Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

OPINION

Machine-learning-based patient-specific prediction models for knee osteoarthritis

Abstract

Osteoarthritis (OA) is an extremely common musculoskeletal disease. However, current guidelines are not well suited for diagnosing patients in the early stages of disease and do not discriminate patients for whom the disease might progress rapidly. The most important hurdle in OA management is identifying and classifying patients who will benefit most from treatment. Further efforts are needed in patient subgrouping and developing prediction models. Conventional statistical modelling approaches exist; however, these models are limited in the amount of information they can adequately process. Comprehensive patient-specific prediction models need to be developed. Approaches such as data mining and machine learning should aid in the development of such models. Although a challenging task, technology is now available that should enable subgrouping of patients with OA and lead to improved clinical decision-making and precision medicine.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: A generic scheme for clinical prediction modelling.

Similar content being viewed by others

References

  1. Arden, N. & Cooper, C.in Osteoarthritis Handbook (Taylor & Francis, London, 2006).

  2. McGuire, D. A., Carter, T. R. & Shelton, W. R. Complex knee reconstruction: osteotomies, ligament reconstruction, transplants, and cartilage treatment options. Arthroscopy 18, 90–103 (2002).

    Article  Google Scholar 

  3. Cooper, C. & Arden, N. K. Excess mortality in osteoarthritis. BMJ 342, d1407 (2011).

    Article  Google Scholar 

  4. Hochberg, M. C. Mortality in osteoarthritis. Clin. Exp. Rheumatol 26, S120–S124 (2008).

    CAS  PubMed  Google Scholar 

  5. Bitton, R. The economic burden of osteoarthritis. Am. J. Manag. Care 15, S230–S235 (2009).

    PubMed  Google Scholar 

  6. Prieto-Alhambra, D. et al. Incidence and risk factors for clinically diagnosed knee, hip and hand osteoarthritis: influences of age, gender and osteoarthritis affecting other joints. Ann. Rheum. Dis. 73, 1659–1664 (2014).

    Article  Google Scholar 

  7. Martel-Pelletier, J. et al. Osteoarthritis. Nat. Rev. Dis. Primers 2, 16072 (2016).

    Article  Google Scholar 

  8. Blagojevic, M., Jinks, C., Jeffery, A. & Jordan, K. P. Risk factors for onset of osteoarthritis of the knee in older adults: a systematic review and meta-analysis. Osteoarthritis Cartilage 18, 24–33 (2010).

    Article  CAS  Google Scholar 

  9. Zhang, W. Risk factors of knee osteoarthritis — excellent evidence but little has been done. Osteoarthritis Cartilage 18, 1–2 (2010).

    Article  CAS  Google Scholar 

  10. McWilliams, D. F., Leeb, B. F., Muthuri, S. G., Doherty, M. & Zhang, W. Occupational risk factors for osteoarthritis of the knee: a meta-analysis. Osteoarthritis Cartilage 19, 829–839 (2011).

    Article  CAS  Google Scholar 

  11. Raynauld, J. P. et al. Long term evaluation of disease progression through the quantitative magnetic resonance imaging of symptomatic knee osteoarthritis patients: correlation with clinical symptoms and radiographic changes. Arthritis Res. Ther. 8, R21 (2006).

    Article  Google Scholar 

  12. Solomon, D. H. et al. The comparative safety of analgesics in older adults with arthritis. Arch. Intern. Med. 170, 1968–1978 (2010).

    Article  Google Scholar 

  13. Marx, V. Biology: the big challenges of big data. Nature 498, 255–260 (2013).

    Article  CAS  Google Scholar 

  14. Dolinski, K. & Troyanskaya, O. G. Implications of big data for cell biology. Mol. Biol. Cell 26, 2575–2578 (2015).

    Article  Google Scholar 

  15. Cintolo-Gonzalez, J. A. et al. Breast cancer risk models: a comprehensive overview of existing models, validation, and clinical applications. Breast Cancer Res. Treat. 164, 263–284 (2017).

    Article  Google Scholar 

  16. Cosma, G., Brown, D., Archer, M., Khan, M. & Pockley, A. G. A survey on computational intelligence approaches for predictive modeling in prostate cancer. Expert Syst. Appl. 70, 1–19 (2017).

    Article  Google Scholar 

  17. Fast and Secure protocol — FASP (Aspera, Inc., Emeryville, CA, USA).

  18. Zhang, W. et al. Nottingham knee osteoarthritis risk prediction models. Ann. Rheum. Dis. 70, 1599–1604 (2011).

    Article  Google Scholar 

  19. Losina, E., Klara, K., Michl, G. L., Collins, J. E. & Katz, J. N. Development and feasibility of a personalized, interactive risk calculator for knee osteoarthritis. BMC Musculoskelet. Disord. 16, 312 (2015).

    Article  Google Scholar 

  20. Watt, E. W. & Bui, A. A. Evaluation of a dynamic Bayesian belief network to predict osteoarthritic knee pain using data from the osteoarthritis initiative. AMIA Annu. Symp. Proc. 2008, 788–792 (2008).

    PubMed Central  Google Scholar 

  21. Yoo, T. K., Kim, D. W., Choi, S. B., Oh, E. & Park, J. S. Simple scoring system and artificial neural network for knee osteoarthritis risk prediction: a cross-sectional study. PLoS ONE 11, e0148724 (2016).

    Article  Google Scholar 

  22. Lazzarini, N. et al. A machine learning approach for the identification of new biomarkers for knee osteoarthritis development in overweight and obese women. Osteoarthritis Cartilage 25, 2014–2021 (2017).

    Article  CAS  Google Scholar 

  23. Schett, G. et al. Vascular cell adhesion molecule 1 as a predictor of severe osteoarthritis of the hip and knee joints. Arthritis Rheum. 60, 2381–2389 (2009).

    Article  CAS  Google Scholar 

  24. Schett, G., Zwerina, J., Axmann, R., Willeit, J. & Stefan, K. Risk prediction for severe osteoarthritis. Ann. Rheum. Dis. 69, 1573–1574 (2010).

    Article  Google Scholar 

  25. Berthiaume, M. J. et al. Meniscal tear and extrusion are strongly associated with the progression of knee osteoarthritis as assessed by quantitative magnetic resonance imaging. Ann. Rheum. Dis. 64, 556–563 (2005).

    Article  Google Scholar 

  26. Raynauld, J. P. et al. Correlation between bone lesion changes and cartilage volume loss in patients with osteoarthritis of the knee as assessed by quantitative magnetic resonance imaging over a 24-month period. Ann. Rheum. Dis. 67, 683–688 (2008).

    Article  Google Scholar 

  27. Tanamas, S. K. et al. Bone marrow lesions in people with knee osteoarthritis predict progression of disease and joint replacement: a longitudinal study. Rheumatology 49, 2413–2419 (2010).

    Article  Google Scholar 

  28. Raynauld, J. P. et al. Risk factors predictive of joint replacement in a 2-year multicentre clinical trial in knee osteoarthritis using MRI: results from over 6 years of observation. Ann. Rheum. Dis. 70, 1382–1388 (2011).

    Article  Google Scholar 

  29. Pelletier, J. P. et al. What is the predictive value of MRI for the occurrence of knee replacement surgery in knee osteoarthritis? Ann. Rheum. Dis. 72, 1594–1604 (2013).

    Article  Google Scholar 

  30. Neogi, T. et al. Magnetic resonance imaging-based three-dimensional bone shape of the knee predicts onset of knee osteoarthritis: data from the osteoarthritis initiative. Arthritis Rheum. 65, 2048–2058 (2013).

    Article  Google Scholar 

  31. Raynauld, J. P. et al. Bone curvature changes can predict the impact of treatment on cartilage volume loss in knee osteoarthritis: data from a 2-year clinical trial. Rheumatology 56, 989–998 (2017).

    Article  Google Scholar 

  32. Fan, J., Han, F. & Liu, H. Challenges of big data analysis. Natl Sci. Rev. 1, 293–314 (2014).

    Article  Google Scholar 

  33. Haixiang, G. et al. Learning from class-imbalanced data: review of methods and applications. Expert Syst. Appl. 73, 220–239 (2017).

    Article  Google Scholar 

  34. Fu, X., Wang, L., Chua, K. S. & Chu, F. Training RBF Neural Networks on Unbalanced Data. Proc. 9th Int. Conf. Neural Inform. Processing (ICONIP’02) 2, 1016–1020 (2002).

  35. Wasikowski, M. & Chen, X. W. Combating the small sample class imbalance problem using feature selection. IEEE Trans. Knowl. Data Eng. 22, 1388–1400 (2010).

    Article  Google Scholar 

  36. Khalilia, M., Chakraborty, S. & Popescu, M. Predicting disease risks from highly imbalanced data using random forest. BMC Med. Inform. Decis. Mak. 11, 51 (2011).

    Article  Google Scholar 

  37. Wang, K. J., Makond, B. & Wang, K. M. An improved survivability prognosis of breast cancer by using sampling and feature selection technique to solve imbalanced patient classification data. BMC Med. Inform. Decis. Mak. 13, 124 (2013).

    Article  CAS  Google Scholar 

  38. Ozcift, A. Random forests ensemble classifier trained with data resampling strategy to improve cardiac arrhythmia diagnosis. Comput. Biol. Med. 41, 265–271 (2011).

    Article  Google Scholar 

  39. van Buuren, S. & Groothuis-Oudshoorn, K. MICE: multivariate imputation by chained equations in R. J. Stat. Softw. 45, 1–68 (2011).

    Article  Google Scholar 

  40. IBM SPSS Statistics for Windows, version 25.0, released 2017 (IBM Corp., Armonk, NY, USA).

  41. SAS/STAT® version 14.1 (SAS Institute Inc., Cary, NC, USA).

  42. STATA Statistical Software, release 15, 2017 (StataCorp LLC, College Station, TX, USA).

  43. Frank, E., Hall, M. A. & Witten, I. H. The WEKA workbench: online appendix for data mining: practical machine learning tools and techniques. UoW https://www.cs.waikato.ac.nz/ml/weka/Witten_et_al_2016_appendix.pdf (2016).

  44. Zhang, Z. Missing data imputation: focusing on single imputation. Ann. Transl Med. 4, 9 (2016).

    Article  Google Scholar 

  45. Verborgh, R. & De Wilde, M. Using OpenRefine (Packt Publishing Ltd., Burmingham, UK, 2013).

  46. Trifacta. Data wrangling tools & software. Trifacta https://www.trifacta.com (2018).

  47. Paxata, Inc. Self-service data preparation for data analytics. Paxata https://www.paxata.com (2018).

  48. Baruti, R. (ed.) Learning Alteryx: A Beginner’s Guide to Using Alteryx for Self-Service Analytics and Business Intelligence (Packt Publishing Ltd., Birmingham, UK, 2017).

  49. McKinney, W. pandas: a foundational python library for data analysis and statistics. DLR http://www.dlr.de/sc/Portaldata/15/Resources/dokumente/pyhpc2011/submissions/pyhpc2011_submission_9.pdf (2011).

  50. OBiBa. Open source software for epidemiology. OBiBa http://www.obiba.org (2018).

  51. Optimus Company. Data cleansing and exploration made simple. Optimus https://hioptimus.com (2018).

  52. Griffith, L. E. et al. Statistical approaches to harmonize data on cognitive measures in systematic reviews are rarely reported. J. Clin. Epidemiol. 68, 154–162 (2015).

    Article  Google Scholar 

  53. Royston, P., Parmar, M. K. & Sylvester, R. Construction and validation of a prognostic model across several studies, with an application in superficial bladder cancer. Stat. Med. 23, 907–926 (2004).

    Article  Google Scholar 

  54. Doiron, D. et al. Data harmonization and federated analysis of population-based studies: the BioSHaRE project. Emerg. Themes Epidemiol. 10, 12 (2013).

    Article  Google Scholar 

  55. Doiron, D., Raina, P., Ferretti, V., L’Heureux, F. & Fortier, I. Facilitating collaborative research: implementing a platform supporting data harmonization and pooling. Nor. Epidemiol. 21, 221–224 (2012).

    Google Scholar 

  56. Alba, A. C. et al. Discrimination and calibration of clinical prediction models: users’ guides to the medical literature. JAMA 318, 1377–1384 (2017).

    Article  Google Scholar 

  57. Steyerberg, E. W. & Harrell, F. E. Jr. Prediction models need appropriate internal, internal-external, and external validation. J. Clin. Epidemiol. 69, 245–247 (2016).

    Article  Google Scholar 

  58. Siontis, G. C., Tzoulaki, I., Castaldi, P. J. & Ioannidis, J. P. External validation of new risk prediction models is infrequent and reveals worse prognostic discrimination. J. Clin. Epidemiol. 68, 25–34 (2015).

    Article  Google Scholar 

  59. Tugwell, P. & Knottnerus, J. A. Clinical prediction models are not being validated. J. Clin. Epidemiol. 68, 1–2 (2015).

    Article  Google Scholar 

  60. Tugwell, P. & Knottnerus, J. A. Transferability/generalizability deserves more attention in ‘retest’ studies in diagnosis and prognosis. J. Clin. Epidemiol. 68, 235–236 (2015).

    Article  Google Scholar 

  61. Debray, T. P., Moons, K. G., Ahmed, I., Koffijberg, H. & Riley, R. D. A framework for developing, implementing, and evaluating clinical prediction models in an individual participant data meta-analysis. Stat. Med. 32, 3158–3180 (2013).

    Article  Google Scholar 

  62. Debray, T. P. et al. A new framework to enhance the interpretation of external validation studies of clinical prediction models. J. Clin. Epidemiol. 68, 279–289 (2015).

    Article  Google Scholar 

  63. Steyerberg, E. Clinical Prediction Models: A Practical Approach to Development, Validation, and Updating (Springer New York, 2010).

  64. Papageorgiou, E. I., Subramanian, J., Karmegam, A. & Papandrianos, N. A risk management model for familial breast cancer: a new application using Fuzzy Cognitive Map method. Comput. Methods Programs Biomed. 122, 123–135 (2015).

    Article  Google Scholar 

  65. Froelich, W., Papageorgiou, E. I., Samarinas, M. & Skriapas, K. Application of evolutionary fuzzy cognitive maps to the long-term prediction of prostate cancer. Appl. Soft Comput. 12, 3810–3817 (2012).

    Article  Google Scholar 

  66. Takahashi, H. et al. Prediction model for knee osteoarthritis based on genetic and clinical information. Arthritis Res. Ther. 12, R187 (2010).

    Article  Google Scholar 

  67. Kerkhof, H. J. et al. Prediction model for knee osteoarthritis incidence, including clinical, genetic and biochemical risk factors. Ann. Rheum. Dis. 73, 2116–2121 (2014).

    Article  CAS  Google Scholar 

  68. Kinds, M. B. et al. Evaluation of separate quantitative radiographic features adds to the prediction of incident radiographic osteoarthritis in individuals with recent onset of knee pain: 5-year follow-up in the CHECK cohort. Osteoarthritis Cartilage 20, 548–556 (2012).

    Article  CAS  Google Scholar 

  69. Swan, A. L. et al. A machine learning heuristic to identify biologically relevant and minimal biomarker panels from omics data. BMC Genomics 16, S2 (2015).

    Article  Google Scholar 

  70. Ashinsky, B. G. et al. Predicting early symptomatic osteoarthritis in the human knee using machine learning classification of magnetic resonance images from the osteoarthritis initiative. J. Orthop. Res. 35, 2243–2250 (2017).

    Article  Google Scholar 

  71. Long, M. J., Papi, E., Duffell, L. D. & McGregor, A. H. Predicting knee osteoarthritis risk in injured populations. Clin. Biomech. 47, 87–95 (2017).

    Article  Google Scholar 

  72. Minciullo, L., Bromiley, P. A., Felson, D. T. & Cootes, T. F. Indecisive trees for classification and prediction of knee osteoarthritis. 8th Int. Workshop MLMI 2017 MICCAI 2017 Proc. 10541, 283–290 (2017).

  73. Jamshidi, A., Ait-kadi, D., Ruiz, A. & Rebaiaia, M. L. Dynamic risk assessment of complex systems using FCM. Int. J. Prod. Res. 56, 1070–1088 (2017).

    Article  Google Scholar 

  74. Meher, S. K. & Pal, S. K. Rough-wavelet granular space and classification of multispectral remote sensing image. Appl. Soft Comput. 11, 5662–5673 (2011).

    Article  Google Scholar 

  75. Shannon, P. et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 13, 2498–2504 (2003).

    Article  CAS  Google Scholar 

  76. Hastie, T., Tibshirani, R. & Wainwright, M. Statistical Learning with Sparsity: The Lasso and Generalizations (Chapman and Hall/CRC, 2015).

  77. Meinshausen, N. & Bühlmann, P. High-dimensional graphs and variable selection with the lasso. Ann. Stat. 34, 1436–1462 (2006).

    Article  Google Scholar 

  78. Huang, J., Ma, S. & Zhang, C. H. Adaptive Lasso for sparse high-dimensional regression models. Stat. Sin. 18, 1603–1618 (2008).

    Google Scholar 

  79. Simon, N., Friedman, J., Hastie, T. & Tibshirani, R. A. Sparse-group lasso. J. Comput. Graph. Stat. 22, 231–245 (2013).

    Article  Google Scholar 

  80. Friedman, J. et al. Package ‘glmnet’. The Comprehensive R Archive Network https://cran.r-project.org/web/packages/glmnet/glmnet.pdf (2018).

  81. Alakwaa, F. M., Chaudhary, K. & Garmire, L. X. Deep learning accurately predicts estrogen receptor status in breast cancer metabolomics data. J. Proteome Res. 17, 337–347 (2018).

    Article  CAS  Google Scholar 

  82. Nezhad, M. Z., Zhu, D., Li, X., Yang, K. & Levy, P. SAFS: a deep feature selection approach for precision medicine. Preprint at arXiv https://arxiv.org/abs/1704.05960 (2017).

  83. Li, Y., Chen, C. Y. & Wasserman, W. W. Deep feature selection: theory and application to identify enhancers and promoters. J. Comput. Biol. 23, 322–336 (2016).

    Article  CAS  Google Scholar 

  84. Christ, M., Braun, N., Neuffer, J. & Kempa-Liehr, W. A. Time series feature extraction on basis of scalable hypothesis tests (tsfresh — a Python package). Neurocomputing 307, 72–77 (2018).

    Article  Google Scholar 

  85. Fulcher, B. D. & Jones, N. S. hctsa: a computational framework for automated time-series phenotyping using massive feature extraction. Cell Syst. 5, 527–531 (2017).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank V. Wallis for her assistance with manuscript preparation.

Author information

Authors and Affiliations

Authors

Contributions

J.M.-P. and A.J. researched data for the article. All authors wrote the article, made substantial contribution to discussions of the content and reviewed and/or edited the manuscript before submission.

Corresponding author

Correspondence to Johanne Martel-Pelletier.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

D-BOARD: https://cordis.europa.eu/project/rcn/105314_en.html

APPROACH: https://approachproject.eu

DataSHIELD: http://www.datashield.ac.uk/

Automatic Image Registration: http://air.bmap.ucla.edu/AIR5

tsfresh: http://tsfresh.readthedocs.io/en/latest

hctsa: https://github.com/benfulcher/hctsa

Supplementary Information

GlossaryGlossary terms

Artificial intelligence

The process of creating systems that can learn from experience and adjust to new inputs in order to perform human-like tasks. Machine-learning is a fundamental concept of artificial intelligence.

Calibration

Calibration measurements represent the level of accuracy of a model in estimating the absolute risk (that is, the agreement between the observed and predicted risk). Poorly calibrated models will underestimate or overestimate the outcome of interest.

Classification models

In statistics and machine-learning, classification is the process of identifying the category of a new observation on the basis of a training set of data containing observations for which the category (outcome value) is known. In the field of osteoarthritis, an example could be classification of patients into slow progressors and fast progressors on the basis of several input variables.

Deep-learning

A subfield of machine-learning that is based on advanced artificial neural networks; this field has enabled doctors in different fields of medicine to obtain a precise 3D understanding of 2D images.

Discrimination

Discrimination measurements identify to what extent a model discriminates items of different classes (for example, individuals with disease and without disease). For binary outcomes, the receiver operating characteristic curve or C-statistic could be applied for discrimination measurement.

Feature selection

Feature selection refers to the process of obtaining a subset of variables from an original set of variables according to certain feature selection criteria. The feature selection step precedes the learning step of a prediction model and good feature selection results can improve the learning accuracy, reduce learning time and simplify learning results.

Generalizability

Refers to the accuracy with which a prediction model developed from one study population can be used for the population at large.

Imputation

In machine-learning and statistics, imputation is the process of replacing missing data with substituted values to avoid bias or inaccuracies in the results.

Interpretability

Model interpretability describes the ability of the user to understand the model, which includes understanding the relationships between the input and outcome variables (for example, knowing how the selected input variables contribute to the outcome variable).

Regression models

Regression is the process of identifying the value of a new observation on the basis of a training set of data containing observations for which the category (outcome value) is known. In the field of osteoarthritis, an example could be predicting the probability of disease.

Semi-supervised learning

Semi-supervised learning is typically when only a small amount of data are labelled (that is, have both input and output variables) and a large amount are unlabelled (that is, have only input data); this method falls between unsupervised learning and supervised learning.

Supervised learning

Supervised learning is where you have input variables (x) and an output variable (y) and use an algorithm to learn the mapping function from the input to the output y = f(x).

Training

The training for machine learning involves providing a machine-learning algorithm with training data (input and outcome variables) to learn from. The learning algorithm finds patterns in the training data such that the input parameters correspond to the target. Machine-learning models are applied to do predictions on new data for which the outcome value is not known (for example, to determine to which class the new observation belongs).

Unsupervised learning

In unsupervised learning, only input data (x) exist and there are no corresponding output variables. The goal for unsupervised learning is to model the underlying structure or distribution in the data in order to learn more about the data.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jamshidi, A., Pelletier, JP. & Martel-Pelletier, J. Machine-learning-based patient-specific prediction models for knee osteoarthritis. Nat Rev Rheumatol 15, 49–60 (2019). https://doi.org/10.1038/s41584-018-0130-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41584-018-0130-5

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing