Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Biomaterial-guided delivery of gene vectors for targeted articular cartilage repair

Abstract

Articular cartilage defects are prevalent and are potentially involved in the initiation of osteoarthritis, yet the lack of efficient therapeutic options to treat cartilage defects represents a substantial challenge. Molecular treatments that require the delivery of therapeutic gene vectors are often less effective that specific, targeted approaches, and the scientific evidence for acellular biomaterial-assisted procedures is limited. Controlled delivery of gene vectors using biocompatible materials is emerging as a novel strategy for the sustained and tuneable release of gene therapies in a spatiotemporally precise manner, thereby reducing intra-articular vector spread and possible loss of the therapeutic gene product. Controlled, biomaterial-guided delivery of gene vectors could be used to enhance intrinsic mechanisms of cartilage repair while affording protection against potentially damaging host immune responses that might counteract the gene therapy component. This Review provides an overview of advances in gene vector-loaded biomaterials for articular cartilage repair. Such systems enable the sustained release of gene therapies while maintaining transduction efficacy. Strategies that harness these properties are likely to result in improved in situ cartilage tissue regeneration that could be safely translated into clinical applications in the near future.

Key points

  • Articular cartilage has a limited capacity for self-repair in terms of strength and sustainability.

  • None of the current pharmacological or surgical options for cartilage repair can completely restore damaged articular cartilage to its original structure and function.

  • Gene therapy holds promise for the treatment of articular cartilage lesions by providing reparative gene sequences at sites of tissue injury.

  • Tissue engineering approaches provide adapted scaffolding matrices that can support the mechanisms of cartilage repair.

  • Host physiological barriers preclude the optimal use of gene therapy or tissue engineering procedures for translational applications to treat articular cartilage injuries.

  • Combining gene therapy and scaffold-mediated approaches might enable the safe, effective and durable regeneration of articular cartilage at lesion sites in patients with osteoarthritis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Types of articular cartilage defect.
Fig. 2: Controlled delivery of gene vectors for cartilage repair.

Similar content being viewed by others

References

  1. Guermazi, A. et al. Brief report: partial- and full-thickness focal cartilage defects contribute equally to development of new cartilage damage in knee osteoarthritis: the multicenter osteoarthritis study. Arthritis Rheumatol. 69, 560–564 (2017).

    PubMed  PubMed Central  Google Scholar 

  2. Sanders, T. L. et al. High rate of osteoarthritis after osteochondritis dissecans fragment excision compared with surgical restoration at a mean 16-year follow-up. Am. J. Sports Med. 45, 1799–1805 (2017).

    PubMed  Google Scholar 

  3. Hunziker, E. B., Lippuner, K., Keel, M. J. & Shintani, N. An educational review of cartilage repair: precepts & practice — myths & misconceptions — progress & prospects. Osteoarthritis Cartilage 23, 334–350 (2015).

    CAS  PubMed  Google Scholar 

  4. Makris, E. A., Gomoll, A. H., Malizos, K. N., Hu, J. C. & Athanasiou, K. A. Repair and tissue engineering techniques for articular cartilage. Nat. Rev. Rheumatol. 11, 21–34 (2015).

    CAS  PubMed  Google Scholar 

  5. Mundi, R. et al. Cartilage restoration of the knee: a systematic review and meta-analysis of level 1 studies. Am. J. Sports Med. 44, 1888–1895 (2016).

    PubMed  Google Scholar 

  6. Hunziker, E. B. Articular cartilage repair: basic science and clinical progress. A review of the current state and prospects. Osteoarthritis Cartilage 10, 432–463 (2002).

    CAS  PubMed  Google Scholar 

  7. Evans, C. H. & Huard, J. Gene therapy approaches to regenerating the musculoskeletal system. Nat. Rev. Rheumatol. 11, 234–242 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Nita, I. et al. Direct gene delivery to synovium. An evaluation of potential vectors in vitro and in vivo. Arthritis Rheum. 39, 820–828 (1996).

    CAS  PubMed  Google Scholar 

  9. Madry, H., Gao, L., Eichler, H., Orth, P. & Cucchiarini, M. Bone marrow aspirate concentrate-enhanced marrow stimulation of chondral defects. Stem Cells Int. 2017, 1609685 (2017).

    PubMed  PubMed Central  Google Scholar 

  10. Brittberg, M. et al. Treatment of deep cartilage defects in the knee with autologous chondrocyte transplantation. N. Engl. J. Med. 331, 889–895 (1994).

    CAS  PubMed  Google Scholar 

  11. Mistry, H. et al. Autologous chondrocyte implantation in the knee: systematic review and economic evaluation. Health Technol. Assess. 21, 1–294 (2017).

    PubMed  PubMed Central  Google Scholar 

  12. Knutsen, G. et al. A randomized multicenter trial comparing autologous chondrocyte implantation with microfracture: long-term follow-up at 14 to 15 years. J. Bone Joint Surg. Am. 98, 1332–1339 (2016).

    PubMed  Google Scholar 

  13. Gao, L., Orth, P., Cucchiarini, M. & Madry, H. Autologous matrix-induced chondrogenesis: a systematic review of the clinical evidence. Am. J. Sports Med. https://doi.org/10.1177/0363546517740575 (2017).

    Article  PubMed  Google Scholar 

  14. Pareek, A. et al. Osteochondral autograft transfer versus microfracture in the knee: a meta-analysis of prospective comparative studies at midterm. Arthroscopy 32, 2118–2130 (2016).

    PubMed  Google Scholar 

  15. Gracitelli, G. C. et al. Fresh osteochondral allografts in the knee: comparison of primary transplantation versus transplantation after failure of previous subchondral marrow stimulation. Am. J. Sports Med. 43, 885–891 (2015).

    PubMed  Google Scholar 

  16. Lohmander, S. et al. Intraarticular sprifermin (recombinant human fibroblast growth factor 18) in knee osteoarthritis: a randomized, double-blind, placebo-controlled trial. Arthritis Rheumatol. 66, 1820–1831 (2014).

    CAS  PubMed  Google Scholar 

  17. Adkar, S. S. et al. Genome engineering for personalized arthritis therapeutics. Trends Mol. Med. 23, 917–931 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Chen, X. & Goncalves, M. A. Engineered viruses as genome editing devices. Mol. Ther. 24, 447–457 (2016).

    CAS  PubMed  Google Scholar 

  19. Cucchiarini, M. & Madry, H. Gene therapy for cartilage defects. J. Gene Med. 7, 1495–1509 (2005).

    CAS  PubMed  Google Scholar 

  20. Evans, C. H. et al. Using gene therapy to protect and restore cartilage. Clin. Orthop. Relat. Res. 379, S214–S219 (2000).

    Google Scholar 

  21. Maeder, M. L. & Gersbach, C. A. Genome-editing technologies for gene and cell therapy. Mol. Ther. 24, 430–446 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Mali, P. et al. RNA-guided human genome engineering via Cas9. Science 339, 823–826 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Cucchiarini, M. Human gene therapy: novel approaches to improve the current gene delivery systems. Discov. Med. 21, 495–506 (2016).

    PubMed  Google Scholar 

  24. Cucchiarini, M. et al. Improved tissue repair in articular cartilage defects in vivo by rAAV-mediated overexpression of human fibroblast growth factor 2. Mol. Ther 12, 229–238 (2005).

    CAS  PubMed  Google Scholar 

  25. Hiraide, A. et al. Repair of articular cartilage defect by intraarticular administration of basic fibroblast growth factor gene, using adeno-associated virus vector. Hum. Gene Ther. 16, 1413–1421 (2005).

    CAS  PubMed  Google Scholar 

  26. Menendez, M. I. et al. Direct delayed human adenoviral BMP-2 or BMP-6 gene therapy for bone and cartilage regeneration in a pony osteochondral model. Osteoarthritis Cartilage 19, 1066–1075 (2011).

    CAS  PubMed  Google Scholar 

  27. Morisset, S., Frisbie, D. D., Robbins, P. D., Nixon, A. J. & McIlwraith, C. W. IL-1ra/IGF-1 gene therapy modulates repair of microfractured chondral defects. Clin. Orthop. Relat. Res. 462, 221–228 (2007).

    PubMed  Google Scholar 

  28. Evans, C. H. et al. Use of genetically modified muscle and fat grafts to repair defects in bone and cartilage. Eur. Cell. Mater. 18, 96–111 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Ivkovic, A. et al. Articular cartilage repair by genetically modified bone marrow aspirate in sheep. Gene Ther. 17, 779–789 (2010).

    CAS  PubMed  Google Scholar 

  30. Liu, T. M. et al. Zinc-finger protein 145, acting as an upstream regulator of SOX9, improves the differentiation potential of human mesenchymal stem cells for cartilage regeneration and repair. Arthritis Rheum. 63, 2711–2720 (2011).

    CAS  PubMed  Google Scholar 

  31. Sieker, J. T. et al. Direct bone morphogenetic protein 2 and Indian hedgehog gene transfer for articular cartilage repair using bone marrow coagulates. Osteoarthritis Cartilage 23, 433–442 (2015).

    CAS  PubMed  Google Scholar 

  32. Berns, K. I. & Linden, R. M. The cryptic life style of adeno-associated virus. Bioessays 17, 237–245 (1995).

    CAS  PubMed  Google Scholar 

  33. Samulski, R. J., Berns, K. I., Tan, M. & Muzyczka, N. Cloning of adeno-associated virus into pBR322: rescue of intact virus from the recombinant plasmid in human cells. Proc. Natl Acad. Sci. USA 79, 2077–2081 (1982).

    CAS  PubMed  Google Scholar 

  34. Cucchiarini, M., Orth, P. & Madry, H. Direct rAAV SOX9 administration for durable articular cartilage repair with delayed terminal differentiation and hypertrophy in vivo. J. Mol. Med. 91, 625–636 (2013).

    CAS  PubMed  Google Scholar 

  35. Madry, H. et al. Enhanced repair of articular cartilage defects in vivo by transplanted chondrocytes overexpressing insulin-like growth factor I (IGF-I). Gene Ther. 12, 1171–1179 (2005).

    CAS  PubMed  Google Scholar 

  36. Wehling, P. et al. Clinical responses to gene therapy in joints of two subjects with rheumatoid arthritis. Hum. Gene Ther. 20, 97–101 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Dunbar, C. E. et al. Gene therapy comes of age. Science 359, eaan4672 (2018).

    PubMed  Google Scholar 

  38. Kim, M. K. et al. A multicenter, double-blind, phase III clinical trial to evaluate the efficacy and safety of a cell and gene therapy in knee osteoarthritis patients. Hum. Gene Ther. Clin. Dev. 29, 48–59 (2018).

    CAS  PubMed  Google Scholar 

  39. Evans, C. H., Ghivizzani, S. C. & Robbins, P. D. Arthritis gene therapy is becoming a reality. Nat. Rev. Rheumatol. 14, 381–382 (2018).

    CAS  PubMed  Google Scholar 

  40. Madry, H., Cucchiarini, M., Terwilliger, E. F. & Trippel, S. B. Recombinant adeno-associated virus vectors efficiently and persistently transduce chondrocytes in normal and osteoarthritic human articular cartilage. Hum. Gene Ther. 14, 393–402 (2003).

    CAS  PubMed  Google Scholar 

  41. Schuettrumpf, J. et al. The inhibitory effects of anticoagulation on in vivo gene transfer by adeno-associated viral or adenoviral vectors. Mol. Ther 13, 88–97 (2006).

    CAS  PubMed  Google Scholar 

  42. Anderson, J. L. & Hope, T. J. Intracellular trafficking of retroviral vectors: obstacles and advances. Gene Ther. 12, 1667–1678 (2005).

    CAS  PubMed  Google Scholar 

  43. Glover, D. J. Artificial viruses: exploiting viral trafficking for therapeutics. Infect. Disord. Drug Targets 12, 68–80 (2012).

    CAS  PubMed  Google Scholar 

  44. Lam, A. P. & Dean, D. A. Progress and prospects: nuclear import of nonviral vectors. Gene Ther. 17, 439–447 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Wu, P. et al. Non-viral gene delivery systems for tissue repair and regeneration. J. Transl Med. 16, 29 (2018).

    PubMed  PubMed Central  Google Scholar 

  46. Lundstrom, K. Viral vectors in gene therapy. Diseases 6, 42 (2018).

    PubMed Central  Google Scholar 

  47. Appaiahgari, M. B. & Vrati, S. Adenoviruses as gene/vaccine delivery vectors: promises and pitfalls. Expert Opin. Biol. Ther. 15, 337–351 (2015).

    CAS  PubMed  Google Scholar 

  48. Goins, W. F., Hall, B., Cohen, J. B. & Glorioso, J. C. Retargeting of herpes simplex virus (HSV) vectors. Curr. Opin. Virol. 21, 93–101 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Crystal, R. G. Adenovirus: the first effective in vivo gene delivery vector. Hum. Gene Ther. 25, 3–11 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Marshall, E. Gene therapy death prompts review of adenovirus vector. Science 286, 2244–2245 (1999).

    CAS  PubMed  Google Scholar 

  51. Raper, S. E. et al. Fatal systemic inflammatory response syndrome in a ornithine transcarbamylase deficient patient following adenoviral gene transfer. Mol. Genet. Metab. 80, 148–158 (2003).

    CAS  PubMed  Google Scholar 

  52. Vandamme, C., Adjali, O. & Mingozzi, F. Unraveling the complex story of immune responses to AAV vectors trial after trial. Hum. Gene Ther. 28, 1061–1074 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Felgner, P. L. et al. Lipofection: a highly efficient, lipid-mediated DNA-transfection procedure. Proc. Natl Acad. Sci. USA 84, 7413–7417 (1987).

    CAS  PubMed  Google Scholar 

  54. Goodwin, T. & Huang, L. Nonviral vectors: we have come a long way. Adv. Genet. 88, 1–12 (2014).

    PubMed  PubMed Central  Google Scholar 

  55. Schmeer, M., Buchholz, T. & Schleef, M. Plasmid DNA manufacturing for indirect and direct clinical applications. Hum. Gene Ther. 28, 856–861 (2017).

    CAS  PubMed  Google Scholar 

  56. Romano, G. Current development of nonviral-mediated gene transfer. Drug News Perspect. 20, 227–231 (2007).

    CAS  PubMed  Google Scholar 

  57. Halbert, C. L. et al. Repeat transduction in the mouse lung by using adeno-associated virus vectors with different serotypes. J. Virol. 74, 1524–1532 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Smith, R. H. Adeno-associated virus integration: virus versus vector. Gene Ther. 15, 817–822 (2008).

    CAS  PubMed  Google Scholar 

  59. Flotte, T. R. et al. Stable in vivo expression of the cystic fibrosis transmembrane conductance regulator with an adeno-associated virus vector. Proc. Natl Acad. Sci. USA 90, 10613–10617 (1993).

    CAS  PubMed  Google Scholar 

  60. Flotte, T. R., Afione, S. A. & Zeitlin, P. L. Adeno-associated virus vector gene expression occurs in nondividing cells in the absence of vector DNA integration. Am. J. Respir. Cell. Mol. Biol. 11, 517–521 (1994).

    CAS  PubMed  Google Scholar 

  61. Ofri, R. et al. Six years and counting: restoration of photopic retinal function and visual behavior following gene augmentation therapy in a sheep model of CNGA3 achromatopsia. Hum. Gene Ther. https://doi.org/10.1089/hum.2018.076 (2018).

    Article  PubMed  Google Scholar 

  62. Yan, Z., Zhang, Y., Duan, D. & Engelhardt, J. F. Trans-splicing vectors expand the utility of adeno-associated virus for gene therapy. Proc. Natl Acad. Sci. USA 97, 6716–6721 (2000).

    CAS  PubMed  Google Scholar 

  63. Hermonat, P. L., Quirk, J. G., Bishop, B. M. & Han, L. The packaging capacity of adeno-associated virus (AAV) and the potential for wild-type-plus AAV gene therapy vectors. FEBS Lett. 407, 78–84 (1997).

    CAS  PubMed  Google Scholar 

  64. Duan, D., Yue, Y., Yan, Z. & Engelhardt, J. F. A new dual-vector approach to enhance recombinant adeno-associated virus-mediated gene expression through intermolecular cis activation. Nat. Med. 6, 595–598 (2000).

    CAS  PubMed  Google Scholar 

  65. Ferrari, F. K., Samulski, T., Shenk, T. & Samulski, R. J. Second-strand synthesis is a rate-limiting step for efficient transduction by recombinant adeno-associated virus vectors. J. Virol. 70, 3227–3234 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Fisher, K. J. et al. Transduction with recombinant adeno-associated virus for gene therapy is limited by leading-strand synthesis. J. Virol. 70, 520–532 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. McCarty, D. M., Monahan, P. E. & Samulski, R. J. Self-complementary recombinant adeno-associated virus (scAAV) vectors promote efficient transduction independently of DNA synthesis. Gene Ther. 8, 1248–1254 (2001).

    CAS  PubMed  Google Scholar 

  68. Halbert, C. L. et al. Prevalence of neutralizing antibodies against adeno-associated virus (AAV) types 2, 5, and 6 in cystic fibrosis and normal populations: implications for gene therapy using AAV vectors. Hum. Gene Ther. 17, 440–447 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Colella, P., Ronzitti, G. & Mingozzi, F. Emerging issues in AAV-mediated in vivo gene therapy. Mol. Ther. Methods Clin. Dev. 8, 87–104 (2018).

    CAS  PubMed  Google Scholar 

  70. Cottard, V. et al. Immune response against gene therapy vectors: influence of synovial fluid on adeno-associated virus mediated gene transfer to chondrocytes. J. Clin. Immunol. 24, 162–169 (2004).

    CAS  PubMed  Google Scholar 

  71. Mingozzi, F. et al. Overcoming preexisting humoral immunity to AAV using capsid decoys. Sci. Transl Med. 5, 194ra92 (2013).

    PubMed  PubMed Central  Google Scholar 

  72. Nayak, S. & Herzog, R. W. Progress and prospects: immune responses to viral vectors. Gene Ther. 17, 295–304 (2010).

    CAS  PubMed  Google Scholar 

  73. Calceo, R. & Wilson, J. M. Humoral immune response to AAV. Front. Immunol. 4, 341 (2013).

    Google Scholar 

  74. Wu, T. L. & Ertl, H. C. Immune barriers to successful gene therapy. Trends Mol. Med. 15, 32–39 (2009).

    CAS  PubMed  Google Scholar 

  75. Goater, J. et al. Empirical advantages of adeno associated viral vectors in vivo gene therapy for arthritis. J. Rheumatol. 27, 983–989 (2000).

    CAS  PubMed  Google Scholar 

  76. Kaufmann, K. B., Buning, H., Galy, A., Schambach, A. & Grez, M. Gene therapy on the move. EMBO Mol. Med. 5, 1642–1661 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Mi, Z. et al. Adverse effects of adenovirus-mediated gene transfer of human transforming growth factor beta 1 into rabbit knees. Arthritis Res. Ther. 5, R132–R139 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Hacein-Bey-Abina, S. et al. Insertional oncogenesis in 4 patients after retrovirus-mediated gene therapy of SCID-X1. J. Clin. Invest. 118, 3132–3142 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Howe, S. J. et al. Insertional mutagenesis combined with acquired somatic mutations causes leukemogenesis following gene therapy of SCID-X1 patients. J. Clin. Invest. 118, 3143–3150 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Naldini, L. et al. In vivo gene delivery and stable transduction of nondividing cells by a lentiviral vector. Science 272, 263–267 (1996).

    CAS  PubMed  Google Scholar 

  81. Poeschla, E., Corbeau, P. & Wong-Staal, F. Development of HIV vectors for anti-HIV gene therapy. Proc. Natl Acad. Sci. USA 93, 11395–11399 (1996).

    CAS  PubMed  Google Scholar 

  82. Nault, J. C. et al. Recurrent AAV2-related insertional mutagenesis in human hepatocellular carcinomas. Nat. Genet. 47, 1187–1193 (2015).

    CAS  PubMed  Google Scholar 

  83. Gil-Farina, I. et al. Recombinant AAV integration is not associated with hepatic genotoxicity in nonhuman primates and patients. Mol. Ther. 24, 1100–1105 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Srivastava, A. & Carter, B. J. AAV infection: protection from cancer. Hum. Gene Ther. 28, 323–327 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Food and Drug Administration. Guidance for industry: preparation of IDEs and INDs for products intended to repair or replace knee cartilage. FDA.gov https://www.fda.gov/downloads/ucm288011.pdf (2011).

  86. European Commission. Good manufacturing practice for advanced therapy medicinal products. ec.europa.eu https://ec.europa.eu/health/sites/health/files/files/eudralex/vol-4/2017_11_22_guidelines_gmp_for_atmps.pdf (2017).

  87. Baragi, V. M. et al. Transplantation of adenovirally transduced allogeneic chondrocytes into articular cartilage defects in vivo. Osteoarthritis Cartilage 5, 275–282 (1997).

    CAS  PubMed  Google Scholar 

  88. Madry, H. & Trippel, S. B. Efficient lipid-mediated gene transfer to articular chondrocytes. Gene Ther. 7, 286–291 (2000).

    CAS  PubMed  Google Scholar 

  89. Rey-Rico, A. et al. Determination of effective rAAV-mediated gene transfer conditions to support chondrogenic differentiation processes in human primary bone marrow aspirates. Gene Ther. 22, 50–57 (2015).

    CAS  PubMed  Google Scholar 

  90. Halbert, C. L., Standaert, T. A., Wilson, C. B. & Miller, A. D. Successful readministration of adeno-associated virus vectors to the mouse lung requires transient immunosuppression during the initial exposure. J. Virol. 72, 9795–9805 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Selot, R. S., Hareendran, S. & Jayandharan, G. R. Developing immunologically inert adeno-associated virus (AAV) vectors for gene therapy: possibilities and limitations. Curr. Pharm. Biotechnol. 14, 1072–1082 (2014).

    PubMed  Google Scholar 

  92. Buchholz, C. J., Friedel, T. & Buning, H. Surface-engineered viral vectors for selective and cell type-specific gene delivery. Trends Biotechnol. 33, 777–790 (2015).

    CAS  PubMed  Google Scholar 

  93. Buning, H., Huber, A., Zhang, L., Meumann, N. & Hacker, U. Engineering the AAV capsid to optimize vector-host-interactions. Curr. Opin. Pharmacol. 24, 94–104 (2015).

    PubMed  Google Scholar 

  94. Mingozzi, F. & High, K. A. Immune responses to AAV vectors: overcoming barriers to successful gene therapy. Blood 122, 23–36 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Mitchell, A. M., Nicolson, S. C., Warischalk, J. K. & Samulski, R. J. AAV’s anatomy: roadmap for optimizing vectors for translational success. Curr. Gene Ther. 10, 319–340 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Vandenberghe, L. H., Wilson, J. M. & Gao, G. Tailoring the AAV vector capsid for gene therapy. Gene Ther. 16, 311–319 (2009).

    CAS  PubMed  Google Scholar 

  97. Freed, L. E., Martin, I. & Vunjak-Novakovic, G. Frontiers in tissue engineering. In vitro modulation of chondrogenesis. Clin. Orthop. Relat. Res. 367, S46–S58 (1999).

    Google Scholar 

  98. Kon, E., Filardo, G., Perdisa, F., Venieri, G. & Marcacci, M. Clinical results of multilayered biomaterials for osteochondral regeneration. J. Exp. Orthop. 1, 10 (2014).

    PubMed  PubMed Central  Google Scholar 

  99. Kon, E., Roffi, A., Filardo, G., Tesei, G. & Marcacci, M. Scaffold-based cartilage treatments: with or without cells? A systematic review of preclinical and clinical evidence. Arthroscopy 31, 767–775 (2015).

    PubMed  Google Scholar 

  100. Armiento, A. R., Stoddart, M. J., Alini, M. & Eglin, D. Biomaterials for articular cartilage tissue engineering: learning from biology. Acta Biomater. 65, 1–20 (2018).

    CAS  PubMed  Google Scholar 

  101. Cucchiarini, M. et al. A vision on the future of articular cartilage repair. Eur. Cell. Mater. 27, 12–16 (2014).

    CAS  PubMed  Google Scholar 

  102. Johnstone, B. et al. Tissue engineering for articular cartilage repair — the state of the art. Eur. Cell. Mater. 25, 248–267 (2013).

    CAS  PubMed  Google Scholar 

  103. Lopa, S. & Madry, H. Bioinspired scaffolds for osteochondral regeneration. Tissue Eng. Part A 20, 2052–2076 (2014).

    PubMed  Google Scholar 

  104. Nukavarapu, S. P. & Dorcemus, D. L. Osteochondral tissue engineering: current strategies and challenges. Biotechnol. Adv. 31, 706–721 (2013).

    CAS  PubMed  Google Scholar 

  105. Smith, B. D. & Grande, D. A. The current state of scaffolds for musculoskeletal regenerative applications. Nat. Rev. Rheumatol. 11, 213–222 (2015).

    CAS  PubMed  Google Scholar 

  106. Serban, M. A. Translational biomaterials-the journey from the bench to the market-think ‘product’. Curr. Opin. Biotechnol. 40, 31–34 (2016).

    CAS  PubMed  Google Scholar 

  107. Brittberg, M. Cell carriers as the next generation of cell therapy for cartilage repair: a review of the matrix-induced autologous chondrocyte implantation procedure. Am. J. Sports Med. 38, 1259–1271 (2010).

    PubMed  Google Scholar 

  108. Athanasiou, K. A., Niederauer, G. G. & Agrawal, C. M. Sterilization, toxicity, biocompatibility and clinical applications of polylactic acid/polyglycolic acid copolymers. Biomaterials 17, 93–102 (1996).

    CAS  PubMed  Google Scholar 

  109. Madry, H., Kaul, G., Zurakowski, D., Vunjak-Novakovic, G. & Cucchiarini, M. Cartilage constructs engineered from chondrocytes overexpressing IGF-I improve the repair of osteochondral defects in a rabbit model. Eur. Cell. Mater. 25, 229–247 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Hinckel, B. B. & Gomoll, A. H. Autologous chondrocytes and next-generation matrix-based autologous chondrocyte implantation. Clin. Sports Med. 36, 525–548 (2017).

    PubMed  Google Scholar 

  111. Gao, L., Orth, P., Cucchiarini, M. & Madry, H. Effects of solid acellular type-I/III collagen biomaterials on in vitro and in vivo chondrogenesis of mesenchymal stem cells. Expert Rev. Med. Devices 14, 717–732 (2017).

    CAS  PubMed  Google Scholar 

  112. Benya, P. D. & Shaffer, J. D. Dedifferentiated chondrocytes reexpress the differentiated collagen phenotype when cultured in agarose gels. Cell 30, 215–224 (1982).

    CAS  PubMed  Google Scholar 

  113. Vega, S. L., Kwon, M. Y. & Burdick, J. A. Recent advances in hydrogels for cartilage tissue engineering. Eur. Cell. Mater. 33, 59–75 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Filardo, G., Kon, E., Roffi, A., Di Martino, A. & Marcacci, M. Scaffold-based repair for cartilage healing: a systematic review and technical note. Arthroscopy 29, 174–186 (2013).

    PubMed  Google Scholar 

  115. Girotto, D. et al. Tissue-specific gene expression in chondrocytes grown on three-dimensional hyaluronic acid scaffolds. Biomaterials 24, 3265–3275 (2003).

    CAS  PubMed  Google Scholar 

  116. Jha, A. K. et al. Matrix metalloproteinase-13 mediated degradation of hyaluronic acid-based matrices orchestrates stem cell engraftment through vascular integration. Biomaterials 89, 136–147 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Kandil, A. & Safran, M. R. Hip arthroscopy: a brief history. Clin. Sports Med. 35, 321–329 (2016).

    PubMed  Google Scholar 

  118. Seol, D. et al. Biocompatibility and preclinical feasibility tests of a temperature-sensitive hydrogel for the purpose of surgical wound pain control and cartilage repair. J. Biomed. Mater. Res. B Appl. Biomater. 101, 1508–1515 (2013).

    PubMed  Google Scholar 

  119. Bartnikowski, M., Bartnikowski, N. J., Woodruff, M. A., Schrobback, K. & Klein, T. J. Protective effects of reactive functional groups on chondrocytes in photocrosslinkable hydrogel systems. Acta Biomater. 27, 66–76 (2015).

    CAS  PubMed  Google Scholar 

  120. Almqvist, K. F. et al. Treatment of cartilage defects in the knee using alginate beads containing human mature allogenic chondrocytes. Am. J. Sports Med. 37, 1920–1929 (2009).

    PubMed  Google Scholar 

  121. Kim, Y. S. et al. Comparative matched-pair analysis of the injection versus implantation of mesenchymal stem cells for knee osteoarthritis. Am. J. Sports Med. 43, 2738–2746 (2015).

    PubMed  Google Scholar 

  122. Sofu, H. et al. Clinical and radiographic outcomes of chitosan-glycerol phosphate/blood implant are similar with hyaluronic acid-based cell-free scaffold in the treatment of focal osteochondral lesions of the knee joint. Knee Surg. Sports Traumatol. Arthrosc. https://doi.org/10.1007/s00167-018-5079-z (2018).

    Article  PubMed  Google Scholar 

  123. Thier, S., Baumann, F., Weiss, C. & Fickert, S. Feasibility of arthroscopic autologous chondrocyte implantation in the hip using an injectable hydrogel. Hip. Int. 28, 442–449 (2017).

    PubMed  Google Scholar 

  124. Mason, J. M. et al. Cartilage and bone regeneration using gene-enhanced tissue engineering. Clin. Orthop. Relat. Res. 379, S171–S178 (2000).

    Google Scholar 

  125. Goodrich, L. R., Hidaka, C., Robbins, P. D., Evans, C. H. & Nixon, A. J. Genetic modification of chondrocytes with insulin-like growth factor-1 enhances cartilage healing in an equine model. J. Bone Joint Surg. Br. 89, 672–685 (2007).

    CAS  PubMed  Google Scholar 

  126. Grande, D. A., Mason, J., Light, E. & Dines, D. Stem cells as platforms for delivery of genes to enhance cartilage repair. J. Bone Joint Surg. Am. 85-A, 111–116 (2003).

    Google Scholar 

  127. Cao, L. et al. The promotion of cartilage defect repair using adenovirus mediated Sox9 gene transfer of rabbit bone marrow mesenchymal stem cells. Biomaterials 32, 3910–3920 (2011).

    CAS  PubMed  Google Scholar 

  128. Lam, J., Lu, S., Kasper, F. K. & Mikos, A. G. Strategies for controlled delivery of biologics for cartilage repair. Adv. Drug Deliv. Rev. 84, 123–134 (2015).

    CAS  PubMed  Google Scholar 

  129. Lee, S. J. Cytokine delivery and tissue engineering. Yonsei Med. J. 41, 704–719 (2000).

    CAS  PubMed  Google Scholar 

  130. Pannier, A. K. & Shea, L. D. Controlled release systems for DNA delivery. Mol. Ther. 10, 19–26 (2004).

    CAS  PubMed  Google Scholar 

  131. Rey-Rico, A. et al. PEO-PPO-PEO carriers for rAAV-mediated transduction of human articular chondrocytes in vitro and in a human osteochondral defect model. ACS Appl. Mater. Interfaces 8, 20600–20613 (2016).

    CAS  PubMed  Google Scholar 

  132. Dupont, K. M. et al. Synthetic scaffold coating with adeno-associated virus encoding BMP2 to promote endogenous bone repair. Cell Tissue Res. 347, 575–588 (2012).

    CAS  PubMed  Google Scholar 

  133. Fang, J. et al. Stimulation of new bone formation by direct transfer of osteogenic plasmid genes. Proc. Natl Acad. Sci. USA 93, 5753–5758 (1996).

    CAS  PubMed  Google Scholar 

  134. Brunger, J. M. et al. Scaffold-mediated lentiviral transduction for functional tissue engineering of cartilage. Proc. Natl Acad. Sci. USA 111, E798–E806 (2014).

    CAS  PubMed  Google Scholar 

  135. Glass, K. A. et al. Tissue-engineered cartilage with inducible and tunable immunomodulatory properties. Biomaterials 35, 5921–5931 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  136. Moutos, F. T. et al. Anatomically shaped tissue-engineered cartilage with tunable and inducible anticytokine delivery for biological joint resurfacing. Proc. Natl Acad. Sci. USA 113, E4513–E4522 (2016).

    CAS  PubMed  Google Scholar 

  137. Diaz-Rodriguez, P., Rey-Rico, A., Madry, H., Landin, M. & Cucchiarini, M. Effective genetic modification and differentiation of hMSCs upon controlled release of rAAV vectors using alginate/poloxamer composite systems. Int. J. Pharm. 496, 614–626 (2015).

    CAS  PubMed  Google Scholar 

  138. Lee, H. H. et al. Release of bioactive adeno-associated virus from fibrin scaffolds: effects of fibrin glue concentrations. Tissue Eng. Part A 17, 1969–1978 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  139. Rey-Rico, A. et al. Effective and durable genetic modification of human mesenchymal stem cells via controlled release of rAAV vectors from self-assembling peptide hydrogels with a maintained differentiation potency. Acta Biomater. 18, 118–127 (2015).

    CAS  PubMed  Google Scholar 

  140. Rey-Rico, A. et al. rAAV-mediated overexpression of TGF-beta via vector delivery in polymeric micelles stimulates the biological and reparative activities of human articular chondrocytes in vitro and in a human osteochondral defect model. Int. J. Nanomed. 12, 6985–6996 (2017).

    CAS  Google Scholar 

  141. Rey-Rico, A. et al. PEO-PPO-PEO micelles as effective rAAV-mediated gene delivery systems to target human mesenchymal stem cells without altering their differentiation potency. Acta Biomater. 27, 42–52 (2015).

    CAS  PubMed  Google Scholar 

  142. Rey-Rico, A. et al. Supramolecular polypseudorotaxane gels for controlled delivery of rAAV vectors in human mesenchymal stem cells for regenerative medicine. Int. J. Pharm. 531, 492–503 (2017).

    CAS  PubMed  Google Scholar 

  143. Singh, M. et al. Cationic microparticles: a potent delivery system for DNA vaccines. Proc. Natl Acad. Sci. USA 97, 811–816 (2000).

    CAS  PubMed  Google Scholar 

  144. Zhao, R., Peng, X., Li, Q. & Song, W. Effects of phosphorylatable short peptide-conjugated chitosan-mediated IL-1Ra and IGF-1 gene transfer on articular cartilage defects in rabbits. PLoS ONE 9, e112284 (2014).

    PubMed  PubMed Central  Google Scholar 

  145. Li, B. et al. Fabrication of poly(lactide-co-glycolide) scaffold filled with fibrin gel, mesenchymal stem cells, and poly(ethylene oxide)-b-poly(L-lysine)/TGF-beta1 plasmid DNA complexes for cartilage restoration in vivo. J. Biomed. Mater. Res. A 101, 3097–3108 (2013).

    PubMed  Google Scholar 

  146. Li, B. et al. Poly(lactide-co-glycolide)/fibrin gel construct as a 3D model to evaluate gene therapy of cartilage in vivo. Mol. Pharm 11, 2062–2070 (2014).

    CAS  PubMed  Google Scholar 

  147. Wang, W. et al. In vivo restoration of full-thickness cartilage defects by poly(lactide-co-glycolide) sponges filled with fibrin gel, bone marrow mesenchymal stem cells and DNA complexes. Biomaterials 31, 5953–5965 (2010).

    CAS  PubMed  Google Scholar 

  148. Almarza, D., Cucchiarini, M. & Loughlin, J. Genome editing for human osteoarthritis - a perspective. Osteoarthritis Cartilage 25, 1195–1198 (2017).

    CAS  PubMed  Google Scholar 

  149. Brunger, J. M., Zutshi, A., Willard, V. P., Gersbach, C. A. & Guilak, F. CRISPR/Cas9 editing of murine induced pluripotent stem cells for engineering inflammation-resistant tissues. Arthritis Rheumatol. 69, 1111–1121 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  150. Brunger, J. M., Zutshi, A., Willard, V. P., Gersbach, C. A. & Guilak, F. Genome engineering of stem cells for autonomously regulated, closed-loop delivery of biologic drugs. Stem Cell Rep. 8, 1202–1213 (2017).

    CAS  Google Scholar 

  151. Farhang, N. et al. CRISPR-based epigenome editing of cytokine receptors for the promotion of cell survival and tissue deposition in inflammatory environments. Tissue Eng. Part A 23, 738–749 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  152. van der Kraan, P. M. The changing role of TGFβ in healthy, ageing and osteoarthritic joints. Nat. Rev. Rheumatol. 13, 155–163 (2017).

    PubMed  Google Scholar 

  153. Madry, H. & Cucchiarini, M. Gene therapy for human osteoarthritis: principles and clinical translation. Expert Opin. Biol. Ther. 16, 331–346 (2016).

    CAS  PubMed  Google Scholar 

  154. Nixon, A. J. et al. Matrix-induced autologous chondrocyte implantation (MACI) using a cell-seeded collagen membrane improves cartilage healing in the equine model. J. Bone Joint Surg. Am. 99, 1987–1998 (2017).

    PubMed  Google Scholar 

  155. Schmidt-Bleek, K., Willie, B. M., Schwabe, P., Seemann, P. & Duda, G. N. BMPs in bone regeneration: less is more effective, a paradigm-shift. Cytokine Growth Factor Rev. 27, 141–148 (2016).

    CAS  PubMed  Google Scholar 

  156. Eglitis, M. A., Kohn, D. B., Moen, R. C., Blaese, R. M. & Anderson, W. F. Infection of human hematopoietic progenitor cells using a retroviral vector with a xenotropic pseudotype. Biochem. Biophys. Res. Commun. 151, 201–206 (1988).

    CAS  PubMed  Google Scholar 

  157. Miller, A. D., Jolly, D. J., Friedmann, T. & Verma, I. M. A transmissible retrovirus expressing human hypoxanthine phosphoribosyltransferase (HPRT): gene transfer into cells obtained from humans deficient in HPRT. Proc. Natl Acad. Sci. USA 80, 4709–4713 (1983).

    CAS  PubMed  Google Scholar 

  158. Xiao, X., Li, J. & Samulski, R. J. Efficient long-term gene transfer into muscle tissue of immunocompetent mice by adeno-associated virus vector. J. Virol. 70, 8098–8108 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  159. Cucchiarini, M. & Madry, H. Overexpression of human IGF-I via direct rAAV-mediated gene transfer improves the early repair of articular cartilage defects in vivo. Gene Ther. 21, 811–819 (2014).

    CAS  PubMed  Google Scholar 

  160. Pagnotto, M. R. et al. Adeno-associated viral gene transfer of transforming growth factor-beta1 to human mesenchymal stem cells improves cartilage repair. Gene Ther. 14, 804–813 (2007).

    CAS  PubMed  Google Scholar 

  161. Park, J. et al. Transgene-activated mesenchymal cells for articular cartilage repair: a comparison of primary bone marrow-, perichondrium/periosteum- and fat-derived cells. J. Gene Med. 8, 112–125 (2006).

    CAS  PubMed  Google Scholar 

  162. Kubo, S. et al. Blocking vascular endothelial growth factor with soluble Flt-1 improves the chondrogenic potential of mouse skeletal muscle-derived stem cells. Arthritis Rheum. 60, 155–165 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  163. Matsumoto, T. et al. The influence of sex on the chondrogenic potential of muscle-derived stem cells: implications for cartilage regeneration and repair. Arthritis Rheum. 58, 3809–3819 (2008).

    CAS  PubMed  Google Scholar 

  164. Gelse, K., von der Mark, K., Aigner, T., Park, J. & Schneider, H. Articular cartilage repair by gene therapy using growth factor-producing mesenchymal cells. Arthritis Rheum. 48, 430–441 (2003).

    CAS  PubMed  Google Scholar 

  165. Che, J. H. et al. Application of tissue-engineered cartilage with BMP-7 gene to repair knee joint cartilage injury in rabbits. Knee Surg. Sports Traumatol. Arthrosc. 18, 496–503 (2010).

    CAS  PubMed  Google Scholar 

  166. Kaul, G. et al. Local stimulation of articular cartilage repair by transplantation of encapsulated chondrocytes overexpressing human fibroblast growth factor 2 (FGF-2) in vivo. J. Gene Med. 8, 100–111 (2006).

    CAS  PubMed  Google Scholar 

  167. Orth, P. et al. Transplanted articular chondrocytes co-overexpressing IGF-I and FGF-2 stimulate cartilage repair in vivo. Knee Surg. Sports Traumatol. Arthrosc. 19, 2119–2130 (2011).

    PubMed  Google Scholar 

  168. Yokoo, N. et al. Repair of articular cartilage defect by autologous transplantation of basic fibroblast growth factor gene-transduced chondrocytes with adeno-associated virus vector. Arthritis Rheum. 52, 164–170 (2005).

    CAS  PubMed  Google Scholar 

  169. Xia, X. et al. Matrigel scaffold combined with Ad-hBMP7-transfected chondrocytes improves the repair of rabbit cartilage defect. Exp. Ther. Med. 13, 542–550 (2017).

    CAS  PubMed  Google Scholar 

  170. Qi, B. W., Yu, A. X., Zhu, S. B., Zhou, M. & Wu, G. Chitosan/poly(vinyl alcohol) hydrogel combined with Ad-hTGF-beta1 transfected mesenchymal stem cells to repair rabbit articular cartilage defects. Exp. Biol. Med. 238, 23–30 (2013).

    CAS  Google Scholar 

  171. Zhu, S. et al. Combined effects of connective tissue growth factor-modified bone marrow-derived mesenchymal stem cells and NaOH-treated PLGA scaffolds on the repair of articular cartilage defect in rabbits. Cell Transplant. 23, 715–727 (2014).

    PubMed  Google Scholar 

  172. Hu, B. et al. Enhanced treatment of articular cartilage defect of the knee by intra-articular injection of Bcl-xL-engineered mesenchymal stem cells in rabbit model. J. Tissue Eng. Regen. Med. 4, 105–114 (2010).

    CAS  PubMed  Google Scholar 

  173. Katayama, R. et al. Repair of articular cartilage defects in rabbits using CDMP1 gene-transfected autologous mesenchymal cells derived from bone marrow. Rheumatology 43, 980–985 (2004).

    CAS  PubMed  Google Scholar 

  174. Guo, X. et al. Repair of full-thickness articular cartilage defects by cultured mesenchymal stem cells transfected with the transforming growth factor beta1 gene. Biomed. Mater. 1, 206–215 (2006).

    CAS  PubMed  Google Scholar 

  175. Shi, J. et al. Nanoparticle delivery of the bone morphogenetic protein 4 gene to adipose-derived stem cells promotes articular cartilage repair in vitro and in vivo. Arthroscopy 29, 2001–2011 (2013).

    PubMed  Google Scholar 

  176. Gelse, K. et al. Chondrogenic differentiation of growth factor-stimulated precursor cells in cartilage repair tissue is associated with increased HIF-1alpha activity. Osteoarthritis Cartilage 16, 1457–1465 (2008).

    CAS  PubMed  Google Scholar 

  177. Hidaka, C. et al. Acceleration of cartilage repair by genetically modified chondrocytes over expressing bone morphogenetic protein-7. J. Orthop. Res. 21, 573–583 (2003).

    CAS  PubMed  Google Scholar 

  178. Griffin, D. J., Ortved, K. F., Nixon, A. J. & Bonassar, L. J. Mechanical properties and structure-function relationships in articular cartilage repaired using IGF-I gene-enhanced chondrocytes. J. Orthop. Res. 34, 149–153 (2016).

    CAS  PubMed  Google Scholar 

  179. Ortved, K. F., Begum, L., Mohammed, H. O. & Nixon, A. J. Implantation of rAAV5-IGF-I transduced autologous chondrocytes improves cartilage repair in full-thickness defects in the equine model. Mol. Ther. 23, 363–373 (2015).

    CAS  PubMed  Google Scholar 

  180. Andree, C. et al. Plasmid gene delivery to human keratinocytes through a fibrin-mediated transfection system. Tissue Eng. 7, 757–766 (2001).

    CAS  PubMed  Google Scholar 

  181. Bielinska, A. U. et al. Application of membrane-based dendrimer/DNA complexes for solid phase transfection in vitro and in vivo. Biomaterials 21, 877–887 (2000).

    CAS  PubMed  Google Scholar 

  182. Lee, C. R., Grodzinsky, A. J., Hsu, H. P. & Spector, M. Effects of a cultured autologous chondrocyte-seeded type II collagen scaffold on the healing of a chondral defect in a canine model. J. Orthop. Res. 21, 272–281 (2003).

    CAS  PubMed  Google Scholar 

  183. Li, Z. et al. Controlled gene delivery system based on thermosensitive biodegradable hydrogel. Pharm. Res. 20, 884–888 (2003).

    CAS  PubMed  Google Scholar 

  184. Shin, S. & Shea, L. D. Lentivirus immobilization to nanoparticles for enhanced and localized delivery from hydrogels. Mol. Ther. 18, 700–706 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  185. Shin, S., Tuinstra, H. M., Salvay, D. M. & Shea, L. D. Phosphatidylserine immobilization of lentivirus for localized gene transfer. Biomaterials 31, 4353–4359 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  186. Cohen-Sacks, H. et al. Delivery and expression of pDNA embedded in collagen matrices. J. Control. Release 95, 309–320 (2004).

    CAS  PubMed  Google Scholar 

  187. Doukas, J. et al. Delivery of FGF genes to wound repair cells enhances arteriogenesis and myogenesis in skeletal muscle. Mol. Ther. 5, 517–527 (2002).

    CAS  PubMed  Google Scholar 

  188. Ochiya, T. et al. New delivery system for plasmid DNA in vivo using atelocollagen as a carrier material: the Minipellet. Nat. Med 5, 707–710 (1999).

    CAS  PubMed  Google Scholar 

  189. Fukunaka, Y., Iwanaga, K., Morimoto, K., Kakemi, M. & Tabata, Y. Controlled release of plasmid DNA from cationized gelatin hydrogels based on hydrogel degradation. J. Control. Release 80, 333–343 (2002).

    CAS  PubMed  Google Scholar 

  190. Kushibiki, T., Tomoshige, R., Fukunaka, Y., Kakemi, M. & Tabata, Y. In vivo release and gene expression of plasmid DNA by hydrogels of gelatin with different cationization extents. J. Control. Release 90, 207–216 (2003).

    CAS  PubMed  Google Scholar 

  191. Garcia del Barrio, G., Hendry, J., Renedo, M. J., Irache, J. M. & Novo, F. J. In vivo sustained release of adenoviral vectors from poly(D,L-lactic-co-glycolic) acid microparticles prepared by TROMS. J. Control. Release 94, 229–235 (2004).

    CAS  PubMed  Google Scholar 

  192. Schek, R. M., Hollister, S. J. & Krebsbach, P. H. Delivery and protection of adenoviruses using biocompatible hydrogels for localized gene therapy. Mol. Ther. 9, 130–138 (2004).

    CAS  PubMed  Google Scholar 

  193. Thomas, A. M., Palma, J. L. & Shea, L. D. Sponge-mediated lentivirus delivery to acute and chronic spinal cord injuries. J. Control. Release 204, 1–10 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  194. Thomas, A. M. & Shea, L. D. Polysaccharide-modified scaffolds for controlled lentivirus delivery in vitro and after spinal cord injury. J. Control. Release 170, 421–429 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  195. Bonadio, J., Smiley, E., Patil, P. & Goldstein, S. Localized, direct plasmid gene delivery in vivo: prolonged therapy results in reproducible tissue regeneration. Nat. Med. 5, 753–759 (1999).

    CAS  PubMed  Google Scholar 

  196. Huang, Y. C., Simmons, C., Kaigler, D., Rice, K. G. & Mooney, D. J. Bone regeneration in a rat cranial defect with delivery of PEI-condensed plasmid DNA encoding for bone morphogenetic protein-4 (BMP-4). Gene Ther. 12, 418–426 (2005).

    CAS  PubMed  Google Scholar 

  197. Hu, W. W., Wang, Z., Hollister, S. J. & Krebsbach, P. H. Localized viral vector delivery to enhance in situ regenerative gene therapy. Gene Ther. 14, 891–901 (2007).

    CAS  PubMed  Google Scholar 

Download references

Reviewer information

Nature Reviews Rheumatology thanks A. Hollander and the other anonymous reviewer(s) for their contribution to the peer review of this work.

Author information

Authors and Affiliations

Authors

Contributions

Both authors researched the data for the article, provided substantial contributions to discussions of its content, wrote the article and reviewed and/or edited the manuscript before submission.

Corresponding author

Correspondence to Magali Cucchiarini.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cucchiarini, M., Madry, H. Biomaterial-guided delivery of gene vectors for targeted articular cartilage repair. Nat Rev Rheumatol 15, 18–29 (2019). https://doi.org/10.1038/s41584-018-0125-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41584-018-0125-2

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research