiman, A. J. et al. Outcomes in patients with systemic lupus erythematosus with and without a prolonged serologically active clinically quiescent period. Arthritis Care Res. 64, 511–518 (2012).

    Google Scholar 

  154. Zahr, Z. A., Fang, H., Magder, L. S. & Petri, M. Predictors of corticosteroid tapering in SLE patients: the Hopkins Lupus Cohort. Lupus 22, 697–701 (2013).

    PubMed  Google Scholar 

  155. Mosca, M., Tani, C., Carli, L. & Bombardieri, S. Glucocorticoids in systemic lupus erythematosus. Clin. Exp. Rheumatol. 29 (Suppl. 68), S126–S129 (2011).

    CAS  PubMed  Google Scholar 

  156. The Canadian Hydroxychloroquine Study Group. A randomized study of the effect of withdrawing hydroxychloroquine sulfate in systemic lupus erythematosus. N. Engl. J. Med. 324, 150–482 (1991).

    Google Scholar 

  157. Levy, R. et al. Hydroxychloroquine (HCQ) in lupus pregnancy: double-blind and placebo controlled study. Lupus 10, 401–404 (2001).

    CAS  PubMed  Google Scholar 

  158. Tsakonas, E. et al. A long-term study of hydroxychloroquine withdrawal on exacerbations in systemic lupus erythematosus. The Canadian Hydroxychloroquine Study Group. Lupus. 7, 80–85 (1998).

    CAS  PubMed  Google Scholar 

  159. Costedoat-Chalumeau, N. et al. Hydroxychloroquine in systemic lupus erythematosus: results of a French multicentre controlled trial (PLUS Study). Ann. Rheum. Dis. 72, 1786–1792 (2013).

    CAS  PubMed  Google Scholar 

  160. Mok, C. C. et al. Hydroxychloroquine serum concentrations and flares of systemic lupus erythematosus: a longitudinal cohort analysis. Arthritis Care Res. (Hoboken) 68, 1295–1302 (2016).

    CAS  Google Scholar 

  161. Cunha, C. et al. Hydroxycloroquine blood concentration in lupus nephritis: a determinant of disease outcome? Nephrol. Dial. Transplant. 33, 1604–1610 (2017).

    Google Scholar 

  162. Ugarte, A., Danza, A. & Ruiz-Irastorza, G. Glucocorticoids and antimalarials in systemic lupus erythematosus: an update and future directions. Curr. Opin. Rheumatol. 30, 482–489 (2018).

    CAS  PubMed  Google Scholar 

  163. Sharon, E., Kaplan, D. & Diamond, H. S. Exacerbation of systemic lupus erythematosus after withdrawal of azathioprine therapy. N. Engl. J. Med. 288, 122–124 (1973).

    CAS  PubMed  Google Scholar 

  164. Nikpour, M., Urowitz, M., Ibanez, D. & Gladman, D. D. Frequency and determinants of flare and persistently active disease in systemic lupus erythematosus. Arthritis Rheum. 61, 1152–1158 (2009).

    PubMed  Google Scholar 

  165. Pablos, J. L., Gutierrez-Millet, V. & Gomez-Reino, J. J. Remission of lupus nephritis with cyclophosphamide and late relapses following therapy withdrawal. Scand. J. Rheumatol. 23, 142–144 (1994).

    CAS  PubMed  Google Scholar 

  166. Mosca, M. et al. Therapy with pulse methylprednisolone and short course pulse cyclophosphamide for diffuse proliferative glomerulonephritis. Lupus 10, 253–225 (2001).

    CAS  PubMed  Google Scholar 

  167. Moroni, G., Longhi, S., Gliglio, E., Messa, P. & Ponticelli, C. What happens after complete withdrawal of therapy in patients with lupus nephritis. Clin. Exp. Rheumatol. 31, S75–S81 (2013).

    PubMed  Google Scholar 

  168. Barturen, G. & Alarcón-Riquelme, M. E. Systemic lupus erythematosus in 2016: gene expression profiling comes closer to the clinic. Nat. Rev. Rheumatol. 13, 69–70 (2017).

    PubMed  Google Scholar 

  169. Pirone, C. et al. Predictive and prognostic factors influencing outcomes of rituximab therapy in systemic lupus erythematosus (SLE): a systematic review. Semin. Arthritis Rheum. 47, 384–396 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  170. Dall’Era, M., Stone, D., Levesque, V., Cisternas, M. & Wofsy, D. Identification of biomarkers that predict response to treatment of lupus nephritis with mycophenolate mofetil or pulse cyclophosphamide. Arthritis Care Res. (Hoboken) 63, 351–357 (2011).

    Google Scholar 

  171. Gottenberg, J. E. et al. Efficacy of epratuzumab, an anti-CD22 monoclonal IgG antibody, in systemic lupus erythematosus patients with associated sjögren’s syndrome: post Hoc analyses from the EMBODY trials. Arthritis Rheumatol. 70, 763–773 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  172. Teruel, M., Chamberlain, C. & Alarcón-Riquelme, M. E. Omics studies: their use in diagnosis and reclassification of SLE and other systemic autoimmune diseases. Rheumatology (Oxford) 56, i78–i87 (2017).

    CAS  Google Scholar 

  173. Barturen, G. & Alarcón-Riquelme, M. E. SLE redefined on the basis of molecular pathways. Best Pract. Res. Clin. Rheumatol. 31, 291–305 (2017).

    PubMed  Google Scholar 

  174. Toro-Domínguez, D. et al. Longitudinal stratification of gene expression reveals three SLE groups of disease activity progression. Arthritis Rheumatol. https://doi.org/10.1002/art.40653 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  175. Coit, P. et al. Genome-wide DNA methylation study suggests epigenetic accessibility and transcriptional poising of interferon-regulated genes in naive CD4+T cells from lupus patients. J. Autoimmun. 43, 78–84 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  176. Jeffries, M. A. et al. Genome-wide DNA methylation patterns in CD4+T cells from patients with systemic lupus erythematosus. Epigenetics 6, 593–601 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  177. Chiche, L. et al. Modular transcriptional repertoire analyses of adults with systemic lupus erythematosus reveal distinct type I and type II interferon signatures. Arthritis Rheumatol. 66, 1583–1595 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  178. Li, Y. & Wu, T. Proteomic approaches for novel systemic lupus erythematosus (SLE) drug discovery. Exp. Opin. Drug. Discov. 13, 765–777 (2018).

    CAS  Google Scholar 

  179. Bennett, L. et al. Interferon and granulopoiesis signatures in systemic lupus erythematosus blood. J. Exp. Med. 197, 711–723 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  180. Ghodke-Puranik, Y. & Niewold, T. B. Immunogenetics of systemic lupus erythematosus: a comprehensive review. J. Autoimmun. 64, 125e136 (2015).

    Google Scholar 

  181. Zhan, Y., Guo, Y. & Lu, Q. Aberrant epigenetic regulation in the pathogenesis of systemic lupus erythematosus and its implication in precision medicine. Cytogenet. Genome Res. 149, 141–155 (2016).

    PubMed  Google Scholar 

  182. Coit, P. et al. Epigenome profiling reveals significant DNA demethylation of interferon signature genes in lupus neutrophils. J. Autoimmun. 58, 59–66 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  183. Tang, Y. et al. MicroRNA-146A contributes to abnormal activation of the type I interferon pathway in human lupus by targeting the key signaling proteins. Arthritis Rheum. 60, 1065–1075 (2009).

    CAS  PubMed  Google Scholar 

  184. Coit, P. et al. Renal involvement in lupus is characterized by unique DNA methylation changes in naïve CD4+T cells. J. Autoimmun. 61, 29–35 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  185. Yang, Y. et al. The effect of mycophenolic acid on epigenetic modifications in lupus CD4+T cells. Clin. Immunol. 158, 67–76 (2015).

    CAS  PubMed  Google Scholar 

  186. Chafin, C. B., Regna, N. L., Hammond, S. E. & Reilly, C. M. Cellular and urinary microRNA alterations in NZB/W mice with hydroxychloroquine or prednisone treatment. Int. Immunopharmacol. 17, 894–906 (2013).

    CAS  PubMed  Google Scholar 

  187. Reilly, C. M. et al. The histone deacetylase inhibitor trichostatin A upregulates regulatory T cells and modulates autoimmunity in NZB/W F1 mice. J. Autoimmun. 31, 123–130 (2008).

    CAS  PubMed  Google Scholar 

  188. Barturen, G., Beretta, L., Cervera, R., Van Vollenhoven, R. & Alarcón-Riquelme, M. E. Moving towards a molecular taxonomy of autoimmune rheumatic diseases. Nat. Rev. Rheumatol. 14, 180 (2018).

    PubMed  Google Scholar 

  189. Flint, S. M. et al. Leucocyte subset-specific type 1 interferon signatures in SLE and other immune-mediated diseases. RMD Open 2, e000183 (2016).

    PubMed  PubMed Central  Google Scholar 

  190. Banchereau, R. et al. Personalized immunomonitoring uncovers molecular networks that stratify lupus patients. Cell 165, 551–565 (2016). This article presents the first longitudinal study to monitor the transcriptomic profile of patients with SLE and uncover genetic signatures linked to disease manifestations and therapeutic responses in SLE.

    CAS  PubMed  PubMed Central  Google Scholar 

  191. Peterson, K. S. et al. Characterization of heterogeneity in the molecular pathogenesis of lupus nephritis from transcriptional profiles of laser-captured glomeruli. J. Clin. Invest. 113, 1722–1733 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  192. Stratigou, V. et al. Altered expression of signalling lymphocyte activation molecule receptors in T cells from lupus nephritis patients-a potential biomarker of disease activity. Rheumatology (Oxford) 56, 1206–1216 (2017).

    CAS  Google Scholar 

  193. Enghard, P. et al. Urinary CD4 T cells identify SLE patients with proliferative lupus nephritis and can be used to monitor treatment response. Ann. Rheum. Dis. 73, 277–283 (2014).

    CAS  PubMed  Google Scholar 

  194. Jourde-Chiche, N. et al. Modular transcriptional repertoire analyses identify a blood neutrophil signature as a candidate biomarker for lupus nephritis. Rheumatology (Oxford) 56, 477–487 (2017).

    CAS  Google Scholar 

  195. Wither, J. E. et al. Identification of a neutrophil-related gene expression signature that is enriched in adult systemic lupus erythematosus patients with active nephritis: clinical/pathologic associations and etiologic mechanisms. PLOS ONE 13, e0196117 (2018).

    PubMed  PubMed Central  Google Scholar 

  196. Khamashta, M. et al. CD1067 study investigators. Sifalimumab, an anti-interferon-α monoclonal antibody, in moderate to severe systemic lupus erythematosus: a randomised, double-blind, placebo-controlled study. Ann. Rheum. Dis. 75, 1909–1916 (2016).

    CAS  PubMed  Google Scholar 

  197. Isenberg, D. et al. Efficacy and safety of atacicept for prevention of flares in patients with moderate-to-severe systemic lupus erythematosus(SLE): 52-week data (APRIL-SLE randomised trial). Ann. Rheum. Dis. 74, 2006–2015 (2015).

    CAS  PubMed  Google Scholar 

  198. Ginzler, E. M. et al. Atacicept in combination with MMF and corticosteroids in lupus nephritis: results of a prematurely terminated trial. Arthritis Res. Ther. 14, R33 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  199. Gordon, C. et al. Post Hoc analysis of the phase II/III APRIL-SLE study: association between response to atacicept and serum biomarkers including BLyS and APRIL. Arthritis Rheumatol. 69, 122–130 (2017).

    CAS  PubMed  Google Scholar 

  200. Magder, L. S. & Petri, M. Incidence of and risk factors for adverse cardiovascular events among patients with systemic lupus erythematosus. Am. J. Epidemiol. 176, 708–719 (2012).

    PubMed  PubMed Central  Google Scholar 

  201. van Assen, S. et al. EULAR recommendations for vaccination in adult patients with autoimmune inflammatory rheumatic diseases. Ann. Rheum. Dis. 70, 414–422 (2011).

    PubMed  Google Scholar 

  202. Andreoli, L. et al. EULAR recommendations for women’s health and the management of family planning, assisted reproduction, pregnancy and menopause in patients with systemic lupus erythematosus and/or antiphospholipid syndrome. Ann. Rheum. Dis. 76, 476–485 (2017).

    CAS  PubMed  Google Scholar 

  203. Panel on Antiretroviral Guidelines for Adults and Adolescents. Guidelines for the use of an-tiretroviral agents in HIV-1-infected adults and adolescents. tdm-torino http://www.aidsinfo.nih.gov/ContentFiles/AdultandAdolescentGL.pdf (2011).

  204. Freifeld, A. G. et al. Clinical practice guideline for the use of antimicrobial agents in neutropenic patients with cancer: 2010 update by the infectious diseases society of america. Clin. Infect. Dis. 52, e56 (2011).

    PubMed  Google Scholar 

  205. Dreyer, L. et al. High incidence of potentially virus-induced malignancies in systemic lupus eryhematosus. Arthritis Rheum. 63, 3032–3037 (2011).

    PubMed  Google Scholar 

  206. Bernatsky, S. R. et al. Cancer screening in patients with systemic lupus erythematosus. J. Rheumatol. 33, 45–49 (2006).

    PubMed  Google Scholar 

  207. Watts, N. B. et al. American Association of clinical endocrinologists medical guidelines for clinical practice for the diagnosis and treatment of postmenopausal osteoporosis. Endocr. Pract. 16 (Suppl. 3), 1–37 https://www.aace.com/publications/guidelines (2010).

    PubMed  PubMed Central  Google Scholar 

  208. Grossman, J. M. et al. American College of Rheumatology 2010. Recommendations for the prevention and treatment of gluco-corticoid induced osteoporosis. Arthritis Care Res. (Hoboken) 62, 1515–1526 (2010).

    Google Scholar 

  209. Iaccarino, L. et al. Overlap connective tissue disease syndromes. Autoimmun. Rev. 12, 363–373 (2013).

    CAS  PubMed  Google Scholar 

  210. Tektonidou, M. G. Antiphospholipid syndrome nephropathy: from pathogenesis to treatment. Front. Immunol. 9, 1181 (2018).

    PubMed  PubMed Central  Google Scholar 

  211. Sève, P. et al. Lupus-like presentation of parvovirus B19 infection. Semin. Arthritis Rheum. 34, 642–648 (2005).

    PubMed  Google Scholar 

  212. Verdolini, R. et al. Systemic lupus erythematosus induced by Epstein–Barr virus infection. Br. J. Dermatol. 146, 877–881 (2002).

    CAS  PubMed  Google Scholar 

  213. Bezanahary, H. et al. Systemic lupus erythematosus and herpes virus infection: three new observations. Rev. Med. Interne. 23, 1018–1021 (2002).

    CAS  PubMed  Google Scholar 

  214. Saravana, S., James, D. W., Abourawi, F., Gupta, P. C. & Samyukta, B. HIV infection mimicking SLE. Clin. Rheumatol. 23, 562–563 (2004).

    CAS  PubMed  Google Scholar 

  215. Khosravi, A. R. et al. Severe tinea corporis due to Trichophyton verrucosum mimicking discoid lupus erythematosus. J. Mycol. Med. 22, 92–95 (2012).

    CAS  PubMed  Google Scholar 

  216. Arlet, J. B., Capron, L. & Pouchot, J. Visceral leishmaniasis mimicking systemic lupus erythematosus. J. Clin. Rheumatol. 16, 203–204 (2010).

    PubMed  Google Scholar 

  217. Hammoudeh, M. Acute lymphocytic leukemia presenting as lupus-like syndrome. Rheumatol. Int. 26, 581–582 (2006).

    PubMed  Google Scholar 

  218. Yilmaz, M. et al. Histiocytic necrotizing lymphadenitis (Kikuchi–Fujimoto’s disease) mimicking systemic lupus  erythematosus: a review of two cases. Lupus 15, 384–387 (2006).

    CAS  PubMed  Google Scholar 

  219. Suwannaroj, S., Elkins, S. L. & McMurray, R. W. Systemic lupus erythematosus and Castleman’s disease. J. Rheumatol. 26, 1400–1403 (1999).

    CAS  PubMed  Google Scholar 

  220. Diaz, J. C., Vallejo, S. & Cañas, C. Drug-induced lupus in anti-TNF-alpha therapy and its treatment with rituximab. Rheumatol. Int. 32, 3315–3317 (2012).

    PubMed  Google Scholar 

  221. Soldevilla, H. F., Briones, S. F. R. & Navarra, S. V. Systemic lupus erythematosus following HPV immunization or infection? Lupus 21, 158–161 (2012).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank T. Manning for help with revising the English language of the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

All the authors researched data for the article, wrote the article, reviewed and/or edited the manuscript before submission and provided substantial contributions to discussions of its content.

Corresponding author

Correspondence to Andrea Doria.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

PRECISESADS: http://www.precisesads.eu/

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gatto, M., Zen, M., Iaccarino, L. et al. New therapeutic strategies in systemic lupus erythematosus management. Nat Rev Rheumatol 15, 30–48 (2019). https://doi.org/10.1038/s41584-018-0133-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41584-018-0133-2

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing